2任意角的三角函数、同角三角函数的基本关系含答案
人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)
知识探究(一):基本关系
思考1:如图,设α是一个任意角,它
的终边与单位圆交于点P,那么,正弦
线MP和余弦线OM的长度有什么内在联
系?由此能得到什么结论?
y P
1
MO
x
思考2:上述关系反应了角α的正弦和 余弦之间的内在联系,根据等式的特点, 将它称为平方关系.那么当角α的终边 在坐标轴上时,上述关系成立吗?
y P
P Ox
思考3:设角α的终边与单位圆交于点
P(x,y),根据三角函数定义,有
,
,
,
由此可得sinα,cosα,tanα满足什
么关系?
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
思考5:平方关系和商数关系是反应同一 个角的三角函数之间的两个基本关系, 它们都是恒等式,如何用文字语言描述 这两个关系?
同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切.
知识探究(二):基本变形 思考1:对于平方关系 可作哪些变形?
sin2 cos2 1
思考2:对于商数关系 哪些变形?
可作
思考3:结合平方关系和商数关系, 可得到哪些新的恒等式?
思考4:若已知sinα的值,如何求cosα 和tanα的值?
思考5:若已知tanα的值,如何求sinα 和cosα的值?
理论迁移
例1 求证:
例2 已知
,求
若α是第三象限角,则
若α是第四象限角,则
, 的值.
,
.
,
.
例3 已知tanα=2,求下列各式的值.
(1)
;(2)
5 2
例4 已知 求
, 的值.
小结作业
1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.
专题4.1任意角的三角函数 同角三角函数的基本关系(2021年高考数学一轮复习专题)
专题 任意角的三角函数 同角三角函数的基本关系一、题型全归纳题型一 象限角及终边相同的角【题型要点】(1)表示区间角的三个步骤 ①先按逆时针方向找到区域的起始和终止边界;①按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间; ①起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合. (2)象限角的两种判断方法①图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角; ①转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ①Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.【易错提醒】注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ①Z )表示终边落在角α的终边所在直线上的角. 【例1】(2020·辽宁鞍山一中一模)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角【解析】 因为α是第二象限角,所以π2+2k π<α<π+2k π,k ①Z ,所以π4+k π<α2<π2+k π,k ①Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.【例2】(2020·东北师大附中摸底)集合{α|k π+π4≤α≤k π+π2,k ①Z }中的角所表示的范围(阴影部分)是( )【解析】当k =2n (n ①Z )时,2n π+π4≤α≤2n π+π2,n ①Z ,此时α的终边和π4≤α≤π2的终边一样;当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.故选C.题型二 扇形的弧长、面积公式【题型要点】弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. 【易错提醒】运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度. 【例1】已知扇形的圆心角是α ,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解析】 (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R ,0<R <10,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10 cm ,α=2 rad.【例2】.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为 .【解析】:设圆的半径为r ,则扇形的半径为2r 3,记扇形的圆心角为α,则12α⎝⎛⎭⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r32πr =518题型三 三角函数的定义命题角度一 利用三角函数定义求值【题型要点】三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P 的坐标,求角α的三角函数值 方法:先求出点P 到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y =kx ,k ≠0),求角α的三角函数值方法:先设出终边上一点P (a ,ka ),a ≠0,求出点P 到原点的距离(注意a 的符号,对a 分类讨论),再利用三角函数的定义求解.【例1】(2020·合肥一检)函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点P ,且角α的终边过点P ,则sin α+cos α的值为( ) A.75 B.65 C.55D .355【解析】因为函数y =log a (x -3)+2的图象过定点P (4,2),且角α的终边过点P ,所以x =4,y =2,r =25,所以sin α=55,cos α=255,所以sin α+cos α=55+255=355.故选D. 【例2】已知角α的终边经过点P (-x ,-6),且cos α=-513,则tan α= .【解析】因为角α的终边经过点P (-x ,-6),且cos α=-513,所以cos α=-x x 2+36=-513,即x =52.所以P ⎝⎛⎭⎫-52,-6,所以tan α=125. 【例3】(2020·山西太原三中模拟)若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α= . 【解析】:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.命题角度二 判断三角函数值的符号【题型要点】三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角α终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况. 【例3】若sin αcos α>0,cos αtan α<0,则α的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限、【解析】由sin αcos α>0,得α的终边落在第一或第三象限,由cos αtan α=cos α·sin αcos α=sin α<0,得α的终边落在第三或第四象限,综上α的终边落在第三象限.故选C.【例4】(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)题型四 同角三角函数的基本关系式命题角度一 公式的直接应用【题型要点】1.同角三角函数的基本关系(1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝⎛⎭⎫其中x ≠k π+π2,k ①Z . 2.利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.【例1】(2020·北京西城区模拟)已知α①(0,π),cos α=-35,则tan α=( )A.34 B .-34 C.43D .-43【解析】因为cos α=-35且α①(0,π),所以sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.故选D.【例2】已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .【解析】由tan α=-13,得sin α=-13cos α,且sin α>0,cos α<0,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos α=-31010,sin α=1010,故sin α+cos α=-105.命题角度二 sin α,cos α的齐次式问题【题型要点】关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略 已知tan α,求关于sin α与cos α的齐n 次分式或齐二次整式的值.【例3】 已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解析】 由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝⎛⎭⎫122+12⎝⎛⎭⎫122+1+2=135. 命题角度三 sin α±cos α,sin αcos α之间的关系【题型要点】sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号). (2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二. 【例4】 已知α①(-π,0),sin α+cos α=15.(1)求sin α-cos α的值;(2)求sin 2α+2sin 2α1-tan α的值.【解析】(1)由sin α+cos α=15,平方得sin 2α+2sin αcos α+cos 2α=125,整理得2sin αcos α=-2425.所以(sin α-cos α)2=1-2sin αcos α=4925.由α①(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-75.(2)sin 2α+2sin 2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.【例5】.(2020·长春模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D .34【答案】B.【解析】:因为5π4<α<3π2,所以cos α<0,sin α<0且|cos α|<|sin α|,所以cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,所以cos α-sin α=32.故选B.题型五 诱导公式的应用【题型要点】1.三角函数的诱导公式①化负为正,化大为小,化到锐角为止;①角中含有加减π2的整数倍时,用公式去掉π2的整数倍.3.常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等;①常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.【例1】.若角A ,B ,C 是①ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C 2=sin B 2 D .sin B +C 2=-cos A2【答案】C.【解析】:因为A +B +C =π,所以A +B =π-C ,A +C 2=π-B 2,B +C 2=π-A2,所以cos(A +B )=cos(π-C )=-cos C ,sin(A +B )=sin(π-C )=sin C ,cos A +C 2=cos ⎪⎭⎫ ⎝⎛2-2B π=sin B 2,sin B +C 2=sin ⎪⎭⎫⎝⎛2-2A π=cos A 2.【例2】已知cos ⎪⎭⎫⎝⎛θπ-6=a ,则cos ⎪⎭⎫ ⎝⎛+θπ65+sin ⎪⎭⎫⎝⎛θπ-32的值是 .【解析】:因为cos ⎪⎭⎫⎝⎛+θπ65=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+θππ-62=-cos ⎪⎭⎫⎝⎛θπ-6=-a . sin ⎪⎭⎫⎝⎛θπ-32=sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+θππ-62=cos ⎪⎭⎫ ⎝⎛θπ-6=a ,所以cos ⎪⎭⎫ ⎝⎛+θπ65+sin ⎪⎭⎫⎝⎛θπ-32=0. 二、高效训练突破 一、选择题1.(2019·洛阳一中月考)计算:sin 11π6+cos 10π3=( ) A .-1B .1C .0D .12-32【解析】:原式=sin ⎪⎭⎫⎝⎛6-2ππ+cos ⎪⎭⎫ ⎝⎛3-3ππ=-sin π6+cos ⎪⎭⎫ ⎝⎛+3ππ=-12-cos π3=-12-12=-1. 2.给出下列四个命题: ①-3π4是第二象限角; ①4π3是第三象限角; ①-400°是第四象限角; ①-315°是第一象限角. 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】:.-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,①正确.-400°=-360°-40°,从而①正确.-315°=-360°+45°,从而①正确.3.(2020·镇江期中)已知sin(π+α)=-13,则tan ⎪⎭⎫⎝⎛απ-2的值为( )A .2 2B .-22 C.24D .±22【解析】:因为sin(π+α)=-13,所以sin α=13,cos α=±223,tan ⎪⎭⎫ ⎝⎛απ-2=cos αsin α=±2 2.故选D.4.(2019·武汉调研)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6D .π3【解析】:因为sin(π+θ)=-3cos(2π-θ),所以-sin θ=-3cos θ, 所以tan θ=3,因为|θ|<π2,所以θ=π3.5.(2020·江西南昌一模)已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】:由题意知tan α<0,cos α<0,根据三角函数值的符号规律可知,角α的终边在第二象限.故选B.6.若圆弧长度等于圆内接正方形的边长,则该圆弧所对圆心角的弧度数为( ) A.π4 B.π2 C.22D .2【解析】:设圆的直径为2r ,则圆内接正方形的边长为2r ,因为圆的圆弧长度等于该圆内接正方形的边长,所以圆弧的长度为2r ,所以圆心弧度为2rr= 2. 7.(2020·海淀期末)已知f (α)=())(απαπαπαπ+⋅⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+⋅-tan 2cos 2cos 2sin ,则⎪⎭⎫⎝⎛3πf =( ) A.12 B.22 C.32D .-12【解析】:.f (α)=())(απαπαπαπ+⋅⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+⋅-tan 2cos 2cos 2sin =-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则⎪⎭⎫ ⎝⎛3πf =cos π3=12.8.已知sin α+cos α=2,则tan α+cos αsin α的值为( )A .-1B .-2 C.12D .2【解析】:因为sin α+cos α=2,所以(sin α+cos α)2=2,所以sin αcos α=12.所以tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=2.故选D.9.(2020·马鞍山质量检测)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 【解析】:如图所示作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4<α<-π2,所以角α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.10.(2019·大同模拟)1.已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( )A.75B.257C.725 D .2425【解析】:因为-π2<α<0,所以cos α>0,sin α<0,可得cos α-sin α>0,因为(sin α+cos α)2+(cos α-sin α)2=2, 所以(cos α-sin α)2=2-(sin α+cos α)2=2-125=4925,cos α-sin α=75,cos 2α-sin 2α=15×75=725,所以1cos 2α-sin 2α的值为257. 二、填空题1.(2020·楚雄龙江中学期中)与角2 020°的终边相同,且在0°~360°内的角是 .【解析】:因为2 020°=220°+5×360°,所以在0°~360°内终边与2 020°的终边相同的角是220°.2.(2020·许昌调研)设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α= . 【解析】:因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =x x 2+16, 解得x =-3,所以tan α=4x =-43. 3.设α是第三象限角,tan α=512,则cos(π-α)= . 【解析】:因为α为第三象限角,tan α=512,所以cos α=-1213,所以cos(π-α)=-cos α=1213. 4.化简:cos (α-π)sin (π-α)·sin(α-π2)·cos(3π2-α)= . 【解析】:cos (α-π)sin (π-α)·sin(α-π2)·cos(3π2-α)=-cos αsin α·(-cos α)·(-sin α)=-cos 2α. 5.(2020·惠州调研)已知角α的终边上一点P 的坐标为⎪⎭⎫ ⎝⎛32cos ,32sin ππ,则角α的最小正值为 . 【解析】:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ①Z ),所以α的最小正值为11π6. 6.若两个圆心角相同的扇形的面积之比为1①4,则这两个扇形的周长之比为 .【解析】:设两个扇形的圆心角的弧度数为α,半径分别为r ,R (其中r <R ),则12αr 212αR 2=14, 所以r ①R =1①2,两个扇形的周长之比为2r +αr 2R +αR=1①2. 7.已知sin ⎪⎭⎫ ⎝⎛απ-2-cos ⎪⎭⎫ ⎝⎛+απ27-=1225,且0<α<π4,则sin α= ,cos α= .【解析】:sin ⎪⎭⎫ ⎝⎛απ-2-cos ⎪⎭⎫ ⎝⎛+απ27-=-cos α·(-sin α)=sin αcos α=1225. 因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45. 8.(2020·福州调研)若1+cos αsin α=2,则cos α-3sin α= . 【解析】:因为1+cos αsin α=2,所以cos α=2sin α-1,又sin 2α+cos 2α=1,所以sin 2α+(2sin α-1)2=1, 5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),所以cos α-3sin α=-sin α-1=-95. 三 解答题1.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值.【解析】:因为角θ的终边过点(x ,-1)(x ≠0),所以tan θ=-1x,又tan θ=-x ,所以x 2=1,所以x =±1. 当x =1时,sin θ=-22,cos θ=22,此时sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22,此时sin θ+cos θ=- 2. 2.已知α为第三象限角,f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π). (1)化简f (α);(2)若cos(α-3π2)=15,求f (α)的值. 【答案】(1)-cos α;(2)265 【解析】:(1)f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α. (2)因为cos(α-3π2)=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265.。
2022届新高考高三数学一轮复习考点讲义第7讲:三角函数【含答案】
三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
高考数学专题复习四-4.1三角函数的概念、同角三角函数的基本关系和诱导公式-高考真题练习(附答案)
专题四三角函数与解三角形4.1三角函数的概念、同角三角函数的基本关系和诱导公式基础篇考点三角函数的概念、同角三角函数的基本关系和诱导公式考向一任意角与弧度制1.(2022豫北名校大联考,6)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为() A.10π3 B.2πC.5π3D.5π6答案A2.(2021广西桂林十八中3月模拟,6)在平面直角坐标系中,动点M在单位圆上按逆时针方向做匀速圆周运动,第12分钟末刚好转动一周,若点M则运动到第3分钟末时,动点M所在位置的坐标为()B.−12C.−D.−−答案C3.(2023届四川蓉城名校联盟入学联考,8)折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1),图2为其结构简化图,设扇面A,B间的圆弧长为l,AB间的弦长为d,圆弧所对的圆心角为θ(θ为弧度角),则l、d和θ所满足的恒等关系为()图1图2A.2sin2=B.sin2=C.cos2=D.2cos2=答案A考向二任意角的三角函数1.(2020课标Ⅱ,2,5分)若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0答案D2.(2021陕西榆林一模,3)如图,角α,β的顶点与原点O重合,始边与x轴的非负半轴重合,终边与单位圆O分别交于A,B两点,则O ·O =()A.cos(α-β)B.cos(α+β)C.sin(α-β)D.sin(α+β)答案A3.(2022河南洛阳统考(二),6)已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点P(cos15°+sin15°,cos15°-sin15°),则tanα=()A.2-3B.2+3D.3答案C4.(2022山西吕梁模拟,4)若点M sin2021π3,α的终边上,则cos2α=()A.2B.-2C.12D.−12答案C5.(2023届黑龙江省实验中学月考,13)已知点P(-2,y)是角θ终边上一点,且sinθ则y=.答案-4考向三同角三角函数的基本关系和诱导公式1.(2023届黑龙江牡丹江绥芬河高级中学月考,4)已知tanα=cos2−sin,则sinα=()B.12 D.14答案B2.(2022山西二模,3)若sin10°=a sin100°,则sin20°=()A.2+1 B.−2+1C.22+1D.−22+1答案C3.(2023届西南“三省三校”联考一,7)已知cos−=απ,则cos+() A.-13 B.13答案A4.(2022安徽芜湖3月模拟,6)已知函数f(n)+(n∈N*),则f(1)+f(2)+f(3)+…+f(2 021)=()A.2021B.2021+2C.2022+2D.20222答案B5.(2020浙江,13,6分)已知tanθ=2,则cos2θ=,tan−=.答案-35;13综合篇考法同角三角函数基本关系式的应用1.(2022陕西安康高新中学三模,7)已知tanθ=12,则sin3rsincos3rsinvos2=() A.6 B.16 C.12 D.2答案C2.(2022安徽安庆二模,5)已知cosθ-sinθ=2sin2θ,θ∈π,则sin−()A.-12B.−C.12D.−1答案A3.(2023届黑龙江齐齐哈尔八校联合体期中,6)已知角α满足2sin−=tanπ12cosα,则sin2α+2cos2α的值为() A.45 B.65 C.75 D.85答案B4.(2022兰州、张掖重点中学联考,8)已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(3-1)x+m=0(m∈R)的两根,则sinθ-cosθ的值为()22C.3D.−3答案B5.(2022宁夏长庆高级中学月考一,17)已知函数y=sinθ+cosθ+2sinθcosθ.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的取值范围;(2)求函数y=f(t)的值域.解析(1)因为t=sinθ+cosθ(θ∈R),sin2θ+cos2θ=1,所以2sinθcosθ=t2-1,故f(t)=t2+t-1,t=sinθ+cosθ=2sin+[-2,2],故t的取值范围为[-2,2].(2)由(1)知y=f(t)=t2+t-1=2−54(t∈[-2,2]),由二次函数的性质可知,y=f(t)的最小值为f−=−54,又f(-2)=1-2,f(2)=1+2,所以y=f(t)的值域为−54,1+2.。
三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点,记:),(y x P 22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:yx =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:,,。
1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+三、诱导公式⑴παk 2+)(Z k ∈、α−、απ+、απ−、απ−2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ−2、απ+23、απ−23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅−⋅=−βαβαβαsin sin cos cos )cos(⋅−⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=− βαβαβαtan tan 1tan tan )tan(⋅−+=+βαβαβαtan tan 1tan tan )tan(⋅+−=−五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos −=−=−=…)(∗ ααα2tan 1tan 22tan −=二倍角的余弦公式)(∗有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=−2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα−=−六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +−=,ααα2tan 1tan 22tan −=。
1.2.2 同角三角函数的基本关系
2
又 tan 为非零实数
为象限角
当 在第一、四象限时,即有 cos 0 ,从而
1 1 tan 2 cos 2 1 tan 1 tan 2
tan 1 tan 2 sin tan cos 1 tan 2
引入
1.任意角的三角函数定义: 设角 是一个任意角, 终边上任意一点
2 2 2 2 P( x, y) 它与原点的距离为 r ( r | x | | y | x y 0)
那么:
y sin r
x cos r
y tan x
.
2.当角α分别在不同的象限时,sinα、cosα、 tanα的符号分别是怎样的?
数值;
3.在以上的题型中:先确定角的终边位置,再根
据关系式求值。如已知正弦或余弦,则先用平方
关系,再用其它关系求值;若已知正切或余切, 则可构造方程组来求值。
作业
课本20页练习
3 3.背景:如果 si n A ,A为第一象限的角, 5 如何求角A的其它三角函数值;
4.问题:由于α的三角函数都是由x、y、r 表 示的,则角α的六个三角函数之间有什么关系?
新课
1.由三角函数的定义,我们可以得到以下关系:
(1)商数关系:
sin tan ( k , k Z ) cos 2
1 cos (1 2 ) 1 m
2
m2 cos 2 1 m2
又 m 0, 为象限角
当 在第一、四象限时,即有
cos 0
m2 cos 2 m 1
当 在第二、三象限时,即有
【高中数学必修四】1.2.2同角三角函数的基本关系
复习回顾
1.任意角的三角函数定义?
2.任意角的三角函数线定义?
归纳探索
sin 30 45 60 150
1 2
2 2
3 2
cos tan
3 2
2 2
sin cos
2 2
3 3
1 1 1 1
sin cos 3 3
1
3
3 3
1
1)从左向右证
2)从右向左证
3)左右两边同时证
4)证其等价变形的成立性
单方向证明时选取“由繁到简”的方向.
练习
2sin 3cos (1)已知 tan 3求 sin 4cos
(2) ( 3) 已知 tan 3求角三角函数的基本关系
sin cos sin cos cos sin cos sin cos cos
sin cos cos cos sin cos cos cos
弦化切
tan 1 tan 1
21 3 21
同角三角函数基本关系:
sin cos 1
2 2
称为平方关系
sin tan cos
关于两种关系
1.“同角”的概念与角的表达形式无关.
称为商数关系
如 : sin 2 3 cos 2 3 1;
2.关系式(公式)必须在定义域允许的范围内成立. 3.掌握公式的正用、逆用、变形用。
3
3 3
1 2
1 2
3 2
sin cos 1
2 2
sin tan cos
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算2.已知,则( )A. B. C D.【答案】B【解析】.【考点】同角三角函数的基本关系.3.化简的结果 .【答案】【解析】,当为奇数时,,原式;当为偶数时,,原式;综上原式【考点】三角函数化简.4.已知,且∥.求值:(1);(2).【答案】(1);(2) .【解析】解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.试题解析:(1),,.(2).【考点】平面向量平行的判定、同角三角函数基本关系式.5.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号6.若则.【答案】【解析】由故【考点】同角三角函数基本关系式7.已知,则的值为.【答案】-11【解析】【考点】弦化切8.化简:.【答案】【解析】此类化简题的关键在于诱导公式的使用,要能够理解诱导公式口决“奇变偶不变,符号看象限”的意义,奇偶指的是的倍数如,中是的偶数倍,4倍,中是的奇数倍,11倍;符号看象限,指的是使用诱导公式时,将看成锐角时的所在的象限,不管题中的范围,如中,为锐角时,为第四象限角,则符号为负,故可知.当然也可用诱导公式层层推进.本题由诱导公式易化简.解:原式=.【考点】诱导公式.9.已知,则=()A.B.C.D.【答案】C【解析】∵,∴,∴.【考点】1.诱导公式;2.同角三角函数基本关系.10.的值等于()A.B.C.D.【答案】C【解析】,故选C.【考点】诱导公式11.已知是第二象限角,()A.B.C.D.【答案】A【解析】由是第二象限角,则.【考点】同角三角函数的基本关系式,三角函数的符号.12.的化简结果是()A.B.C.D.【答案】D【解析】是第二限角,则,所以==.【考点】诱导公式,同角三角函数的基本关系式.13.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数14.已知sinθ=,sin2θ<0,则tanθ等于 ( )A.-B.C.-或D.【答案】A【解析】由题意,∵sinθ=,sin2θ<0,∴cosθ<0∴cosθ=−=−∴tanθ==−,故选A.【考点】同角三角函数间的基本关系.15.已知是第二象限角,()A.B.C.D.-【答案】D【解析】∵是第二象限角,∴,故选D.【考点】同角三角函数基本关系.16.知为锐角,且2,=1,则=()A.B.C.D.【答案】C【解析】诱导公式化简为,解得:,得,故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.17.化简:.【答案】.【解析】本小题主要考查三角函数的诱导公式、同角三角函数的基本关系式及辅助角公式,属于容易题.根据诱导公式及同角三角函数的商数关系:进行展开运算得到,再运用辅助角公式(其中)或运用两角和差公式进行化简即可.试题解析: 4分8分10分.【考点】1.诱导公式;2.同角三角函数的基本关系式;3.辅助角公式(两角和差公式);4.三角恒等变换.18.已知,则()A.B.C.D.【答案】A【解析】法一:由,而,故,;法二:.【考点】同角三角函数的基本关系式.19.已知向量与,其中.(1)问向量能平行吗?请说明理由;(2)若,求和的值;(3)在(2)的条件下,若,求的值.【答案】(1)不能平行;(2),;(3).【解析】(1)先假设,列方程得,然后利用正弦的二倍角公式化简得,再判断此方程是否有解,若有解,可判断、可能平行;若无解,则可判断、不可能平行;(2)将向量的垂直问题转化为向量的数量积问题,得到,联立方程,并结合,即可求出;(3)先由同角三角函数的基本关系式计算出,然后再根据两角和的余弦公式展开计算得的值,最后结合的取值范围确定的值即可.试题解析:解:(1)向量不能平行若平行,需,即,而则向量不能平行 4分(2)因为,所以 5分即又 6分,即,又 8分(3)由(2)知,得 9分则 11分又,则 12分.【考点】1.向量平行、垂直的判定与应用;2.同角三角函数的基本关系式;3.两角和与差的三角函数.20.函数的值域是__ ____.【答案】【解析】正切函数在是单调递增的,所以在处取得最小值,在处取得最大值.【考点】正切函数图像及性质.21.的值为________.【答案】【解析】,故.【考点】1.诱导公式;2.三角恒等变换.22.已知,求下列各式的值:(1);(2).【答案】(1)(2)【解析】(1)利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,(2) 利用分母,将原式化为关于二次齐次式,再利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,本题主要考查利用"弦化切"方法求值.本题也可从出发得代入(1)立得,但代入(2)后只得到,还需结合得出,才可最终求值.试题解析:(1)原式(2)原式12分【考点】同角三角函数关系,弦化切.23.已知,则________________;【答案】.【解析】利用公式,把平方得,从而,由于,则,这类问题中确定它们的正负是我们解题时要特别注意的,于是.【考点】同角三角函数关系(平方关系).24.函数的图象向右平移个单位后,与函数的图象重合,则___ .【答案】【解析】的图象向右平移个单位后,得到函数的图象,所以,,即,故。
5.2.2同角三角函数的基本关系 课件
3 5
,且
是第三象限角,
求 cos, tan 的值。
解:因为 sin 2 cos2 1 ,所以
cos2
1
s in 2
1
3
2
16
5 25
因为 第三象限角,所以
cos 4
5
tan sin 3 cos 4
变式1.已知sin 3 ,求cos, tan的值.
5
先定象限,后定值 解 :sin 3 0且sin 1
sin( k 2 ) sin
cos( k 2 ) cos tan( k 2 ) tan
其中 k z
同角三角函数的基本关系:
如图,设 是一个任意角,它的
终边与单位圆交于点P(x,y),则
的终边 y
P(x,y) 1
sin y cos x
-1 M o
1x
tan y (x 0)
x
-1
△OMP直角三角形,而且OP=1。
由勾股定理有 OM2+MP2=1。
因此,x2+y2=1,即 sin2 cos2 1。
由三角函数定义有
tan
sin cos
(
2
k , k
Z )。
同角的三角函数的基本关系:
1.平方关系 2.商数关系
sin2 cos2 1
当 k ,(k Z )时
商数关系: tan sin ( k , k Z )
cos
2
(二)基本关系式的应用:
(1)求值 先定象限,后定值 (2)化简 (1)重视对“1”变形 (3)证明 (2)弦切互化
例析
例1.已知 tan 2,求 sin cos . sin cos
思考1:对于本题,你能想到哪一些解决的思路? 思路一:
3.2.2同角三角函数的关系
要点二 三角函数代数式的化简 例 2 化简下列各式: 1-2sin 10° cos 10° (1) 2 sin 10° - 1-sin 10° (2); 1-sin α + 1+sin α 1+sin α ,其中 sin α· tan α<0. 1-sin α
解
(1)
2
1-2 sin 10° cos 10° cos 10° -sin 10° = 2 2 - cos 10° sin 10° - 1-sin 10° sin 10°
跟踪演练2 化简: α α 1-2sin2cos2+ π α α 1+2sin2cos20<α<2.
α α 2 cos +sin 2 2
α α 2 cos -sin + 解 原式= 2 2 α α α α =cos2-sin2+cos2+sin2. π π α ∵α∈0,2,∴2∈0,4.
• 3.在三角函数的变换求值中,已知sin α+cos α, sin αcos α,sin α-cos α中的一个,可以利用方程 思想,求出另外两个的值. • 4.在进行三角函数式的化简或求值时,细心观察 题目的特征,灵活、恰当的选用公式,统一角、 统一函数、降低次数是三角函数关系式变形的出 发点.利用同角三角函数的基本关系主要是统一 函数,要掌握“切化弦”和“弦化切”的方法.
第 3章
三角函数
3.2 任意角的三角函数 3.2.2 同角三角函数之间的关系
• [学习目标] • 1.能通过三角函数的定义推导出同角三角函数的 基本关系式. • 2.理解同角三角函数的基本关系式. • 3.能运用同角三角函数的基本关系式进行三角函 数式的化简、求值和证明.
• [知识链接] • 1.任意角的正弦、余弦、正切函数分别是如何定义的?
三角函数大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22yx r +=,正弦:r y =αsin 余弦:rx =αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec余割:yr =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
同角三角函数基本关系式
s in s in
cos cos
cos
cos
cos
32
练习:
化简,⑴(1 sin )(1 sin )
⑵(1 tan2 ) cos2
33
例5:
化简 1 sin2 440
( ) 解:原式= 1 sin2 360 80
1 sin2 80 cos2 80
y r
;cot
x;
x. y
sin cos
y
r x
y x
tan
r
r
tan y ;
x
§1.2.2同角三角函数的基本关系式
同角三角函数基本关系式:
sin2 cos2 1
tan cot 1.
sin tan cos
称为平方关系 称为倒数关系 称为商数关系
求得的结果有两组.
如果是第二象限角时,sin 15 ;tan 15 .
17
8
如果是第三象限角时,sin 15 ;tan 15 .
17
8
23
§4.4同角三角函数的基本关系式(1)
从解题的过程中发现:基本关系式的等价形式
如把sin2 cos2 1等
3.tan 45 cot 45;
4.tan 5 cot 5 .
66
问题 : 如果把上面具体的数据改为一般角会
有同样的结果吗?
sin2 cos2 1 称为平方关系
tan cot 1.
可以证明吗?如何证明吗? 角是否可以是任意角吗?
称为倒数关系
注:上面两种关系直接可 以用三角函数定义得到.
《同角三角函数的基本关系》人教版数学高一下册PPT课件
第一章 三角函数
[解析] (1)tanα=3=csoinsαα>0, ∴α 是第一或第三象限角.
sinα=3
10 10
当 α 是第一象限角时,结合 sin2α+cos2α=1,有
.
cosα=
10 10
sinα=-31010
当 α 是第三象限角时,结合 sin2α+cos2α=1,有
.
cosα=-
10 10
第一章 三角函数
(2)∵tanα=3,∴32scionsαα-+csoinsαα=32t+antαa-nα1=85.
(3)∵tanα=3,sin2α+cos2α=1,
sin2α-3sinαcosα+1 2sin2α-3sinα·cosα+cos2α
∴原式=
1
= sin2α+cos2α
2tan2α-3tanα+1 2×32-3×3+1
第一章 三角函数
3.常用的等价变形
sin2α=1-cos2α, cos2α=1-sin2α, sin2α+cos2α=1⇒ sinα=± 1-cos2α, cosα=± 1-sin2α;
tanα=csoinsαα⇒scionsαα==ttsaainnnαααc.osα,
第一章 三角函数
[拓展]变形公式的应用要注意哪些方面? (1)使用变形公式 sinα=± 1-cos2α,cosα=± 1-sin2α时,“±”号是由 α 的终边 所在的象限确定的,而对于其他形式的变形公式就不必考虑符号问题. (2)对这些关系式不仅要牢牢掌握,还要能灵活运用(正用、逆用、变形应用).
(5)对任意角 α,csoins2α2α=tan2αα= 815,则 tanα 等于( D )
A.78
B.
第5章-5.2.2-同角三角函数的基本关系高中数学必修第一册湘教版
【答案】方法1 左边
= − + − = + + − + (
− ) = + − + − = − + =右
< < π ,试判断sin − cos 的值与1的大小关系.
π
2
< < π( 的终边在直线 = 的上半平面区域),则
sin − cos > 0,
sin cos < 0,
又 sin − cos
2
= 1 − 2sin cos > 1,
∴ sin − cos > 1.
289
< 0,
π
2
又 ∈ −π, 0 ,∴ ∈ − , 0 ,
∴ A选项错误.
易知sin < 0,cos > 0,
8
7
sin = − ,
sin + cos = ,
17
17
由൞
解得൞
120
15
sin cos = −
,
cos = ,
289
∴ tan =
sin
cos
1
5
1
sin2 +sin cos
− ,则 2
5
cos +2sin cos
【解析】因为tan = − ,所以
sin2 +sin cos
cos2 +2sin cos
=
tan2 +tan
1+2tan
=
−
=_____.
高中数学 第1章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数关系学案 苏教版必修4
1.2.2 同角三角函数关系1.理解同角三角函数的两种基本关系.2.了解同角三角函数的基本关系的常见变形形式.3.学会应用同角三角函数的基本关系化简、求值与证明.同角三角函数的基本关系式1.判断(正确的打“√”,错误的打“×”)(1)对任意角α,sin 24α+cos 24α=1都成立.( ) (2)对任意角α,sinα2cosα2=tan α2都成立.( )(3)对任意的角α,β有sin 2α+cos 2β=1.( ) (4)sin 2α与sin α2所表达的意义相同.( )解析:(1)正确.当角α∈R 时,sin 24α+cos 24α=1都成立,所以正确.(2)错误.当α2=k π+π2,k ∈Z ,即α=2k π+π,k ∈Z 时,tan α2没意义,故sinα2cosα2=tanα2不成立,所以错误.(3)错误.当α=π2,β=0时,sin 2α+cos 2β≠1,故此说法是错误的.(4)错误.sin 2α是(sin α)2的缩写,表示角α的正弦的平方,sin α2表示角α2的正弦,故两者意义不同,此说法是错误的.答案:(1)√ (2)× (3)× (4)×2.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则cos α等于( )A .45B .-45C .-17D .35答案:B3.化简:(1+tan 2 α)·cos 2α等于( ) A .-1 B .0 C .1 D .2答案:C4.已知tan α=1,则2sin α-cos αsin α+cos α=________.解析:原式=2tan α-1tan α+1=2-11+1=12.答案:12已知一个三角函数值求其他三角函数值已知cos α=-35,求sin α,tan α的值.【解】 因为cos α<0且cos α≠-1, 所以α是第二或第三象限角. 所以当α为第二象限角时, sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-43.当α为第三象限角时, sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352= -45,tan α=sin αcos α=43.已知角α的某一三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论.1.(1)已知α是第二象限角,且tan α=-724,则cos α=________.(2)已知sin θ=a (a ≠0),且tan θ>0,求cos θ、tan θ. 解:(1)因为α是第二象限角, 故sin α>0,cos α<0, 又tan α=-724,所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.故填-2425.(2)因为tan θ>0,则θ在第一、三象限,所以a ≠±1. ①若θ在第一象限,sin θ=a >0,且a ≠1时, cos θ=1-sin 2θ=1-a 2. 所以tan θ=sin θcos θ=a1-a2. ②若θ在第三象限,sin θ=a <0,且a ≠-1时, cos θ=-1-sin 2θ=-1-a 2. 所以tan θ=sin θcos θ=-a1-a2. 利用同角三角函数关系化简化简下列各式: (1)1-2sin 10°cos 10°sin 10°-1-sin 210°; (2)1-sin α1+sin α+1+sin α1-sin α,其中sin αtan α<0.【解】 (1)1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1. (2)由于sin αtan α<0,则sin α,tan α异号, 所以α是第二、三象限角,所以cos α<0.所以1-sin α1+sin α+1+sin α1-sin α=(1-sin α)21-sin 2α+ (1+sin α)21-sin 2α=|1-sin α||cos α|+|1+sin α||cos α|=1-sin α+1+sin α-cos α=-2cos α.(1)三角函数式的化简过程中常用的方法①化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.②对于含有根号的,常把根号下式子化成完全平方式,然后去根号,达到化简的目的. ③对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.(2)对三角函数式化简的原则 ①使三角函数式的次数尽量低. ②使式中的项数尽量少. ③使三角函数的种类尽量少. ④使式中的分母尽量不含有三角函数. ⑤使式中尽量不含有根号和绝对值符号.⑥能求值的要求出具体的值,否则就用三角函数式来表示.2.化简:1-sin 4x -cos 4x1-sin 6x -cos 6x.解:原式=1-[(sin 2x +cos 2x )2-2sin 2x cos 2x ]1-(sin 2x +cos 2x )(sin 4x +cos 4x -sin 2x cos 2x ) =1-1+2sin 2x cos 2x1-[(sin 2x +cos 2x )2-3sin 2x cos 2x ] =2sin 2x cos 2x 3sin 2x cos 2x =23. 利用同角三角函数关系式证明求证:(1)1+tan 2α=1cos 2α;(2)sin α1-cos α=1+cos αsin α. 【证明】 证明:(1)因为1+tan 2α=1+sin 2αcos 2α= cos 2α+sin 2αcos 2α=1cos 2α, 所以原式成立.(2)法一:由sin α≠0知,cos α≠-1, 所以1+cos α≠0.于是左边=sin α(1+cos α)(1-cos α)(1+cos α)=sin α(1+cos α)1-cos 2α=sin α(1+cos α)sin 2α=1+cos αsin α=右边. 所以原式成立.法二:因为sin 2α+cos 2α=1,所以sin 2α=1-cos 2α, 即sin 2α=(1-cos α)(1+cos α). 因为1-cos α≠0,sin α≠0, 所以sin α1-cos α=1+cos αsin α.证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则. (2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.3.(1)求证:1-2sin x cos x cos 2x -sin 2x =1-tan x1+tan x. (2)求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明:(1)左边=sin 2x -2sin x cos x +cos 2xcos 2x -sin 2x=tan 2x -2tan x +11-tan 2x=(tan x -1)2(1-tan x )(1+tan x )=1-tan x1+tan x =右边. 所以原式成立.(2)因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α =左边, 所以原等式成立.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 23α+cos 23α=1.2.在使用同角三角函数关系式时要注意使式子有意义,如式子tan 90°=sin 90°cos 90°不成立.3.注意公式的变形,如sin 2α=1-cos 2α,cos 2α=1-sin 2α,sin α=cos αtan α,cosα=sin αtan α等. 4.在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.已知sin α+cos α=13,其中0<α<π,求sin α-cos α的值.【解】 因为sin α+cos α=13,所以(sin α+cos α)2=19,可得:sin α·cos α=-49.因为0<α<π,且sin α·cos α<0,所以sin α>0,cos α<0.所以sin α-cos α>0, 又(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.(1)在处得到sin α·cos α<0,为判断sin α,cos α的具体符号提供了条件,是解答本题的关键;若没有判断出处的关系式,则下一步利用平方关系求解sin α-cos α的值时,可能会出现两个,是解答本题的易失分点;若前边的符号问题都正确,但在处书写不正确,没有考虑前面的符号而出现sin α-cos α=±173,则是解答本题的又一易失分点. (2)在解题过程中要充分利用题中的条件,判断出所求的三角函数式的符号.1.已知sin α=23,tan α=255,则cos α=( )A .13 B .53 C .73D .55解析:选B .因为tan α=sin αcos α,所以cos α=sin αtan α=23255=53.2.化简:⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=( )A .sin αB .cos αC .1+sin αD .1+cos α解析:选A .⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1-cos 2αsin α=sin α. 3.已知cos θ=35,且3π2<θ<2π,那么tan θ的值为________.解析:因为θ为第四象限角, 所以tan θ<0,sin θ<0,sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.答案:-434.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解:由tan α=sin αcos α=43,得sin α=43cos α,①又sin 2α+cos 2α=1,② 由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,所以cos α=-35,sin α=-45.[学生用书P83(单独成册)])[A 基础达标]1.若cos α=13,则(1+sin α)(1-sin α)等于( )A .13B .19C .223D .89解析:选B .原式=1-sin 2α=cos 2α=19,故选B .2.若α是第四象限角,tan α=-512,则sin α=( )A .15B .-14C .513D .-513解析:选D .因为tan α=sin αcos α=-512,sin 2α+cos 2α=1,所以sin α=±513.因为α是第四象限角,所以sin α=-513.3.已知θ是第三象限角,且sin 4θ+cos 4θ=59,则sin θcos θ的值为( )A .23B .-23C .13D .-13解析:选A .由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=29.因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23. 4.如果tan θ=2,那么1+sin θcos θ=( ) A .73 B .75 C .54D .53解析:选B .法一:1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ =tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.法二:tan θ=2,即sin θ=2cos θ, 又sin 2θ+cos 2θ=1, 所以(2cos θ)2+cos 2θ=1, 所以cos 2θ=15.又tan θ=2>0,所以θ为第一或第三象限角. 当θ为第一象限角时,cos θ=55,此时sin θ=1-cos 2θ=255,则1+sin θcos θ=1+255×55=75;当θ为第三象限角时,cos θ=-55, 此时sin θ=-1-cos 2θ=-255,则1+sin θcos θ=1+(-255)×(-55)=75.5.若cos α+2sin α=-5,则tan α=( ) A .12 B .2C .-12D .-2解析:选B .由⎩⎨⎧cos α+2sin α=-5,sin 2α+cos 2α=1得(5sin α+2)2=0. 所以sin α=-255,cos α=-55.所以tan α=2.6.已知tan α=m ⎝⎛⎭⎪⎫π<α<3π2,则sin α=________.解析:因为tan α=m ,所以sin 2αcos 2α=m 2,又sin 2α+cos 2α=1,所以cos 2α=1m 2+1,sin 2α=m 2m 2+1.又因为π<α<3π2,所以tan α>0,即m >0.因而sin α=-mm 2+1. 答案:-m1+m27.已知sin α-cos αsin α+cos α=2,则sin αcos α的值为________.解析:由sin α-cos αsin α+cos α=2,等式左边的分子分母同除以cos α,得tan α-1tan α+1=2,所以tanα=-3,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-310. 答案:-310 8.已知α是第二象限角,则sin α1-cos 2 α+21-sin 2 αcos α=________. 解析:因为α是第二象限角,所以sin α>0,cos α<0,所以sin α1-cos 2α+21-sin 2αcos α=sin αsin α+-2cos αcos α=-1. 答案:-19.化简:sin 2x sin x -cos x -sin x +cos x tan 2x -1. 解:原式=sin 2x sin x -cos x -sin x +cos x sin 2xcos 2x-1 =sin 2x sin x -cos x -cos 2x (sin x +cos x )sin 2x -cos 2x=sin 2x -cos 2x sin x -cos x=sin x +cos x . 10.已知tan α=2,求下列各式的值:(1)2sin 2α-3cos 2α4sin 2α-9cos 2α; (2)sin 2α-3sin αcos α+1.解:(1)因为tan α=2,所以cos α≠0.所以2sin 2α-3cos 2α4sin 2α-9cos 2α=2tan 2α-34tan 2α-9 =2×22-34×22-9=57. (2)因为tan α=2,所以cos α≠0.所以sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35. [B 能力提升]1.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( ) A .153 B .-153 C .53 D .-53解析:选A .因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153. 2.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.解析:因为tan θ=2,所以cos θ≠0,则原式可化为sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=sin 2θcos 2θ+sin θcos θcos 2θ-2cos 2θcos 2θsin 2θcos 2θ+cos 2θcos 2θ=tan 2θ+tan θ-2tan 2θ+1=22+2-222+1=45. 答案:453.已知2sin θ-cos θ=1,3cos θ-2sin θ=a ,记数a 形成的集合为A ,若x ∈A ,y ∈A ,则以点P (x ,y )为顶点的平面图形是什么图形?解:联立⎩⎪⎨⎪⎧2sin θ-cos θ=1,sin 2θ+cos 2θ=1,解得⎩⎪⎨⎪⎧sin θ=0,cos θ=-1,或⎩⎪⎨⎪⎧sin θ=45,cos θ=35.所以a =3cos θ-2sin θ=-3或15,即A =⎩⎨⎧⎭⎬⎫-3,15.因此,点P (x ,y )可以是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3,15,P 3⎝ ⎛⎭⎪⎫15,15,P 4⎝ ⎛⎭⎪⎫15,-3.经分析知,这四个点构成一个正方形.4.(选做题)已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cosθ1-tan θ的值;(2)m 的值;(3)方程的两根及此时θ的值.解:由根与系数的关系,可得⎩⎪⎨⎪⎧sin θ+cos θ=3+12,①sin θ·cos θ=m2,②Δ=4+23-8m ≥0.③(1)sin θ1-1tan θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由①平方,得1+2sin θcos θ=2+32,所以sin θcos θ=34.又由②,得m 2=34,所以m =32,由③,得m ≤2+34, 所以m =32符合题意; (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧cos θ=32,sin θ=12. 又因为θ∈(0,2π),所以θ=π3或π6.。
同角三角函数的基本关系与诱导公式(教师版含答案)
第2讲 同角三角函数的基本关系与诱导公式【2013年高考会这样考】考查利用诱导公式与同角三角函数关系化简三角函数式及求三角函数值. 【复习指导】本节复习时应紧扣住三角函数的定义,理解同角三角函数关系式和诱导公式;观察分析这些公式特征,掌握记忆诀窍;通过基本题型,掌握解题规律.基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α. 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α, tan(π+α)=tan α.公式三:sin(-α)=-sin_α,cos(-α)=cos_α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos_α. 公式五:sin ⎝ ⎛⎭⎪⎫π2-α=cos_α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α. 公式六:sin ⎝ ⎛⎭⎪⎫π2+α=cos_α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin_α.诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=…. 三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ). A .±12 B.12 C.32D .±32解析 ∵sin(π+α)=-sin α=12, ∴sin α=-12.∴cos α=±1-sin 2α=±32. 答案 D2.(2011·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限 解析 2 011°=360°×5+(180°+31°),∴sin 2 011°=sin[360°×5+(180°+31°)]=-sin 31°<0, cos 2 011°=cos[360°×5+(180°+31°)]=-cos 31°<0, ∴点A 位于第三象限. 答案 C3.已知cos α=45,α∈(0,π),则tan α的值等于( ). A.43 B.34 C .±43D .±34解析 ∵α∈(0,π),∴sin α=1-cos 2α=35,∴tan α=sin αcos α=34. 答案 B4.cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是( ).A. 2 B .- 2 C .0 D.22解析 cos ⎝ ⎛⎭⎪⎫-17π4=cos 17π4=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4=22,sin ⎝ ⎛⎭⎪⎫-17π4=-sin 17π4=-sin ⎝ ⎛⎭⎪⎫4π+π4=-sin π4=-22.∴cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4=22+22= 2. 答案 A5.已知α是第二象限角,tan α=-12,则cos α=________.解析 由题意知cos α<0,又sin 2α+cos 2α=1,tan α=sin αcos α=-12.∴cos α=-255. 答案 -255考向一 利用诱导公式化简、求值【例1】►已知f (α)=sin (π-α)cos (2π-α)sin ⎝ ⎛⎭⎪⎫π2+αtan (π+α),求f⎝ ⎛⎭⎪⎫31π3. [审题视点] 先化简f (α),再代入求解. 解 f (α)=sin αcos αcos αtan α=cos α,∴f ⎝ ⎛⎭⎪⎫31π3=cos 313 π=cos ⎝ ⎛⎭⎪⎫10π+π3=cos π3=12.(1)化简是一种不指定答案的恒等变形,其结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.(2)诱导公式的应用原则:负化正、大化小,化到锐角为终了. (3)化简前,注意分析角的结构特点,选择恰当的公式和化简顺序.【训练1】 已知角α终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin (-π-α)cos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________. 解析 原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义,得tan α=y x =-34.答案 -34考向二 同角三角函数关系的应用【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α. [审题视点] (1)同除cos α;(2)利用1=sin 2α+cos 2α,把整式变为分式,再同除cos 2α. 解 (1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.(2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.(1)对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,已知其中一个式子的值,其余二式的值可求.转化的公式为(sin α±cos α)2=1±2sin αcos α;(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子.【训练2】 (2011·潍坊质检)已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.解析 依题意得:tan α+33-tan α=5,∴tan α=2.∴sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案 25考向三 三角恒等式的证明【例3】►求证:sin θ(1+tan θ)+cos θ⎝ ⎛⎭⎪⎫1+1tan θ=1sin θ+1cos θ.[审题视点] 证明三角恒等式的原则是由繁到简,常用的方法有: ①从一边开始证明等于另一边,即化简左边,使左边=右边; ②证明左、右等于同一个式子;③变更论证,即通过化除为乘、左右相减等转化成与原结论等价的式子. 证明 左边=sin θ⎝ ⎛⎭⎪⎫1+sin θcos θ+cos θ⎝ ⎛⎭⎪⎫1+cos θsin θ=sin θ+sin 2 θcos θ+cos θ+cos 2θsin θ =⎝ ⎛⎭⎪⎫sin θ+cos 2θsin θ+⎝ ⎛⎭⎪⎫cos θ+sin 2θcos θ =sin 2 θ+cos 2θsin θ+cos 2θ+sin 2 θcos θ=1sin θ+1cos θ=右边.证明三角恒等式离不开三角函数的变换,在变换过程中,把正切函数化成正弦或余弦函数,减少函数种类,往往有利于发现等式两边的关系或使式子简化.要细心观察等式两边的差异,灵活运用学过的知识,使证明简便. 【训练3】 已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. 证明 ∵sin(α+β)=1,∴α+β=2k π+π2(k ∈Z ), ∴α=2k π+π2-β,∴tan(2α+β)+tan β=tan ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫2k π+π2-β+β+tan β=tan(4k π+π-2β+β)+tan β =tan(4k π+π-β)+tan β=tan(π-β)+tan β=-tan β+tan β=0,∴tan(2α+β)+tan β=0得证.考向四 三角形中的诱导公式【例4】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.[审题视点] 要求三角形的内角,需求得某一内角的某一三角函数值,故结合条件sin A +cos A =2知先求角A ,进而求其他角. 解 由已知可得2sin ⎝ ⎛⎭⎪⎫A +π4=2,因为0<A <π,所以A =π4.由已知可得3cos A =2cos B ,把A =π4代入可得cos B =32,又0<B <π,从而B =π6,所以C =π-π4-π6=7π12.在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C , tan(A +B )=tan(π-C )=-tan C , sin ⎝ ⎛⎭⎪⎫A 2+B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2, cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2. 【训练4】 若将例4的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角. 解 由条件得:-sin A =-2sin B ,即sin A =2sin B , 3cos A =2cos B ,平方相加得:sin 2 A +3cos 2 A =2⇒2cos 2 A =1,cos A =±22.若cos A =-22,则cos B =-32,A ,B 均为钝角不可能.故cos A =22,cos B =32,故A =π4,B =π6,C =7π12.阅卷报告3——忽视题设的隐含条件致误【问题诊断】 涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.【防范措施】 一要考虑题设中的角的范围;二要考虑题设中的隐含条件. 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根,θ∈(0,π),求cos 2θ的值. 错因 产生了增解725.实录 由题意知:sin θ+cos θ=15,∴()sin θ+cos θ2=125,∴sin 2θ=-2425,∵θ∈(0,π), ∴2θ∈(0,2π),∴cos 2θ=±1-2sin 2 2θ=±725. 正解 由题意知:sin θ+cos θ=15. ∴(sin θ+cos θ)2=125. ∴sin 2θ=-2425.即2sin θcos θ=-2425<0, 则sin θ与cos θ异号, 又sin θ+cos θ=15>0, ∴π2<θ<3π4,∴π<2θ<3π2. 故cos 2θ=-1-sin 22θ=-725. 【试一试】 已知sin θ+cos θ=713,θ∈(0,π),求tan θ. [尝试解答] ∵sin θ+cos θ=713,θ∈(0,π). ∴(sin θ+cos θ)2=1+2sin θcos θ=49169.∴sin θcos θ=-60 169.由根与系数的关系知sin θ,cos θ是方程x2-713x-60169=0的两根,∴x1=1213,x2=-513,又sin θcos θ=-60169<0,∴sin θ>0,cos θ<0,∴sin θ=1213,cos θ=-513.∴tan θ=sin θcos θ=-125.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2任意角的三角函数、同角三角函数的基本关系
1.任意角三角函数的定义
设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=________,cos α=________,tan α=________.
2.正弦、余弦、正切函数值在各象限的符号
3.诱导公式一
终边相同的角的同一三角函数的值________,即:
sin(α+k ·2π)=______,cos(α+k ·2π)=________,tan(α+k ·2π)=________,其中k ∈Z .
4.三角函数的定义域
正弦函数y =sin x 的定义域是______;余弦函数y =cos x 的定义域是______;正切函数y =tan x 的定义域是_______________________________.
5.同角三角函数的基本关系式
(1)平方关系:____________________.
(2)商数关系:____________(α≠k π+π2
,k ∈Z ). 6.同角三角函数基本关系式的变形
(1)sin 2α+cos 2α=1的变形公式:
sin 2α=________;cos 2α=________;
(sin α+cos α)2=____________________;
(sin α-cos α)2=________________;
(sin α+cos α)2+(sin α-cos α)2=______;
sin α·cos α=______________________=________________________.
(2) tan α=sin αcos α
的变形公式:sin α=________________;cos α=______________.
知识梳理
1. y r x r y x
3.相等 sin α cos α tan α
4.R R {x |x ∈R 且x ≠k π+π2
,k ∈Z } 5.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α
6.(1)1-cos 2α 1-sin 2α 1+2sin αcos α 1-2sin αcos α 2 (sin α+cos α)2-12
1-(sin α-cos α)22 (2)cos αtan α sin αtan α
一、选择题
1.sin 780°等于( )
A.32 B .-32 C.12 D .-12
2.点A (x ,y )是300°角终边上异于原点的一点,则y x
的值为( ) A. 3 B .- 3 C.33 D .-33
3.若sin α<0且tan α>0,则α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
4.若α是第一象限角,则sin α+cos α的值与1的大小关系是( )
A .sin α+cos α>1
B .sin α+cos α=1
C .sin α+cos α<1
D .不能确定
5.若sin α+sin 2α=1,则cos 2α+cos 4α等于( )
A .0
B .1
C .2
D .3
6.若sin α=45
,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43
二、填空题
7.若角α的终边过点P (5,-12),则sin α+cos α=______.
8.在[0,2π]上满足sin x ≥12
的x 的取值范围为________. 9.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________.
三、解答题
10.求下列各式的值.
(1)cos ⎝⎛⎭⎫-233π+tan 174
π; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.
11.已知角α终边上一点P (-3,y ),且sin α=34
y ,求cos α和tan α的值.
12.求证:1-2sin 2x cos 2x cos 2 2x -sin 2 2x =1-tan 2x 1+tan 2x
.
作业设计
1.A
2、B
3.C [∵sin α<0,∴α是第三、四象限角.又tan α>0,
∴α是第一、三象限角,故α是第三象限角.]
4.A [设α终边与单位圆交于点P ,sin α=MP ,cos α=OM ,
则|OM |+|MP |>|OP |=1,即sin α+cos α>1.]
5、B
6、A
7.-713
8、.⎣⎡⎦⎤π6,5π6
9、45 解析 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1
, 又tan θ=2,故原式=4+2-24+1=45.
10.解 (1)原式=cos ⎣⎡⎦⎤π3+(-4)×2π+tan ⎝⎛⎭⎫π4+2×2π=cos π3+tan π4=12+1=32
. (2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°) =sin 270°+tan 45°+tan 45°+cos 180°=-1+1+1-1=0.
11.解 sin α=y 3+y 2=34
y . 当y =0时,sin α=0,cos α=-1,tan α=0.
当y ≠0时,由y 3+y 2
=3y 4,解得y =±213. 当y =213时,P ⎝
⎛⎭⎫-3,213,r =433. ∴cos α=-34,tan α=-73
. 当y =-213时,P (-3,-213),r =433
, ∴cos α=-34,tan α=73
. 12.证明 左边=cos 2 2x +sin 2 2x -2sin 2x cos 2x cos 22x -sin 22x
=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )
=cos 2x -sin 2x cos 2x +sin 2x =1-tan 2x 1+tan 2x
=右边.
∴原等式成立.。