圆周运动典型例题及答案详解汇编
最新高考物理生活中的圆周运动题20套(带答案)
最新高考物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
(完整版)圆周运动高考题(含答案),推荐文档
1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。
物理圆周运动经典习题(含详细答案)
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
(完整版)圆周运动试题及参考答案
精心整理第(63)单元测试题一、单项选择题1、在某转弯处,规定火车行驶的速率为v0,则下列说法中正确的是()A.当火车以速率v0行驶时,火车的重力与支持力的合力方向一定沿水平方向B.当火车的速率v>v0时,火车对外轨有向外的侧向压力C.当火车的速率v>v0时,火车对内轨有向内的挤压力D.当火车的速率v<v0时,火车对内轨有向内侧的压力2、一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.aC.c3A.4v,()A.5AC67、v8ABC.小球的角速度突然减小D.悬线拉力突然增大9、如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力不可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为gLD.小球过最低点时绳子的拉力一定大于小球重力10、汽车驶向一凸形桥,为了在通过桥顶时,减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.适当增大速度通过桥顶C.以任何速度匀速通过桥顶D.使通过桥顶的向心加速度尽可能小11、图8两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图8所示,A运动的半径比B的大,则()A.A受到的向心力比B的大B.B受到的向心力比A的大C.A的角速度比B的大D.B的角速度比A的大12、关于铁路转弯处内外轨道间有高度差,下列说法正确的是()ABCD13vA.14A.vC.v15、如图P ABCD16小球m在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的是()A.小球通过最高点时的最小速度是v=B.小球通过最高点时的最小速度为0C.小球在水平线ab以下的管道中运动时内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时外侧管壁对小球一定无作用力17、洗衣机的脱水筒在工作时,有一衣物附着在竖直的筒壁上,则此时()A.衣物受重力、筒壁弹力和摩擦力作用B.衣物随筒壁做圆周运动的向心力由摩擦力提供C.筒壁的弹力随筒转速的增大而增大D.筒壁对衣物的摩擦力随筒转速的增大而增大18、铁路转弯处的弯道半径r主要是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还与火车在弯道上的行驶速率v有关.下列说法正确的是()A.v一定时,r越小则要求h越大B.v一定时,r越大则要求h越大C.r一定时,v越大则要求h越大D.r一定时,v越小则要求h越大19、修铁路时,两轨间距是1435 mm,某处铁路转弯的半径是300 m,若规定火车通过这里的速度是72 km/h.请你运用学过的知识计算一下,要想使内外轨均不受轮缘的挤压,内外轨的高度差应是多大?20、如图所示,半径为R、内径很小的光滑半圆管置于竖直平面内,两个质量均为m的小球A、B,以不同的速度进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg,求A、B两球落地点间的距离。
高考物理生活中的圆周运动题20套(带答案)含解析
高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+6.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
高中物理 圆周运动典型例题详解
B、作匀速圆周运动的物体,在所受合外力突然消失时,
将沿圆周切线方向离开圆心
C、作匀速圆周运动的物体,它自己会产生一个向心力,
维持其作圆周运动
D、作离心运动的物体,是因为受到离心力作用的缘故
【例4】以下属于离心现象应用的是( BC ) A、水平抛出去的物体,做平抛运动 B、链球运动员加速旋转到一定的速度后将链球抛开 C、离心干燥器使衣物干燥 D、锤头松了,将锤柄在石头上磕风下就可以把柄安牢
解题感悟
2.两个圆周运动临界问题
v0
v0
杆连球(管通球)模型的临界问题
小球速度 运动情况 弹力的方向
弹力的大小
v=0 平衡状态 竖直向上的支持力
v gr 圆周运动 竖直向上的支持力
FN=mg
FN
mg
m
v2 r
v gr
圆周运动
v gr 圆周运动 指向圆心的拉力
FN
FN=0 mg
m
解题感悟
解决竖直平面内的变速圆周运动问题的关键是掌握两个圆周 运动模型和两个圆周运动临界问题: 1.两种圆周运动模型:
最低点圆周运动模型
最高点圆周运动模型
v0
v0
第四章 曲线运动和万有引力→3圆周运动
(三)考点应用,精讲精析 典型问题三:曲线运动中的动力学问题(四)------竖直平面内的变速圆周运动
例1 下列关于离心现象的说法正确的是( ) A.当物体所受的离心力大于向心力时产生离心现 象 B.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做背离圆心的圆周运动 C.做匀速圆周运动的物体,当它所受的一切力都
突然消失后,物体将沿切线做匀速直线运动 D.做匀速圆周运动的物体,当它所受的一切力都 突然消失后,物体将做曲线运动 【解析】向心力是根据效果命名的,做匀速圆周 运动的物体所需要的向心力是它所受的某个力或 几个力的合力提供的,因此,它并不受向心力的 作用.它之所以产生离心现象是由于F合=Fn<mω2r,
圆周运动中考真题汇编[解析版]
一、第六章 圆周运动易错题培优(难)1.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。
则( )A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心B .当圆盘角速度增加到足够大,弹簧将伸长C gLμ D .当弹簧的伸长量为x mg kxmLμ+【答案】BC 【解析】 【分析】 【详解】AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。
在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有20mg mL μω=解得0gLμω=选项C 正确;D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有2mg kx m x L μω+=+()解得mg kxm x L μω+=+()选项D 错误。
故选BC 。
2.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A .小球能够到达最高点时的最小速度为0B gRC 5gR 为6mgD .如果小球在最高点时的速度大小为gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,B 错误;C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。
高三物理圆周运动实例分析试题答案及解析
高三物理圆周运动实例分析试题答案及解析1.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。
不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。
2.如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于="4" m/s,g取10m/s2。
水平状态,现给小球一个竖直向上的初速度v(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N(2)2m/s(3)【解析】(1)设小球能通过最高点,且此时的速度为,在上升过程中,因只有重力做功,小球的机械能守恒。
则①②设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则③由②③式,得④由牛顿第三定律可知,小球对轻杆的作用力大小为,方向竖直向上。
(2)解除锁定后,设小球通过最高点时的速度为,此时滑块的速度为V。
在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。
以水平向右的方向为正方向,有⑤在上升过程中,因只有重力做功,系统的机械能守恒,则⑥由⑤⑥式,得⑦(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为,滑块向左移动的距离为,任意时刻小球的水平速度大小为,滑块的速度大小为。
【物理】物理生活中的圆周运动练习题20篇及解析
【物理】物理生活中的圆周运动练习题20篇及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
高中物理必修二第六章圆周运动经典大题例题(带答案)
高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
圆周运动专题汇编(必须掌握经典题目)有答案
r m 高一期末考试题目 圆周运动专题汇编一、选择题[共53题]1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( )A .小球在最高点时所受向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gLD .小球在圆周最低点时拉力可能等于重力C2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( )A .g mrm M + B .g mr m M + C .g mr m M - D .mr Mg A3.关于匀速圆周运动的向心加速度,下列说法正确的是:A .大小不变,方向变化B .大小变化,方向不变C .大小、方向都变化D .大小、方向都不变A4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有:A .车对两种桥面的压力一样大B .车对平直桥面的压力大C .车对凸形桥面的压力大D .无法判断B5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时:A .衣物受到重力、筒壁的弹力和摩擦力的作用B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的C .筒壁对衣物的摩擦力随转速增大而减小D .筒壁对衣物的摩擦力随转速增大而增大A6、关于物体做匀速圆周运动的正确说法是A .速度大小和方向都改变B .速度的大小和方向都不变C .速度的大小改变,方向不变D .速度的大小不变,方向改变B7、如图所示,一光滑的圆锥内壁上,一个小球在水平面内做匀速圆周运动,如果要让小球的运动轨迹离锥顶远些,则下列各物理量中,不会引起变化的是( )A .小球运动的线速度B .小球运动的角速度C .小球的向心加速度D .小球运动的周期C8、如图所示,汽车以速度v通过一圆弧式的拱桥顶端时,则汽车 ( )A.的向心力由它的重力提供B.的向心力由它的重力和支持力的合力提供,方向指向圆心C.受重力、支持力、牵引力、摩擦力和向心力的作用D.以上均不正确B9、如图,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内作圆周运动。
圆周运动典型例题学生版(含答案)
圆周运动典型例题学生版(含答案)研究必备,欢迎下载圆周运动专题总结。
知识点一:匀速圆周运动匀速圆周运动是指质点沿圆周运动,在相等的时间里通过的弧长相等的运动。
它与匀加速运动不同,因为线速度方向时刻在变化,向心加速度方向时刻沿半径指向圆心,时刻变化。
匀速圆周运动中,角速度、周期、转速、速率、动能都是恒定不变的,而线速度、加速度、合外力、动量是不断变化的。
受力提特点没有提到,删除。
随堂练题:1.关于匀速圆周运动,下列说法正确的是(A)匀速圆周运动是匀速运动。
2.关于向心力的说法正确的是(D)做匀速圆周运动的物体的向心力是个恒力。
3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中不变的是(B)动能。
知识点二:描述圆周运动的物理量圆周运动的物理量包括线速度、角速度、周期和转速。
线速度用来描述物体在圆弧上运动的快慢程度,它的定义是圆周运动的物体通过的弧长与所用时间的比值,本质上就是瞬时速度。
角速度反映了物体绕圆心转动的快慢,它的定义是做圆周运动的物体,围绕圆心转过的角度与所用时间的比值。
周期表示的是物体沿圆周运动一周所需要的时间,转速表示的是物体在单位时间内转过的圈数。
线速度与角速度有一定的关系,周期和转速都是用来描述圆周运动转动快慢的。
两个结论是:凡是直接用皮带传动的两个轮子,两轮边缘上各点的大小相等;凡是同一个轮轴上的各点相等(轴上的点除外)。
向心加速度是描述速度变化快慢的物理量,它的方向总是指向圆心,时刻在变化,大小是线速度平方除以半径。
向心力是物体在做匀速或变速圆周运动时所需的力,它指向圆心并且大小可以通过F=ma计算得出。
在匀速圆周运动中,向心力由力的合力或单个力提供。
而在变速圆周运动中,合外力不指向圆心,因此可以分解为跟圆周相切的分力Fr和指向圆心方向的分力Fn。
Fn产生加速度,与速度垂直并改变速度,而Fr产生切向加速度,与物体速度方向在一条直线上并改变速度。
练题:1.正确答案为B,轨道半径越大线速度越小。
高中物理必修二第六章圆周运动题型总结及解题方法(带答案)
高中物理必修二第六章圆周运动题型总结及解题方法单选题1、如图所示是利用两个大小不同的齿轮来达到改变转速的自行车传动结构的示意图。
已知大齿轮的齿数为48个,小齿轮的齿数为16个,后轮直径约为小齿轮直径的10倍.假设脚踏板在1s内转1圈,下列说法正确的是()A.小齿轮在1s内也转1圈B.大齿轮边缘与小齿轮边缘的线速度之比为3:1C.后轮与小齿轮的角速度之比为10:1D.后轮边缘与大齿轮边缘的线速度之比为10:1答案:DAB.齿轮的齿数与半径成正比,因此大齿轮的半径是小齿轮半径的3倍,大齿轮与小齿轮是链条传动,边缘点线速度大小相等,令大齿轮为A,小齿轮为B,后轮边缘为C,故v A:v B=1:1又r A:r B=3:1根据v=ωr可知,大齿轮与小齿轮的角速度之比ωA:ωB=r B:r A=1:3所以脚踏板在1s内转1圈,小齿轮在1s内转3圈,故AB错误;CD.B、C两点为同轴转动,所以ωB:ωC=1:1根据v=ωr可知,后轮边缘上C点的线速度与小齿轮边缘上B点的线速度之比v C:v B=r C:r B=10:1故C错误,D正确。
故选D。
2、某同学经过长时间的观察后发现,路面出现水坑的地方,如果不及时修补,水坑很快会变大,善于思考的他结合学过的物理知识,对这个现象提出了多种解释,则下列说法中不合理的解释是()A.车辆上下颠簸过程中,某些时刻处于超重状态B.把坑看作凹陷的弧形,车对坑底的压力比平路大C.车辆的驱动轮出坑时,对地的摩擦力比平路大D.坑洼路面与轮胎间的动摩擦因数比平直路面大答案:DA.车辆上下颠簸过程中,可能在某些时刻加速度向上,则汽车处于超重状态,A正确,不符合题意;B.把坑看作凹陷的弧形,根据牛顿第二定律有F N−mg=m v2 R则根据牛顿第三定律,把坑看作凹陷的弧形,车对坑底的压力比平路大,B正确,不符合题意;C.车辆的驱动轮出坑时,对地的摩擦力比平路大,C正确,不符合题意;D.动摩擦因数由接触面的粗糙程度决定,而坑洼路面可能比平直路面更光滑则动摩擦因数可能更小,D错误,符合题意。
(完整版)圆周运动典型例题及答案详解
“匀速圆周运动”的典型例题
【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?
【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么
则F1cosθ=mg①
F1sinθ=mRω12②
由几何知识知
∴R=2.4mθ=37°
代入式③ω1=1.77(rad/s)
(2)当O1A受力为100N时,由(1)式
F1cosθ=100×0.8=80(N)>mg
由此知O2A受拉力F2。则对A受力分析得
F1cosθ-F2sinθ-mg=0④
F1sinθ+F2cosθ= mRω22⑤
由于rC>rA=rB,所以当转台的转速逐渐增加时,物体C最先发生滑动.转速继续增加时,物体A、B将同时发生滑动.C正确,D错.
【答】B、C.
【例4】【分析】小球转动时,由于细线逐步绕在A、B两钉上,小球的转动半径会逐渐变小,但小球转动的线速度大小保持不变.
【解】小球交替地绕A、B作匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力T不断增大,每转半圈的时间t不断减小.
[ ]
A.木块受到圆盘对它的摩擦力,方向背离圆盘中心
B.木块受到圆盘对它的摩擦力,方向指向圆盘中心
C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同
D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反
物理生活中的圆周运动题20套(带答案)
物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。
专题08圆周运动-【好题汇编】三年(2022-2024)高考物理真题分类汇编(全国通用)(解析版)
圆周运动专题08考点01水平面内圆周运动1.(2024高考辽宁卷)“指尖转球”是花式篮球表演中常见的技巧。
如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等【答案】D 【解析】由题意可知,球面上P 、Q 两点转动时属于同轴转动,故角速度大小相等,故D 正确;由图可知,球面上P 、Q 两点做圆周运动的半径的关系为P Q r r <,故A 错误;根据v r ω=可知,球面上P 、Q 两点做圆周运动的线速度的关系为P Q v v <,故B 错误;根据2n a r ω=可知,球面上P 、Q 两点做圆周运动的向心加速度的关系为P Q a a <,故C 错误。
2.(2024年高考江苏卷第8题)生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面足够大),则A.离轴OO’越远的陶屑质量越大B.离轴OO’越近的陶屑质量越大C.只有平台边缘有陶屑D..离轴最远的陶屑距离不超过某一值R 【参考答案】D【名师解析】由μmg=mRω2,解得离轴最远的陶屑距离不超过某一值R=μg/ω2,D 正确。
3.(2024年高考江苏卷)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A 高度处做水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B 高度处做水平面内的匀速圆周运动,不计一切摩擦,则()A .线速度v A >v BB.角速度ωA <ωBC.向心加速度a A <a BD.向心力F A >F B 【答案】AD 【解析】设绳子与竖直方向的夹角为θ,对小球受力分析有F n =mg tan θ=ma由题图可看出小球从A 高度到B 高度θ增大,则由F n =mg tan θ=ma 可知a B >a A ,F B >F A 故C 错误,D 正确;再根据题图可看出,A 、B 位置在同一竖线上,则A 、B 位置的半径相同,则根据22n v F m m rrω==可得v A >v B ,ωA >ωB 故A 正确,B 错误。
(物理)物理生活中的圆周运动题20套(带答案)及解析
(物理)物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
(1)求小球在最低点时的速度大小;(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
(完整版)圆周运动习题及答案
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
(完整版)圆周运动经典习题带详细答案
1.在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动•已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为力加速度为g=10 m/s2,若已知女运动员的体重为35 kg,据此可估算该女运动员(A .受到的拉力约为350 ,'2 NB .受到的拉力约为350 NC .向心加速度约为10 m/sD .向心加速度约为10 2 m/s45°重图 4 —2- 112.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4—2 —12所示•交警根据图示作出以下判断,你认为正确的是 A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动C •公路在设计上可能内(东)高外(西)低D •公路在设计上可能外(西)高内(东)低3. (2010湖北部分重点中学联考)如图4—2 —13所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径•某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则A .该盒子做匀速圆周运动的周期一定小于2B .该盒子做匀速圆周运动的周期一定等于2C •盒子在最低点时盒子与小球之间的作用力大小可能小于D •盒子在最低点时盒子与小球之间的作用力大小可能大于2mg2mg)JE中4.图示所示,为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为转速为n,转动过程中皮带不打滑.下列说法正确的是A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为?nD .从动轮的转速为严nr2 r 1 r2 .已知主动轮做顺时针转动, ()5.质量为m的石块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4- 2 —17所示,那么()A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶. 新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;的速度在水平面内转弯,弯道半径为B . 1 000 N MN如图4— 2 —18所示,是一种假设这种新型列车以360 km/h 1.5 km,则质量为75 kg的乘客在列车转弯过程中所受到的合外)D. 0力为(C. 500 .2 N7•如图甲所示,一根细线上端固定在S点,下端连一小铁球A,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力)•下列说法中正确的是()A •小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B •小球做匀速圆周运动时的角速度一定大于.^(1为摆长)C •另有一个圆锥摆,摆长更大一点,两者悬点相同,如图乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则的角速度大于A球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等&汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,沿半径方向受到的摩擦力分别为Ff甲和Ff 乙.以下说法正确的是()A. Ff甲小于Ff乙B. Ff甲等于Ff乙C . Ff甲大于Ff乙D . Ff甲和Ff乙大小均与汽车速率无关9.在高速公路的拐弯处,通常路面都是外高内低•如图4-2—20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些•汽车的运动可看作是做半径为R的圆周运动•设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为方向)等于零,则汽车转弯时的车速应等于()g.要使车轮与路面之间的横向摩擦力(即垂直于前进11.如图4 —2 —25所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为m A、m B的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知m A= 0.5 kg, L = 1.2 m , L AO =0.8 m, a= 2.1 m , h = 1.25 m , A 球的速度大小V A = 0.4 m/s,重力加速度g 取10 m/s2,求:⑴绳子上的拉力F以及B球的质量m B;(2)若当绳子与MN平行时突然断开,则经过 1.5 s两球的水平距离;(与地面撞击后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速圆周运动”的典型例题【例1】如图所示的传动装置中,A、B 两轮同轴转动.A、B、C 三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?【例2】一圆盘可绕一通过圆盘中心O 且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反E.因为二者是相对静止的,圆盘与木块之间无摩擦力【例3】在一个水平转台上放有A、B、C 三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则A.若A 、B、C三物体随转台一起转动未发生滑动,A、C 的向心加速度比B 大B.若A、B、C三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小C.当转台转速增加时,C 最先发生滑动D.当转台转速继续增加时,A 比B 先滑动【例4】如图,光滑的水平桌面上钉有两枚铁钉A 、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A 上,另一端拴住一个质量为500g 的小球.小球的初始位置在AB 连线上A 的一侧.把细线拉直,给小球以2m/s 的垂直细线方向的水平速度,使它做圆周运动.由于钉子B 的存在,使细线逐步缠在A、B 上.若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长?【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.如果题中的细线始终不会断裂,有兴趣的同学还可计算一下,从小球开始运动到细线完全绕在A、B 两钉子上,共需多少时间?【例5】如图(a)所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω 匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?【说明】本题是属于二维的牛顿第二定律问题,解题时,一般可以物体为坐标原点,建立xoy直角坐标,然后沿x轴和y轴两个方向,列出牛顿第二定律的方程,其中一个方程是向心力和向心加速度的关系,最后解联立方程即可。
【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?【例7】如下图所示,自行车和人的总质量为M ,在一水平地面运动.若自行车以速度v 转过半径为R 的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?【例8】用长L1=4m 和长为L2=3m 的两根细线,拴一质量m=2kg 的小球A ,L1 和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m 如下图(g=10m·s-2)(1)当竖直杆以的角速度ω匀速转动时,O2A 线刚好伸直且不受拉力.求此时角速度ω1.2)当O1A 线所受力为100N 时,求此时的角速度ω2.【说明】向心力是一种效果力,在本题中O2A 受力与否决定于物体A 做圆周运动时角速度的临界值.在这种题目中找好临界值是关键.[例9]一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,有一台发出细光束的激光器装在小转台M 上,到轨道的距离MN 为d=10m,如图所示。
转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s,光束转动方向如图箭头所示。
当光束与MN 的夹角为45°时,光束正好射到小车上,如果再经过△ t=2.5s 光束又射到小车上,则小车的速度为多少?(结果保留二位数字)[例10]图所示为测量子弹速度的装置,一根水平转轴的端部焊接一个半径为R 的薄壁圆筒(图为其横截面),转轴的转速是每分钟n 转,一颗子弹沿圆筒的水平直径由A 点射入圆筒,在圆筒转过不到半圆时从B 点穿出,假设子弹穿壁时速度大小不变,并在飞行中保持水平方向,测量出A 、B 两点间的孤长为L,写出子弹速度的表达式。
[说明]解题过程中,物理过程示意图,是常用的方法,它可以使抽象的物理过程具体形象化,便于从图中找出各物理量之间关系,以帮助建立物理方程,最后求出答案典型例题答案【例1】【分析】皮带不打滑,表示轮子边缘在某段时间内转过的弧长总是跟皮带移动的距离相等,也就是说,用皮带直接相连的两轮边缘各处的线速度大小相等.根据这个特点,结合线速度、角速度、向心加速度的公式即可得解.【解】由于皮带不打滑,因此,B、C 两轮边缘线速度大小相等,设v B=v C=v.由v= ωR 得两轮角速度大小的关系ωB∶ωC=R C∶R B=2∶1.因A、B两轮同轴转动,角速度相等,即ωA=ωB,所以A、B、C 三轮角速度之比ωA∶ ωB∶ωC=2∶2∶1.因A 轮边缘的线速度v A=ωA R A=2ωB R B=2v B,所以A、B、C 三轮边缘线速度之比v A ∶v B∶v C=2∶1∶1.根据向心加速度公式a=ω2R,所以A 、B、C 三轮边缘向心加速度之比=8∶ 4∶ 2=4∶2∶ 1.【例2】【分析】由于木块随圆盘一起作匀速圆周运动,时刻存在着一个沿半径指向圆心的向心加速度,因此,它必然会受到一个沿半径指向中心、产生向心加速度的力——向心力.以木块为研究对象进行受力分析:在竖直方向受到重力和盘面的支持力,它处于力平衡状态.在盘面方向,可能受到的力只有来自盘面的摩擦力(静摩擦力),木块正是依靠盘面的摩擦力作为向心力使它随圆盘一起匀速转动.所以,这个摩擦力的方向必沿半径指向中心【答】B.【说明】常有些同学认为,静摩擦力的方向与物体间相对滑动的趋势方向相反,木块随圆盘一起匀速转动时,时时有沿切线方向飞出的趋势,因此静摩擦力的方向应与木块的这种运动趋势方向相反,似乎应该选D.这是一种极普遍的错误认识,其原因是忘记了研究运动时所相对的参照系.通常说做圆运动的物体有沿线速度方向飞出的趋势,是指以地球为参照系而言的.而静摩擦力的方向总是跟相对运动趋势的方向相反,应该是指相互接触的两个相关物体来说的,即是对盘面参照系.也就是说,对站在盘上跟盘一起转动的观察者,木块时刻有沿半径向外滑出的趋势,所以,木块受到盘面的摩擦力方向应该沿半径指向中心【例3】【分析】A 、B、C 三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为ω.根据向心加速度的公式a n=ω2r,已知r A=r B <r C,所以三物体向心加速度的大小关系为a A=a B<a C.A 错.三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =F n=mω2r,所以三物体受到的静摩擦力的大小分别为f A =m Aω2r A=2mω2r,f B=m Bω2r B=mω2r,f C=m cω 2rc =mω2·2r=2mω 2r .即物体B所受静摩擦力最小.B 正确.由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为μ ,静摩擦力的最大值可认为是f m=μmg.由f m=F n,即得不发生滑动的最大角速度为即离转台中心越远的物体,使它不发生滑动时转台的最大角速度越小.由于r C>r A=r B,所以当转台的转速逐渐增加时,物体C 最先发生滑动.转速继续增加时,物体A、B 将同时发生滑动.C 正确,D 错.【答】B、C.【例4】【分析】小球转动时,由于细线逐步绕在A 、B 两钉上,小球的转动半径会逐渐变小,但小球转动的线速度大小保持不变.【解】小球交替地绕A、B 作匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力T 不断增大,每转半圈的时间t 不断减小.令T n=T m=7N ,得n=8,所以经历的时间为【例5】【分析】小球在水平面内做匀速圆周运动,由绳子的张力和锥面的支持力两者的合力提供向心力,在竖直方向则合外力为零。
由此根据牛顿第二定律列方程,即可求得解答。
【解】对小球进行受力分析如图(b)所示,根据牛顿第二定律,向心方向上有T·sinθ-N·cosθ=mω 2r ①y 方向上应有N· sinθ+T·cosθ-G=0 ②∵r = L ·sinθ ③ 由①、②、③式可得T = mgcosθ +mω2Lsinθ当小球刚好离开锥面时N=0(临界条件)则有Tsinθ=mω 2r ④T·cosθ -G=0 ⑤【例6】【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。
当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。
只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。
【解】以杯中之水为研究对象,进行受力分析,根据牛顿第二定律【例7】【分析】骑车拐弯时不摔倒必须将身体向内侧倾斜.从图中可知,当骑车人拐弯而使身体偏离竖直方向α 角时,从而使静摩擦力f 与地面支持力N 的合力Q通过共同的质心O,合力Q 与重力的合力F 是维持自行车作匀速圆周运动所需要的向心力.解】(1)由图可知,向心力F=Mgtgα,由牛顿第二定律有:(2)由图可知,向心力F可看做合力Q在水平方向的分力,而Q又是水平方向的静摩擦力f 和支持力N 的合力,所以静摩擦力f 在数值上就等于向心力F,即f = Mgtg α例8 】【分析】小球做圆周运动所需的向心力由两条细线的拉力提供,当小球的运动速度不同时,所受拉力就不同解】(1)当O2A线刚伸直而不受力时,受力如图所示则F1cosθ =mg ①F1sinθ =mRω 12 ②由几何知识知∴R=2.4m θ =37代入式③ ω 1=1.77(rad/s)2)当O1A 受力为100N时,由(1)式F1cosθ=100×0.8=80(N)> mg由此知O2A 受拉力F2。
则对A 受力分析得F1cosθ-F2sinθ -mg=0 ④F1sinθ+F2cosθ= mRω22⑤由式(4)(5)得【例9】[分析]激光器扫描一周的时间T=60s,那么光束在△ t=2.5s 时间内转过的角度激光束在竖直平面内的匀速转动,但在水平方向上光点的扫描速度是变化的,这个速度是沿经向方向速度与沿切向方向速度的合速度。
当小车正向N 点接近时,在△ t 内光束与MN 的夹角由45°变为30°随着θ 减小,v 扫在减小若45°时,光照在小车上,此时v扫>v 车时,此后光点将照到车前但v 扫↓v 车不变,当v 车>v 扫时,它们的距离在缩小。