Python实现各种排序
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数。《数据结构》也会花大量篇幅讲解排序。之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考。
最简单的排序有三种:插入排序,选择排序和冒泡排序。这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了。代码直接贴出来。插入排序:
def insertion_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(1, iter_len):
key = sort_list[i]
j = i - 1
while j>=0 and sort_list[j]>key:
sort_list[j+1] = sort_list[j]
j -= 1
sort_list[j+1] = key
return sort_list
冒泡排序:
def bubble_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(iter_len-1):
for j in range(iter_len-i-1):
if sort_list[j] > sort_list[j+1]:
sort_list[j], sort_list[j+1] = sort_list[j+1],
sort_list[j]
return sort_list
选择排序:
def selection_sort(sort_list):
iter_len = len(sort_list)
if iter_len < 2:
return sort_list
for i in range(iter_len-1):
smallest = sort_list[i]
location = i
for j in range(i, iter_len):
if sort_list[j] < smallest:
smallest = sort_list[j]
location = j
if i != location:
sort_list[i], sort_list[location] = sort_list[location], sort_list[i]
return sort_list
这里我们可以看到这样的句子:
sort_list[i], sort_list[location] = sort_list[location], sort_list[i]
不了解Python的同学可能会觉得奇怪,没错,这是交换两个数的做法,通常在其他语言中如果要交换a与b的值,常常需要一个中间变量temp,首先把a赋给temp,然后把b赋给a,最后再把temp赋给b。但是在python中你就可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。
平均时间复杂度为O(nlogn)的算法有:归并排序,堆排序和快速排序。
归并排序。对于一个子序列,分成两份,比较两份的第一个元素,小者弹出,然后重复这个过程。对于待排序列,以中间值分成左右两个序列,然后对于各子序列再递归调用。源代码如下,由于有工具函数,所以写成了callable的类:
class merge_sort(object):
def _merge(self, alist, p, q, r):
left = alist[p:q+1]
right = alist[q+1:r+1]
for i in range(p, r+1):
if len(left)>0 and len(right)>0:
if left[0]<=right[0]:
alist[i] = left.pop(0)
else:
alist[i] = right.pop(0)
elif len(right)==0:
alist[i] = left.pop(0)
elif len(left)==0:
alist[i] = right.pop(0)
def _merge_sort(self, alist, p, r):
if p q = int((p+r)/2) self._merge_sort(alist, p, q) self._merge_sort(alist, q+1, r) self._merge(alist, p, q, r) def __call__(self, sort_list): self._merge_sort(sort_list, 0, len(sort_list)-1) return sort_list 堆排序,是建立在数据结构——堆上的。关于堆的基本概念、以及堆的存储方式这里不作介绍。这里用一个列表来存储堆(和用数组存储类似),对于处在i位置的元素,2*i+1位置上的是其左孩子,2*i+2是其右孩子,类似得可以得出该元素的父元素。 首先我们写一个函数,对于某个子树,从根节点开始,如果其值小于子节点的值,就交换其值。用此方法来递归其子树。接着,我们对于堆的所有非叶节点,自下而上调用先前所述的函数,得到一个树,对于每个节点(非叶节点),它都大于其子节点。(其实这是建立最大堆的过程)在完成之后,将列表的头元素和尾元素调换顺序,这样列表的最后一位就是最大的数,接着在对列表的0到n-1部分再调用以上建立最大堆的过程。最后得到堆排序完成的列表。以下是源代码: class heap_sort(object): def _left(self, i): return 2*i+1 def _right(self, i): return 2*i+2 def _parent(self, i): if i%2==1: return int(i/2) else: return i/2-1 def _max_heapify(self, alist, i, heap_size=None):