大一下高等数学期末试题_(精确答案)
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题2分,共10分)1. 极限的定义中,ε的值可以是()。
A. 任意正整数B. 任意正实数C. 固定正整数D. 只有12. 若函数f(x)在点x=a处连续,则以下哪项正确?()A. f(a)为f(x)在x=a处的极限值B. f(a)等于f(x)在x=a处的左极限值C. f(a)等于f(x)在x=a处的右极限值D. 所有上述选项都正确3. 以下级数中,收敛的是()。
A. 1 + 1/2 + 1/3 + 1/4 + ...B. (1 + 1/2) + (1/3 + 1/4) + (1/5 + 1/6) + ...C. 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...D. 1 + 1/√2 + 1/√3 + 1/√4 + ...4. 函数y = x^2的导数为()。
A. 2xB. x^2C. 1/xD. -2x5. 微分方程dy/dx = x^2, y(0) = 0的解为()。
A. y = x^3B. y = -x^3C. y = 1/xD. y = -1/x二、填空题(每题2分,共10分)6. 极限lim(x→0) (sin(x)/x) = _______。
7. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调递增区间为 _______。
8. 定积分∫(0→2) x^2 dx = _______。
9. 曲线y = x^3在点x=1处的切线斜率为 _______。
10. 微分方程d/dx(y^2) = 2xy,y(0) = 0的通解为 y = _______。
三、计算题(每题10分,共30分)11. 求函数f(x) = 2x^3 - 3x^2 - 12x + 5从x=-1到x=3的定积分值。
12. 求函数g(x) = e^(2x)的导数,并计算在区间[0,1]上的定积分值。
13. 求由曲线y = x^2, y = 2x - 1, x = 0所围成的面积。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
A) 2 B) 7 C) 9 D) 11答案:B) 72. 函数f(x) = 3x + 4 和 g(x) = 2x - 1,求f(x)与g(x)的交点横坐标。
A) -3/5 B) 0 C) 5/7 D) 1/2答案:A) -3/53. 设a为非零实数,若函数f(x) = x^2 + ax + a 的图像经过点(-1, 4),求a的值。
A) -1 B) 1 C) 2 D) -2答案:C) 24. 设方程x^2 - kx + 1 = 0只有一个实根,求k的取值范围。
A) (-∞, 1) B) (0, 1] C) [0, ∞) D) [1/4, ∞)答案:D) [1/4, ∞)5. 函数f(x) = ax^2 + bx + c 的图像经过点(1, 3),且在x = 2处取得最小值0.求a、b、c的值。
A) a = 1, b = 2, c = 0 B) a = 2, b = -3, c = 2 C) a = 1, b = -2, c = 3 D) a = -1, b = 2, c = 3答案:C) a = 1, b = -2, c = 3二、计算题1. 求不定积分∫(sinx + cosx)dx。
答案: -cosx + sinx + C(C为常数)2. 设函数f(x) = x^3 - 6x^2 + 9x + 1,求f(x)的极值点。
答案:极小值点为x = 1,极大值点为x = 33. 设函数y = ln(3x + 1),求其反函数。
答案:y = e^x / 3 - 1/34. 已知曲线y = e^x的斜率为1/2,求曲线上点的坐标。
答案:(ln2, 2)5. 设函数f(x) = √(2x + 1),求f'(1)的值。
答案:1/2三、证明题1. 证明函数y = x^3 - 3x + 2在x = 1处有一个零点。
大一第二学期高数期末考试题(含答案)讲课稿
大一第二学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()lim x f x A x ,A 为常数. 求'()g x并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x yey xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du du u u u u -==-++⎰⎰原式1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:10330()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一下学期高等数学期末试题及答案__数套
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctanyz x =,则z x ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dxD.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.22530d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数12nnn n x ∞=∑,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 x xy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( ); A. 2yz xy z - B. 2yz z xy - C. 2xz xy z - D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).2 B.1 C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy -+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
大一下高等数学期末试题精确答案
一 、 单选 题 ( 共1 5 分 , 每 小 题3分)1.设函数 f ( x, y) 在 P(x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y ( x 0 , y 0 ) 都存在,则( )A . f ( x, y) 在 P 连续 B. f (x, y) 在 P 可微 C . lim f ( x, y 0 ) 及lim f (x 0 , y) 都存在D.limf ( x, y) 存在x x 0y y 0( x , y) ( x 0 , y 0 )2.若 zy ln x ,则 dz 等于().A. y ln xln yy ln x ln yB.y ln x ln yxyxC . yln xln ydxyln xln y dyD . y ln xln y dxy ln x ln x dyxxy3.设是圆柱面 x 2y 22x 及平面 z0, z 1所围成的地区,则f ( x, y, z)dxdydz ( ).A.2d2cosdr 1f ( r cos , r sin, z)dzB.2d2cosrdr1f (r cos , r sin , z)dz0 0C .2d2 cosrdr 1 , r sin , z)dz D .d2 cos xrdr1f ( r cos , r sin , z)dz 0f (r cos24.4.若a n ( x 1)n在 x 1 处收敛,则此级数在 x 2 处().n 1A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不可以确立5.曲线x y z 2) .z x 2y 2 在点( 1,1, 2)处的一个切线方向向量为(A.(-1,3,4) B.(3,-1,4) C. (-1, 0,3) D.(3, 0, -1 )二、填空题(共 15 分,每题3 分)1.设 x 2 y 2xyz 0 ,则 z x ' (1,1).2.交 换Ie dx ln xI10 f ( x, y)dy 的积分序次后, _____________________ .3.设 u2xy z 2 ,则 u 在点 M (2, 1,1) 处的梯度为.4.xx n,则 xex.已知 en!n 05. 函数 z x 3y 3 3x 2 3y 2 的极小值点是.三、解答题(共 54 分,每题 6--7分)1. (本小题满分 6 分)设 zy arctan y, 求 z, z .xxy2. (本小题满分 6 分)求椭球面 2x 23 y 2z 2 9 的平行于平面 2x 3 y 2 z 1 0 的切平面方程,并求切点处的法线方程 .3. (本小题满分7 分)求函数 z x22在点 r 1r3ry(1,2) 处沿向量 lij 方向的方导游数。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=x^2-4x+3,求f(x)的最小值。
A. 0B. -1C. -4D. 12. 已知数列{an}的前n项和为S_n=n^2,求a_5。
A. 10B. 11C. 12D. 133. 极限lim (n→∞) (1 + 1/n)^n 的值是:A. eB. 1C. 2D. 34. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 25. 函数f(x)=sin(x)+cos(x)的周期是:A. πC. π/2D. π/46. 已知f(x)=2x-1,求f'(2)的值。
A. 3B. 2C. 1D. 07. 曲线y=x^2与直线y=4x-5的交点坐标是:A. (1,3)B. (2,3)C. (1,1)D. (2,7)8. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 19. 若f(x)在[a,b]上连续,且∫(a到b) f(x) dx = 0,则f(x)在[a,b]上:A. 恒等于0B. 至少有一个零点C. 恒为正D. 恒为负10. 函数y=ln(x)的原函数是:A. x-1C. x^2D. xln(x) - x + C二、填空题(每题2分,共20分)11. 函数f(x)=x^3的导数是________。
12. 微分方程dy/dx + 2y = 4x的解是________。
13. 已知∫(0到1) x dx = 1/2,那么∫(1到2) x dx =________。
14. 函数f(x)=x^2+1的二阶导数是________。
15. 利用导数求函数f(x)=x^3-2x^2+3x-4在x=2时的切线方程是________。
16. 函数y=e^x的泰勒展开式在x=0处的前三项是________。
17. 定积分∫(0到π/2) sin(x) dx的值是________。
大一下学期高等数学期末考试试题及答案
高等数学A (下册)期末考试试题【A 卷】院(系)别 班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r.2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为.4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数在3x =处收敛于 ,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程.2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.5、计算曲面积分,dSz∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求3()lim t F t t +→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题5分,共20分)1. 函数$f(x)=x^2-4x+4$的最小值是()A. 0B. 1C. 4D. 3答案:D2. 极限$\lim_{x \to 0} \frac{\sin x}{x}$的值是()A. 0B. 1C. 2D. $\infty$答案:B3. 曲线$y=x^3$在点$(1,1)$处的切线斜率是()A. 0B. 1C. 3D. 12答案:C4. 微分方程$y''-2y'+y=0$的通解是()A. $y=e^{tx}$B. $y=e^{t}(C_1 \cos t + C_2 \sin t)$C. $y=e^{tx}(C_1 + C_2x)$D. $y=(C_1 + C_2x)e^{tx}$答案:B二、填空题(每题5分,共20分)5. 函数$f(x)=\ln(x)$的定义域是______。
答案:$(0,+\infty)$6. 函数$f(x)=x^3-3x$的导数是______。
答案:$3x^2-3$7. 函数$f(x)=\frac{1}{x}$的不定积分是______。
答案:$\ln|x|+C$8. 函数$f(x)=\sin x$的原函数是______。
答案:$-\cos x+C$三、计算题(每题10分,共30分)9. 计算定积分$\int_{0}^{1} x^2 dx$。
答案:$\frac{1}{3}x^3|_0^1 = \frac{1}{3}$ 10. 求极限$\lim_{x \to 0} \frac{e^x - 1}{x}$。
答案:$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$11. 求函数$f(x)=x^3-6x^2+11x-6$的极值。
答案:函数的极值点为$x=1$和$x=3$,其中$x=1$为极大值点,$x=3$为极小值点。
四、证明题(每题10分,共30分)12. 证明:$\lim_{x \to 0} \frac{\sin x}{x} = 1$。
大一下学期高等数学期末考试试题及答案
高等数学A (下册)期末考试试题【A 卷】院(系)别 班级学号 姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅=.2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数在3x =处收敛于,在x π=处收敛于.5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程.2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnnn n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.5、计算曲面积分,dSz ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)Ix dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =30()lim t F t t+→. -------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
大一下高等数学期末试题精确答案
一、单选题共15分,每小题3分1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于 .ln ln ln ln .x x y y y yA x y+ln ln .x y y B x ln ln ln .ln x xy y C y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f .2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 .A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y -+=⎧⎨=+⎩在点1,1,2处的一个切线方向向量为 . A. -1,3,4 B.3,-1,4 C. -1,0,3 D. 3,0,-1二、填空题共15分,每小题3分1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题共54分,每小题6--7分1.本小题满分6分设arctan y z y x=, 求z x ∂∂,zy ∂∂.2.本小题满分6分求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. 本小题满分7分求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数; 4. 本小题满分7分将x x f 1)(=展开成3-x 的幂级数,并求收敛域; 5.本小题满分7分求由方程08822222=+-+++z yz z y x 所确定的隐函数),(y x z z =的极值;6.本小题满分7分计算二重积分1,1,1,)(222=-=--=+⎰⎰y y y x D d y xD由曲线σ及2-=x 围成.7.本小题满分7分利用格林公式计算⎰-Lx y x y xy d d 22,其中L 是圆周222a y x =+按逆时针方向.8.本小题满分7分计算⎰⎰⎰Ωz y x xy d d d ,其中Ω是由柱面122=+y x 及平面0,0,1===y x z 所围成且在第一卦限内的区域.四、综合题共16分,每小题8分1.本小题满分8分设级数11,n nn n u v∞∞==∑∑都收敛,证明级数21()nn n uv ∞=+∑收敛;2.本小题满分8分设函数),(y x f 在2R 内具有一阶连续偏导数,且2fx x∂=∂, 证明曲线积分2(,)Lxydx f x y dy +⎰与路径无关.若对任意的t 恒有(,1)(1,) (0,0)(0,0)2(,)2(,)t t xydx f x y dy xydx f x y dy +=+⎰⎰,求),(y x f 的表达式.参考答案一、单选题共15分,每小题3分:1.C 2 D 3 C 4B 5 A 二、填空题共15分,每小题3分 1.-1 2. I =10(,)yee dyf x y dx ⎰⎰3. →→→-+-k j i 242 4 1(1)!n n n x n +∞=-∑ 5. 2,2三、解答题共54分,每小题6--7分1.解:222y x y x z +-=∂∂; 3分 y z ∂∂=x yarctan +22y x xy + 6分. 2. 解:记切点000(,,)x y z 则切平面的法向量为0002(2,3,)n x y z =满足:00023232x y z ==- ,切点为:(1,1,2)-或(1,1,2)-- 3分,切平面:23299x y z or -+=- 4分, 法线方程分别为:112232x y z +-+==-或者112232x y z -+-==- 6分 3. 解:(1,2)(2,4)f ∇= 3分,(1,2)1f l∂=+∂ 7分 4. 解:)3(31)(-+=x x f =)33(1131-+⋅x , 2分因为 ∑∞=+=-011)1(n n n x x ,)1,1(-∈x ,所以∑∞=-⋅-=-+⋅)33(31)1()33(1131n n n x x =∑∞=+--01)3()31()1(n n n n x ,其中1331<-<-x ,即60<<x . 5分当0=x 时,级数为∑∞=031n 发散;当6=x 时,级数为∑∞=⋅-031)1(n n 发散,故x 1=∑∞=+--01)3()31()1(n nn n x ,)6,0(∈x , 7分5. 解:由401284(2)0128z x x z y z y z y z y∂⎧==⎪∂--⎪⎨∂+⎪==⎪∂--⎩, 得到0=x 与02=+z y , 2分再代入08822222=+-+++z yz z y x ,得到0872=-+z z 即81,7z =-; 由此可知隐函数(,)z z x y =的驻点为(0,2)-与16(0,)7; 4分 由224128z x z y ∂=∂--,20z x y ∂=∂∂,224128z y z y∂=∂--,可知在驻点(0,2)-与16(0,)7有0H >; 5分 在(0,2)-点,1z =,因此 224015z x ∂=>∂,所以(0,2)-为极小值点,极小值为1z =; 6分 在16(0,)7点,87z =-,因此 224015z x ∂=-<∂,所以16(0,)7为极大值点,极大值为87z =-, 7分 6. 解:记⎪⎩⎪⎨⎧≤≤-≤≤--⎩⎨⎧≤≤-≤≤-1101:1102:221y x y D y x D ,则21D D D -=.2分 故σσσd y x d y x d y x D D D⎰⎰⎰⎰⎰⎰+-+=+21)()()(222222 4分 -=-+=⎰⎰⎰⎰--320)(2321311222ππθdr r d dx y x dy 4π7分 7. 解:L 所围区域D :222ay x ≤+,由格林公式,可得⎰-Lx y x y xy d d 22=y x y y x x xy Dd d ))()((22⎰⎰∂-∂-∂∂=⎰⎰+D y x y x d d )(22=4π20022πd a r r r d a ⎰⎰=⋅θ.7分8. 解:如图,选取柱面坐标系计算方便,此时,⎪⎩⎪⎨⎧≤≤≤≤≤≤,10,2π0,10:r z θΩ所以⎰⎰⎰⎰⎰⎰⋅⋅=Ωθθθr r r r z z y x xy d sin cos d d d d d 0102π014分=⎰⎰r r d d 2sin 2130102πθθ=814)42cos (142π0=⋅-r θ. 7分 四、综合题共16分,每小题8分1.证明:因为lim 0,lim 0n n n n u v →∞→∞==,2分故存在N,当n N >时,222()23n n n n n n n u v u v u v u +=++≤,因此21()nn n uv ∞=+∑收敛;8分2.证明:因为2fx x∂=∂,且22()xy x y ∂=∂,故曲线积分 2(,)L xydx f x y dy +⎰与路径无关.4分因此设)(),(2y g x y x f +=,从而(,1)1122 (0,0)2(,)0[()]()t t xydx f x y dy dx t g y dy t g y dy +=++=+⎰⎰⎰⎰,5分(1,)1 (0,0)2(,)0[1()]()t t txydx f x y dy dx g y dy t g y dy +=++=+⎰⎰⎰⎰,6分由此得 12()t g y dy +⎰()t t g y dy =+⎰对任意t 成立,于是12)(-=t t g ,即12)(),(22-+=+=y x y g x y x f .8分一、。
大一下学期高等数学考试题及答案
大一下学期高等数学考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2+2x+1的导数是()。
A. 2x+2B. x^2+2C. 2x+1D. x+1答案:A2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=e^x在x=0处的切线斜率是()。
A. 0B. 1C. eD. e^0答案:B4. 函数f(x)=x^3-3x的极值点是()。
A. x=0C. x=-1D. x=2答案:C5. 定积分∫(0 to 1) x^2 dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:A6. 微分方程dy/dx=3x^2的通解是()。
A. y=x^3+CB. y=3x^3+CC. y=x^3D. y=3x^3答案:B7. 函数f(x)=ln(x)的原函数是()。
A. x*ln(x)-x+CB. x*ln(x)+x+CC. x*ln(x)+CD. x*ln(x)-x+C答案:C8. 函数f(x)=x^2+3x+2的零点是()。
B. x=-2C. x=1D. x=2答案:A9. 曲线y=x^3-3x^2+2x在点(1,0)处的切线方程是()。
A. y=3x-2B. y=-3x+2C. y=3x+2D. y=-3x-2答案:A10. 函数f(x)=x^2-4x+4的最小值是()。
A. 0B. 4C. -4D. 1答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3的二阶导数是________。
答案:6x2. 极限lim(x→∞) (x^2-1)/(x^2+1)的值是________。
答案:13. 函数f(x)=x^2-6x+8的顶点坐标是________。
答案:(3, -1)4. 曲线y=x^2+2x+1在x=1处的切线斜率是________。
答案:45. 函数f(x)=x^2-4x+3的零点是________。
答案:1和3三、计算题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x的极值点。
(完整版)大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A卷】院(系)另寸___________ 班级___________ 学号 _______________ 姓名_________________ 成绩_____________、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上.)r r r r r1、已知向量a、b满足a b o, a 2,b 2,则a b __________ .32、设z xln(xy),贝H ----- _____________ .x y3、曲面x2 y2 z 9在点(1,2, 4)处的切平面方程为_________________________________________ .4、设f (x)是周期为2的周期函数,它在[,)上的表达式为f(x) x,贝U f (x)的傅里叶级数在x 3处收敛于____________ ,在x 处收敛于_________ .5、设L为连接(1,0)与(0,1)两点的直线段,则Jx y)ds __________ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程一…,并在每张答题纸写上:姓名、学号、班级. 、解下列各题:(本题共5小题,每小题7分,满分35分)2x2 3y2 z29 亠 _1、求曲线 2 2 2 在点M o (1, 1,2)处的切线及法平面方程.z 3x y2 2 2 22、求由曲面z 2x 2y及z 6 x y所围成的立体体积.n 13、判定级数(1)n ln 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1 n2x z z4、设z f (xy, ) sin y,其中f具有二阶连续偏导数,求,•y x x y5、计算曲面积分dS,其中是球面x2 y2 z2 a2被平面z h (0 h a)截出的顶部.三、(本题满分9分)抛物面z x y被平面x y z 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分L(e x siny m)dx (e x cosy mx)dy,其中m为常数,L为由点A(a,0)至原点0(0,0)的上半圆周x2 y2 ax (a 0).五、(本题满分10分)n求幕级数的收敛域及和函数.n 13n n六、(本题满分10分)计算曲面积分| 2x3dydz 2y3dzdx 3(z21)dxdy,其中为曲面z 1 x2 y2(z 0)的上侧.七、(本题满分6分)设f (x)为连续函数,f(0) a , F(t) [z f(x2 y2 z2)]dv,其中t 是由曲面z •, —y2tF(t)与z t2x2y2所围成的闭区域,求limt 0备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交; 不得带走试卷。
大一下高数c期末考试试题及答案
大一下高数c期末考试试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. x^2+3C. 2x+6D. 2x-3答案:A2. 求极限lim(x→0) (sin(x)/x)的值是多少?A. 0B. 1C. 2D. ∞答案:B3. 以下哪个选项是函数f(x)=e^x的不定积分?A. e^x+CB. e^(-x)+CC. ln(x)+CD. x*e^x+C答案:A4. 以下哪个选项是函数f(x)=x^3-6x^2+11x-6的零点?A. 1B. 2C. 3D. 4答案:B5. 以下哪个选项是函数f(x)=x^3-3x^2+4x的拐点?A. 0B. 1C. 2D. 3答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^3-6x^2+11x-6的二阶导数是________。
答案:6x-127. 函数f(x)=x^2+3x+2在x=1处的切线斜率是________。
答案:58. 函数f(x)=e^x的原函数是________。
答案:e^x+C9. 函数f(x)=ln(x)的定义域是________。
答案:(0, +∞)10. 函数f(x)=x^3-3x^2+4x的二阶导数是________。
答案:6x-6三、计算题(每题10分,共30分)11. 求定积分∫(0到1) (x^2+2x)dx。
答案:(1/3)x^3+x^2|(0到1) = 1/3 + 1 = 4/312. 求极限lim(x→∞) (x^2-3x+2)/(x^2+x+1)。
答案:113. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:x=2为极大值点,x=3为极小值点四、解答题(每题15分,共20分)14. 已知函数f(x)=x^3-3x^2+4x,求其单调区间和极值点。
答案:f'(x)=3x^2-6x+4,令f'(x)=0,解得x=1和x=4/3。
大一下高等数学期末试题精确答案新编
大一下高等数学期末试题精确答案新编Last updated on the afternoon of January 3, 2021一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则() A .(,)f x y 在P 连续B .(,)f x y 在P 可微 C .00lim (,)x x f x y →及00lim (,)y y f x y →都存在D .00(,)(,)lim(,)x y x y f x y →存在2.若x y z ln =,则dz 等于( ).3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f).4.4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ). A .条件收敛B .绝对收敛C .发散D .敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为(). A.(-1,3,4)B.(3,-1,4)C.(-1,0,3)D.(3,0,-1)二、填空题(共15分,每小题3分) 1.设220x y xyz +-=,则'(1,1)x z =.2.交换ln 10(,)ex I dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为.4.已知0!nxn x e n ∞==∑,则x xe -=.5.函数332233z x y x y =+--的极小值点是. 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=,求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3.(本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号 姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= .2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dSz ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n ∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰, 其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 30()lim t F t t+→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y yA x y+ln ln .x y y B x ln ln ln .ln x xy y C y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 210cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x =, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量122l i j =+r r r方向的方向导数。
4. (本小题满分7分)将x x f 1)(=展开成3-x 的幂级数,并求收敛域。
5.(本小题满分7分)求由方程08822222=+-+++z yz z y x 所确定的隐函数),(y x z z =的极值。
6.(本小题满分7分)计算二重积分1,1,1,)(222=-=--=+⎰⎰y y y x D d y xD由曲线σ及2-=x 围成.7.(本小题满分7分)利用格林公式计算⎰-Lx y x y xy d d 22,其中L 是圆周222a y x =+(按逆时针方向).8.(本小题满分7分)计算⎰⎰⎰Ωz y x xy d d d ,其中Ω是由柱面122=+y x 及平面0,0,1===y x z 所围成且在第一卦限内的区域.四、综合题(共16分,每小题8分)1.(本小题满分8分)设级数11,n nn n u v∞∞==∑∑都收敛,证明级数21()nn n uv ∞=+∑收敛。
2.(本小题满分8分)设函数),(y x f 在2R 内具有一阶连续偏导数,且2fx x∂=∂, 证明曲线积分2(,)Lxydx f x y dy +⎰与路径无关.若对任意的t 恒有(,1)(1,) (0,0)(0,0)2(,)2(,)t t xydx f x y dy xydx f x y dy +=+⎰⎰,求),(y x f 的表达式.参考答案一、单选题(共15分,每小题3分):1.C 2 D 3 C 4B 5 A 二、填空题(共15分,每小题3分) 1.-1 2. I =10(,)yee dyf x y dx ⎰⎰3. →→→-+-k j i 242 4 1(1)!n n n x n +∞=-∑ 5. (2,2)三、解答题(共54分,每小题6--7分)1.解:222yx y x z +-=∂∂; (3分) y z∂∂=x y arctan +22yx xy + ( 6分). 2. 解:记切点000(,,)x y z 则切平面的法向量为0002(2,3,)n x y z =r 满足:00023232x y z==- ,切点为:(1,1,2)-或(1,1,2)-- (3分),切平面:23299x y z or -+=- ( 4分), 法线方程分别为:112232x y z +-+==-或者112232x y z -+-==- ( 6分) 3. 解:(1,2)(2,4)f ∇= ( 3分),(1,2)1f l∂=+∂r ( 7分) 4. 解:)3(31)(-+=x x f =)33(1131-+⋅x , ( 2分)因为 ∑∞=+=-011)1(n n n x x ,)1,1(-∈x ,所以∑∞=-⋅-=-+⋅)33(31)1()33(1131n n n x x =∑∞=+--01)3()31()1(n n n n x ,其中1331<-<-x ,即60<<x .( 5分)当0=x 时,级数为∑∞=031n 发散;当6=x 时,级数为∑∞=⋅-031)1(n n 发散,故x 1=∑∞=+--01)3()31()1(n nn n x ,)6,0(∈x ,( 7分)5. 解:由401284(2)0128z x x z y z y z y z y ∂⎧==⎪∂--⎪⎨∂+⎪==⎪∂--⎩, 得到0=x 与02=+z y , ( 2分)再代入08822222=+-+++z yz z y x ,得到0872=-+z z 即81,7z =-。
由此可知隐函数(,)z z x y =的驻点为(0,2)-与16(0,)7。
( 4分) 由224128z x z y ∂=∂--,20zx y ∂=∂∂,224128z y z y∂=∂--,可知在驻点(0,2)-与16(0,)7有0H >。
( 5分) 在(0,2)-点,1z =,因此 224015z x ∂=>∂,所以(0,2)-为极小值点,极小值为1z =;( 6分) 在16(0,)7点,87z =-,因此 224015z x ∂=-<∂,所以16(0,)7为极大值点,极大值为87z =-, ( 7分) 6. 解:记⎪⎩⎪⎨⎧≤≤-≤≤--⎩⎨⎧≤≤-≤≤-1101:1102:221y x y D y x D ,则21D D D -=.(2分) 故σσσd y x d y x d y x D D D⎰⎰⎰⎰⎰⎰+-+=+21)()()(222222 ( 4分) -=-+=⎰⎰⎰⎰--320)(2321311222ππθdr r d dx y x dy 4π(7分) 7. 解:L 所围区域D :222ay x ≤+,由格林公式,可得⎰-Lx y x y xy d d 22=y x y y x x xy Dd d ))()((22⎰⎰∂-∂-∂∂=⎰⎰+D y x y x d d )(22=4π20022πd a r r r d a ⎰⎰=⋅θ.(7分)8. 解:如图,选取柱面坐标系计算方便,此时,⎪⎩⎪⎨⎧≤≤≤≤≤≤,10,2π0,10:r z θΩ所以⎰⎰⎰⎰⎰⎰⋅⋅=Ωθθθr r r r z z y x xy d sin cos d d d d d 012π01 ( 4分)=⎰⎰r r d d 2sin 2130102πθθ=814)42cos (142π=⋅-r θ. (7分) 四、综合题(共16分,每小题8分) 1.证明:因为lim 0,lim 0n n n n u v →∞→∞==,(2分)故存在N ,当n N >时,222()23n n n n n n n u v u v u v u +=++≤,因此21()nn n uv ∞=+∑收敛。
(8分)2.证明:因为2fx x∂=∂,且22()xy x y ∂=∂,故曲线积分 2(,)L xydx f x y dy +⎰与路径无关.(4分)因此设)(),(2y g x y x f +=,从而(,1)1122 (0,0)2(,)0[()]()t t xydx f x y dy dx t g y dy t g y dy +=++=+⎰⎰⎰⎰,(5分) (1,)1 (0,0)2(,)0[1()]()t t txydx f x y dy dx g y dy t g y dy +=++=+⎰⎰⎰⎰,(6分) 由此得 12()t g y dy +⎰()tt g y dy =+⎰对任意t 成立,于是12)(-=t t g ,即12)(),(22-+=+=y x y g x y x f .(8分) 一、。