专题训练:电磁感应——双杆问题

合集下载

电磁感应中的双杆单杆模型试题及答案

电磁感应中的双杆单杆模型试题及答案

电磁感应中的双杆单杆模型试题及答案1.(多选)(2019·桂林高三模拟)如图,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长.空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大 B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变小,v m 将变大2.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F 3D .两金属棒间距离保持不变 3.(2019·江西名校联盟检测)如图所示,水平面上固定着两根相距L 且电阻不计的足够长的光滑金属导轨,导轨处于方向竖直向下、磁感应强度为B 的匀强磁场中,铜棒a 、b 的长度均等于两导轨的间距、电阻均为R 、质量均为m ,铜棒平行地静止在导轨上且与导轨接触良好.现给铜棒a 一个平行导轨向右的瞬时冲量I ,关于此后的过程,下列说法正确的是( )A .回路中的最大电流为BLI mRB .铜棒b 的最大加速度为B 2L 2I 2m 2RC .铜棒b 获得的最大速度为I mD .回路中产生的总焦耳热为I 22m4.(多选)(2020·湖南长沙一中月考)如图所示,两根等高光滑的14圆弧轨道半径为r 、间距为L ,轨道的电阻不计.在轨道的顶端连有阻值为R 的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L 、电阻不计的金属棒从轨道的最低位置cd 开始,在拉力作用下以速率v 0沿轨道向上做匀速圆周运动至ab 处,则该过程中( )A .通过R 的电流方向为f →R →eB .通过R 的电流方向为e →R →fC .R 上产生的热量为πrB 2L 2v 04RD .通过R 的电荷量为πBLr 2R5.(2020·河北八校联考)如图所示,相距L 的两平行光滑金属导轨MN 、PQ 间接有两定值电阻R 1和R 2,它们的阻值均为R .导轨间存在垂直导轨平面向下的匀强磁场,磁感应强度大小为B .现有一根质量为m 、电阻也为R 的金属棒在恒力F 的作用下由静止开始运动,运动距离x 时恰好达到稳定速度v .运动过程中金属棒与导轨始终接触良好,则在金属棒由静止开始运动到速度达到稳定的过程中( )A .电阻R 1上产生的焦耳热为16Fx -112m v 2B .电阻R 1上产生的焦耳热为14Fx -18m v 2 C .通过电阻R 1的电荷量为BLx R D .通过电阻R 1的电荷量为BLx 3R6.如图所示,间距L =1 m 的两根足够长的固定水平平行导轨间存在着匀强磁场,其磁感应强度大小B =1 T 、方向垂直于纸面向里,导轨上有一金属棒MN 与导轨垂直且在水平拉力F 作用下以v =2 m/s 的速度水平向左匀速运动.R 1=8 Ω,R 2=12 Ω,C =6 μF ,导轨和棒的电阻及一切摩擦均不计.开关S 1、S 2闭合,电路稳定后,求:(1)通过R 2的电流I 的大小和方向.(2)拉力F 的大小.(3)开关S 1断开后通过R 2的电荷量Q .7.(2019·湖南长沙四县模拟)足够长的平行金属轨道M 、N ,相距L =0.5 m ,且水平放置;M 、N 左端与半径R =0.4 m 的光滑竖直半圆轨道相连,金属棒b 和c 可在轨道上无摩擦地滑动,两金属棒的质量m b =m c =0.1 kg ,电阻R b =R c =1 Ω,轨道的电阻不计.平行水平金属轨道M 、N 处于磁感应强度B =1 T 的匀强磁场中,磁场方向与轨道平面垂直,光滑竖直半圆轨道在磁场外,如图所示,若使b 棒以初速度v 0=10 m /s 开始向左运动.g 取10 m/s 2.求:(1)c 棒的最大速度;(2)c 棒中产生的焦耳热;1解析:金属杆在下滑过程中先做加速度减小的加速运动,速度达到最大后做匀速运动.所以当F安=mg sin α时速度最大,F 安=BIl =B 2l 2v m R ,所以v m =mgR sin αB 2l 2,分析各选项知B 、C 正确. 答案:BC2解析:对两金属棒ab 、cd 进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有F =3ma ,隔离金属棒cd 分析,有F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确. 答案:BC3解析:给铜棒a 一个平行导轨的瞬时冲量I ,此时铜棒a 的速度最大,产生的感应电动势最大,回路中电流最大,每个棒受到的安培力最大,其加速度最大,I =m v 0,v 0=I m,铜棒a 产生的电动势E =BL v 0,回路电流I 0=E 2R =BLI 2mR ,选项A 错误;此时铜棒b 受到安培力F =BI 0L ,其加速度a =F m =IB 2L 22Rm 2,选项B 正确;此后铜棒a 做变减速运动,铜棒b 做变加速运动,当二者达到共同速度时,铜棒b 速度最大,此过程动量守恒,m v 0=2m v ,铜棒b 最大速度v =I 2m ,选项C 错误;回路中产生的焦耳热Q =12m v 20-12·2m v 2=I 24m,选项D 错误. 答案:B4解析:由右手定则可知,电流方向为逆时针方向,即通过R 的电流方向为e →R →f ,A 错误,B 正确;通过R 的电荷量q =ΔΦR =BLr R ,D 错误;金属棒产生的瞬时感应电动势E =BL v 0cos v 0t r ,有效值E 有=BL v 02,R 上产生的热量Q =E 2有R t =B 2L 2v 202R ·πr 2v 0=πrB 2L 2v 04R,C 正确. 答案:BC5解析:金属棒由静止运动到速度达到稳定的过程中,利用功能关系得,Fx +W 安=12m v 2,-W 安=Q 总,所以Q 总=Fx -12m v 2,金属棒上的电流是R 1的两倍,由Q =I 2Rt 可知,金属棒消耗的焦耳热是每个定值电阻消耗的焦耳热的4倍,即Q R 1=16Q 总,所以A 正确,B 错误;又由电荷量q =ΔΦR 总,ΔΦ=BLx ,R 总=32R ,q R 1=12q 可知,q R 1=BLx 3R,C 错误,D 正确. 答案:AD6解析:(1)开关S 1、S 2闭合后,根据右手定则知棒中的感应电流方向是M →N ,所以通过R 2的电流方向是b →aMN 中产生的感应电动势的大小E =BL v通过R 2的电流I =E R 1+R 2代入数据解得I =0.1 A.(2)由棒受力平衡有F =F 安F 安=BIL代入数据解得F =0.1 N.(3)开关S 1、S 2闭合,电路稳定后,电容器所带电荷量Q 1=CIR 2S 1断开后,流过R 2的电荷量Q 等于电容器所带电荷量的减少量,即Q =Q 1-0代入数据解得Q =7.2×10-6 C.答案:(1)0.1 A 方向是b →a (2)0.1 N (3)7.2×10-6 C7[解析] (1)在磁场力作用下,b 棒做减速运动,c 棒做加速运动,当两棒速度相等时,c 棒达最大速度.选两棒为研究对象,根据动量守恒定律有m b v 0=(m b +m c )v解得c 棒的最大速度为v =m b m b +m cv 0=12v 0=5 m/s. (2)从b 棒开始运动到两棒速度相等的过程中,系统减少的动能转化为电能,两棒中产生的总热量为Q =12m b v 20-12(m b +m c )v 2=2.5 J 因为R b =R c ,所以c 棒中产生的焦耳热为Q c =Q 2=1.25 J. [答案] (1)5 m/s (2)1.25 J。

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

(完整版)电磁感应中的单杆和双杆问题(习题,答案)

(完整版)电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

题型专练四 电磁感应中的单、双杆模型

题型专练四 电磁感应中的单、双杆模型

题型专练四电磁感应中的单、双杆模型1.“导轨+杆”模型是电磁感应中的常见模型,选择题和计算题均有考查.该模型以单杆或双杆在导轨上做切割磁感线运动为情景,综合考查电路、动力学、功能关系、动量守恒等知识.2.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等,情景复杂,形式多变.3.在处理此类问题时,要以导体杆切割磁感线的速度为主线,由楞次定律、法拉第电磁感应定律和闭合电路欧姆定律分析电路中的电流,由牛顿第二定律分析导体杆的加速度及速度变化,由能量守恒分析系统中的功能关系,由动量定理中安培力的冲量分析电荷量.“导轨+双杆”模型中还可能满足动量守恒定律.高考题型1电磁感应中的单杆模型1.常见单杆情景及解题思路常见情景(导轨和杆电阻不计,以水平光滑导轨为例)过程分析三大观点的应用单杆阻尼式设运动过程中某时刻的速度为v,加速度为a,a=B2L2vRm,a、v反向,导体棒做减速运动,v↓⇒a↓,当a=0时,v=0,导体棒做加速度减小的减速运动,最终静止动力学观点:分析加速度能量观点:动能转化为焦耳热动量观点:分析导体棒的位移、通过导体棒的电荷量和时间单杆发电式(v0=0) 设运动过程中某时刻棒的速度为v,加速度为a=Fm-B2L2vmR,F恒定时,a、v同向,随v的增加,a减小,当a=0时,v最大,v m=FRB2L2;a恒定时,F=B2L2atR+ma,F与t动力学观点:分析最大加速度、最大速度能量观点:力F做的功等于导体棒的动能与回路中焦耳热之和动量观点:分析导体棒的位移、通过导体棒的电荷量为一次函数关系含“源”电动式(v 0=0)开关S 闭合,ab 棒受到的安培力F =BLE r ,此时a =BLE mr,速度v ↑⇒E 感=BL v ↑⇒I ↓⇒F =BIL ↓⇒加速度a ↓,当E 感=E 时,v 最大,且v m =EBL动力学观点:分析最大加速度、最大速度能量观点:消耗的电能转化为动能与回路中的焦耳热动量观点:分析导体棒的位移、通过导体棒的电荷量含“容”无外力充电式充电电流减小,安培力减小,a 减小,当a =0时,导体棒匀速直线运动能量观点:动能转化为电场能(忽略电阻)含“容”有外力充电式(v 0=0)电容器持续充电F -BIL =ma ,I =ΔQΔt ,ΔQ =C ΔU =CBL Δv ,a =ΔvΔt,得I 恒定,a恒定,导体棒做匀加速直线运动动力学观点:求导体棒的加速度a =Fm +B 2L 2C2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I L Δt =m v 2-m v 1,q =I Δt . ②求位移:-B 2L 2v Δt R 总=0-m v 0,即-B 2L 2xR 总=0-m v 0.③求时间:(i)-B I L Δt +F 其他Δt =m v 2-m v 1 即-BLq +F 其他·Δt =m v 2-m v 1已知电荷量q ,F 其他为恒力,可求出变加速运动的时间. (ii)-B 2L 2v ΔtR 总+F 其他·Δt =m v 2-m v 1,v Δt =x .若已知位移x ,F 其他为恒力,也可求出变加速运动的时间. 考题示例例1 (2016·全国卷Ⅱ·24)如图1,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:图1(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.答案 (1)Blt 0(F m -μg ) (2)B 2l 2t 0m解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 F -μmg =ma ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知金属杆中产生的电动势为 E =Bl v ③ 联立①②③式可得 E =Blt 0(Fm-μg )④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 F 安=BlI ⑥因金属杆做匀速运动,有 F -μmg -F 安=0⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m.例2 (2019·天津卷·11)如图2所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k .图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .PQ 的质量为m ,金属导轨足够长、电阻忽略不计.图2(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W .答案 (1)Bkl 3R 方向水平向右 (2)12m v 2-23kq解析 (1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔФΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R ③设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有F 安=BI PQ l ⑤ 保持PQ 静止,由受力平衡,有 F =F 安 ⑥联立①②③④⑤⑥式得 F =Bkl3R ⑦方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化为ΔФ,平均感应电动势为E ,有 E =ΔΦΔt⑧其中ΔФ=Blx ⑨设PQ 中的平均电流为I ,有I =E 2R ⑩根据电流的定义得 I =qΔt ⑪由动能定理,有 Fx +W =12m v 2-0 ⑫联立⑦⑧⑨⑩⑪⑫式得 W =12m v 2-23kq .命题预测1.(多选)(2020·福建福清市线上检测)如图3所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置在导轨上静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )图3A .导体棒做匀减速直线运动直至停止运动B .电阻R 上产生的焦耳热为I 22mC .通过导体棒ab 横截面的电荷量为IBLD .导体棒ab 运动的位移为I (R +r )B 2L 2答案 CD解析 导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab 受到向左的安培力,向右减速运动,由B 2L 2v R +r=ma ,可知由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度越来越小的减速运动,A 错误;导体棒减少的动能E k =12m v 2=12m ⎝⎛⎭⎫I m 2=I 22m ,根据能量守恒定律可得E k =Q 总,又根据串并联电路知识可得Q R =R R +r Q 总=I 2R 2m (R +r ),B 错误;根据动量定理可得-B I L Δt =0-m v ,I =m v ,q =I Δt ,可得q =IBL ,C 正确;由于q =I Δt =ER +r Δt =BLx R +r 将q =IBL 代入可得,导体棒ab 运动的位移x =I (R +r )B 2L2,D 正确.2.如图4所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r .初始时开关S 断开,电容器两极板间的电压为U .闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好.下列说法正确的是( )图4A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BUL mRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为BCULm +B 2L 2C答案 D解析 由左手定则可知,闭合开关S 的瞬间,金属棒所受安培力方向向右,金属棒立刻获得向右的加速度,开始向右运动,A 错误;闭合开关S 的瞬间,金属棒的加速度大小a =BULm (R +r ),B 错误;当金属棒切割磁感线产生的电动势跟电容器两极板之间的电压相等时,金属棒中电流为零,此后,金属棒将匀速运动下去,两端的电压达到最小值,故金属棒与导轨接触的两点间的电压不会为零,C 错误;设闭合开关S 后,电容器的放电时间为Δt ,金属棒获得的速度为v ,由动量定理可得B C (U -BL v )Δt L ·Δt =m v -0,解得v =BCULm +B 2L 2C ,D 正确.3.如图5所示,足够长的光滑平行金属导轨CD 、EF 倾斜放置,其所在平面与水平面间的夹角为θ=37°,两导轨间距为L ,导轨下端分别连着电容为C 的电容器和阻值R =3r 的定值电阻.一根质量为m 、电阻为r 的金属棒放在导轨上,金属棒与导轨始终垂直并接触良好,一根不可伸长的绝缘轻绳一端拴在金属棒中间、另一端跨过轻质定滑轮与质量M =3.6m 的重物相连.金属棒与定滑轮之间的轻绳始终在两导轨所在平面内且与两导轨平行,磁感应强度为B 的匀强磁场垂直于导轨所在平面向上,导轨电阻不计,初始状态用手托住重物使轻绳恰处于伸直状态,由静止释放重物,求:(sin 37°=0.6,重力加速度大小为g ,不计滑轮摩擦)图5(1)若S 1闭合,S 2断开,电阻R 的最大瞬时热功率;(2)若S 1和S 2均闭合,当金属棒速度达到最大值时,遇到障碍物突然停止运动,金属棒停止运动后,通过金属棒的电荷量;(3)若S 1断开、S 2闭合,请通过计算判断重物的运动性质.答案 (1)27m 2g 2r B 2L 2 (2)27mgrC4BL(3)重物做初速度为零的匀加速直线运动解析 (1)S 1闭合,S 2断开时,重物由静止释放后拉动金属棒沿导轨向上做加速运动,金属棒受到沿导轨向下的安培力作用,速度最大时,感应电动势最大,感应电流最大,则电阻R 的瞬时热功率最大,当金属棒速度最大时有Mg =mg sin 37°+BIL ,得I =3mgBLP m =I 2R联立解得P m =27m 2g 2rB 2L2(2)S 1和S 2均闭合时,电容器两极板间的最大电压U m =U R =IR =9mgrBL电容器所带的最大电荷量Q m =CU m =9mgrCBL金属棒停止运动后,电容器开始放电,此时电阻R 与金属棒并联,通过金属棒的电荷量q =R R +rQ m =27mgrC4BL(3)S 1断开、S 2闭合时,设从释放重物开始经时间t 金属棒的速度大小为v ,加速度大小为a ,通过金属棒的电流为i ,金属棒受到的安培力F =BiL ,方向沿导轨向下,设在t ~(t +Δt )时间内流经金属棒的电荷量为ΔQ ,ΔQ 也是平行板电容器在t ~(t +Δt )时间内增加的电荷量,感应电动势E =BL v ,平行板电容器所带电荷量Q =CE =CBL v ,故ΔQ =CBL Δv Δv =a Δt 则i =ΔQΔt=CBLa设绳中拉力为F T ,由牛顿第二定律,对金属棒有F T -mg sin θ-BiL =ma 对重物有Mg -F T =Ma 解得a =Mg -mg sin θM +m +CB 2L 2可知a 为常数,则重物做初速度为零的匀加速直线运动.高考题型2 电磁感应中的双杆模型1.常见双杆情景及解题思路 常见情景(以水平光滑导轨为例)过程分析三大观点的应用 双杆切割式杆MN 做变减速运动,杆PQ 做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理 动力学观点:求加速度 能量观点:求焦耳热 动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量 不等距导轨杆MN 做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变.v 1L 1=v 2L 2 动力学观点:求加速度 能量观点:求焦耳热 动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度双杆切割式a PQ 减小,a MN 增大,当a PQ =动力学观点:分别隔离两导体a MN时二者一起匀加速运动,存在稳定的速度差棒,F-B2l2ΔvR总=m PQ aB2l2ΔvR总=m MN a,求加速度2.对于不在同一平面上运动的双杆问题,动量守恒定律不适用,可以用对应的牛顿运动定律、能量观点、动量定理进行解决.考题示例例3(多选)(2019·全国卷Ⅲ·19)如图6,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()图6答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v02,选项A、C正确,B、D错误.例4(多选)(2020·全国卷Ⅰ·21)如图7,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc 边垂直.ab 、dc 足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN 置于金属框上,用水平恒力F 向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN 与金属框保持良好接触,且与bc 边保持平行.经过一段时间后( )图7A .金属框的速度大小趋于恒定值B .金属框的加速度大小趋于恒定值C .导体棒所受安培力的大小趋于恒定值D .导体棒到金属框bc 边的距离趋于恒定值 答案 BC解析 当金属框在恒力F 作用下向右加速运动时,bc 边产生从c 向b 的感应电流i ,金属框的加速度大小为a 1,则有F -Bil =Ma 1;MN 中感应电流从M 流向N ,MN 在安培力作用下向右加速运动,加速度大小为a 2,则有Bil =ma 2,当金属框和MN 都运动后,金属框速度为v 1,MN 速度为v 2,则电路中的感应电流为i =Bl (v 1-v 2)R ,感应电流从0开始增大,则a 2从零开始增加,a 1从F M 开始减小,加速度差值减小.当a 1=a 2时,得F =(M +m )a ,a =FM +m 恒定,由F 安=ma 可知,安培力不再变化,则感应电流不再变化,据i =Bl (v 1-v 2)R 知金属框与MN 的速度差保持不变,v -t 图像如图所示,故A 错误,B 、C 正确;MN 与金属框的速度差不变,但MN 的速度小于金属框的速度,则MN 到金属框bc 边的距离越来越大,故D 错误.例5 (2017·浙江4月选考·22)间距为l 的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图8所示,倾角为θ的导轨处于大小为B 1、方向垂直于倾斜导轨平面向上的匀强磁场区间Ⅰ中,水平导轨上的无磁场区间静止放置一质量为3m 的“联动双杆”(由两根长为l 的金属杆cd 和ef ,用长度为L 的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B 2、方向垂直于水平导轨平面向上的匀强磁场区间Ⅱ,其长度大于L ,质量为m 、长为l 的金属杆ab 从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab 与“联动双杆”发生碰撞后,杆ab 和cd 粘合在一起形成“联动三杆”,“联动三杆”继续沿水平导轨进入磁场区Ⅱ并从中滑出,运动过程中杆ab 、cd 和ef 与导轨始终接触良好,且保持与导轨垂直.已知杆ab 、cd 和ef 电阻均为R =0.02 Ω,m =0.1 kg ,l =0.5 m ,L =0.3 m ,θ=30°,B 1=0.1 T ,B 2=0.2 T ,g =10 m/s 2,不计摩擦阻力和导轨电阻,忽略磁场边界效应,求:图8(1)ab 杆在倾斜导轨上匀速运动时的速度大小v 0; (2)“联动三杆”进入磁场区间Ⅱ前的速度大小v ; (3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q . 答案 (1)6 m /s (2)1.5 m/s (3)0.25 J解析 (1)ab 杆受到的安培力为:F A =B 1Il =B 12l 2v 0R +R 2ab 杆匀速运动,由平衡条件得:mg sin θ=F A ,代入数据解得:v 0=6 m/s.(2)ab 杆与“联动双杆”碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得m v 0=(m +3m )v代入数据解得:v =1.5 m/s.(3)设“联动三杆”进入磁场区间Ⅱ的过程中速度的变化量为Δv ,由动量定理得: -B 2I l Δt =4m Δv设在“联动三杆”进入磁场区间Ⅱ的过程中,通过ab 杆的电荷量为q ,则I Δt =q =B 2LlR +R 2代入数据解得:Δv =-0.25 m/s“联动三杆”离开磁场区间Ⅱ的过程中,速度的变化量也为:Δv =-0.25 m /s ,离开磁场区间Ⅱ时“联动三杆”的速度为:v ′=v +2Δv =1.5 m/s -2×0.25 m/s =1 m/s.“联动三杆”滑过磁场区间Ⅱ的过程中,产生的焦耳热为:Q =12·4m v 2-12·4m v ′2,代入数据解得:Q =0.25 J.命题预测4.如图9所示,水平放置的两平行光滑金属导轨固定在桌面上,导轨间距为L ,处在磁感应强度为B 、竖直向下的匀强磁场中.桌面离地面的高度为H .初始时刻,质量为m 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d ,质量也为m 的杆cd 与导轨垂直,以初速度v 0进入磁场区域,最终发现两杆先后落在地面上.已知两杆接入电路的电阻均为R ,导轨电阻不计,两杆落地点之间的距离为s ,重力加速度为g .图9(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时,求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能. 答案 (1)v 02-s2g 2H (2)d +RmB 2L 2⎝⎛⎭⎫v 0-s g 2H (3)14m v 02-mgs 28H解析 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为v 1、v 2,ab 杆落地点到抛出点的水平距离为x 1,cd 杆落地到抛出点的水平距离为x 2,则有 x 1=v 12Hg x 2=v 22H g且x 2-x 1=s以v 0的方向为正方向,根据动量守恒定律有m v 0=m v 1+m v 2 解得v 2=v 02+s2g2H ,v 1=v 02-s 2g2H(2)ab 杆运动距离为d ,对ab 杆应用动量定理,有 B I L Δt =BLq =m v 1 设cd 杆运动距离为d +Δx q =ΔΦ2R =BL Δx 2R解得Δx =2Rm v 1B 2L 2=RmB 2L2(v 0-sg2H) 则cd 杆运动距离为x =d +Δx =d +RmB 2L 2⎝⎛⎭⎫v 0-sg 2H(3)根据能量守恒定律,回路中产生的电能等于系统损失的机械能, 则有Q =12m v 02-12m v 12-12m v 22=14m v 02-mgs 28H.5.如图10所示,足够长的水平轨道左侧b 1b 2~c 1c 2部分轨道间距为2L ,右侧c 1c 2~d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒B 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的金属棒A 自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,B 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图10(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒B 匀速运动的速度大小;(3)在两棒整个运动过程中通过金属棒A 某横截面的电荷量;(4)在两棒整个运动过程中金属棒A 、B 在水平导轨间扫过的面积之差. 答案 见解析解析 (1)A 棒在曲线轨道上下滑时,由机械能守恒定律得: mgh =12m v 02解得v 0=2 m/s.(2)选取水平向右为正方向,对A 、B 分别应用动量定理, 对B :F B 安·t =M v B , 对A :-F A 安·t =m v A -m v 0, 其中F A 安=2F B 安, 整理得:m v 0-m v A =2M v B ,两棒最后匀速时,电路中无电流,此时回路总电动势为零,必有2B cos θL v A -B cos θL v B =0, 即v B =2v A , 联立解得v B =49m/s.(3)当金属棒A 运动到水平轨道后,回路中开始有感应电流产生,此时金属棒B 开始加速运动,通过A 的电荷量与通过B 的电荷量相等. 在B 加速过程中:∑(B cos θ)iL Δt =M v B -0, q =∑i Δt , 解得q =509C.(4)根据法拉第电磁感应定律有:E =ΔΦΔt ,其中磁通量变化量:ΔΦ=B ΔS cos θ, 电路中的电流:I =E 2R ,通过横截面的电荷量:q =I Δt , 联立解得ΔS =2509m 2.专题强化练保分基础练1.(多选)(2020·河南六市高三4月第一次联合调研)如图1所示,光滑平行的两金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的定值电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向上.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻以及空气阻力.则( )图1A .初始时刻金属杆的加速度为B 2L 2v 0mRB .金属杆上滑时间小于下滑时间C .在金属杆上滑和下滑过程中电阻R 上产生的热量相同D .在金属杆上滑和下滑过程中通过电阻R 上的电荷量相同答案 BD解析 金属杆开始运动时,金属杆所受的安培力F A =BIL =B 2L 2v 0R根据牛顿第二定律得,mg sin θ+F A =ma ,则金属杆的加速度a =mg sin θ+F A m =g sin θ+B 2L 2v 0mR ,选项A 错误;由于金属杆要克服安培力做功,其机械能不断减少,所以金属杆上滑和下滑经过同一位置时,上滑速度大于下滑的速度,则上滑的平均速度大于下滑的平均速度,所以金属杆上滑时间小于下滑时间,选项B 正确;金属杆克服安培力所做的功等于回路中产生的热量,即电阻R 上产生的热量,上滑过程中平均速度较大,则平均安培力较大,所以克服安培力做的功较大,产生的热量较多,选项C 错误;根据q =ΔΦR =BLsR 可知,在金属杆上滑和下滑过程中,通过电阻R 上的电荷量相同,选项D 正确.2.(多选)(2020·湖南常德市高三二模)如图2所示,两条相距为L 的光滑平行金属导轨位于水平面(纸面)内,其左端接一阻值为R 的定值电阻,导轨平面与磁感应强度大小为B 的匀强磁场垂直,导轨电阻不计.导体棒ab 垂直导轨放置并接触良好,接入电路的电阻也为R .若给棒以平行导轨向右的初速度v 0,当通过棒横截面的电荷量为q 时,棒的速度减为零,此过程中棒发生的位移为x .则在这一过程中( )图2A .导体棒做匀减速直线运动B .当棒发生的位移为x 2时,通过棒横截面的电荷量为q2C .在通过棒横截面的电荷量为q3时,棒运动的速度为v 03D .定值电阻R 产生的热量为BqL v 04答案 BD解析 由于导体棒向右减速运动,则感应电动势减小,感应电流减小,所以导体棒受到的安培力减小,根据牛顿第二定律可知其加速度减小,故导体棒做变减速运动,故A 错误;当棒的速度减为零,发生的位移为x 时,通过棒横截面的电荷量为q =ΔΦ2R =BLx2R ,则当棒发生的位移为x 2时,通过棒横截面的电荷量为q2,故B 正确;当棒的速度减为零时,通过棒横截面的电荷量为q =BLx 2R ,设这段时间回路中的平均电流为I 1,由动量定理得-B I 1Lt 1=0-m v 0,其中q =I 1t 1当通过棒横截面的电荷量为q3时,设这段时间回路中的平均电流为I 2由动量定理得-B I 2Lt 2=m v 1-m v 0,其中q3=I 2t 2解得:v 1=2v 03,m =qBLv 0,故C 错误;根据能量守恒可知,棒的速度减为零的过程中,定值电阻R 产生的热量为: Q R =12ΔE k =14m v 02=qBL v 04,故D 正确.3.(2020·哈尔滨师大附中联考)如图3所示,光滑、平行、电阻不计的金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、电阻不计的金属杆.整个装置处于磁感应强度为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现将杆从M 点以v 0的速度竖直向上抛出,经过时间t ,到达最高点N ,杆始终与导轨垂直且接触良好,重力加速度大小为g .求t 时间内:图3(1)流过电阻的电荷量q ; (2)电阻上产生的电热Q .答案 (1)m v 0-mgt BL (2)12m v 02-m 2gR (v 0-gt )B 2L 2解析 (1)根据动量定理,有-mgt -F t =0-m v 0 又因为F =BL I ,q =I t ,联立解得q =m v 0-mgtBL(2)根据I =ER =ΔΦRt =BLh Rt, 解得h =(v 0-gt )mRB 2L 2由能量守恒定律得Q =12m v 02-mgh联立解得Q =12m v 02-m 2gR (v 0-gt )B 2L 2.争分提能练4.如图4,两条平行导轨所在平面与水平地面间的夹角为θ,两导轨的间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B 、方向垂直于导轨平面向下.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻,让金属棒从导轨上端由静止开始下滑,求:图4(1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. 答案 (1)Q =CBL v (2)v =m (sin θ-μcos θ)m +B 2L 2Cgt解析 (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差U =E ②设此时电容器极板上积累的电荷量为Q ,则有Q =CU ③ 联立①②③式得Q =CBL v ④(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为I .金属棒受到的安培力方向沿导轨向上,大小为F 安=BLI ⑤设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有I =ΔQΔt⑥ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ Δv 为金属棒的速度变化量,有a =Δv Δt⑧金属棒所受到的摩擦力方向沿导轨向上,大小为F f =μF N ⑨ F N 是金属棒对导轨的正压力的大小,有F N =mg cos θ⑩ 由牛顿第二定律得mg sin θ-F 安-F f =ma ⑪ 联立⑤~⑪式得a =m (sin θ-μcos θ)m +B 2L 2Cg ⑫由⑫式及题意可知,金属棒做初速度为零的匀加速运动.则t 时刻金属棒的速度大小为 v =m (sin θ-μcos θ)m +B 2L 2Cgt .5.(2020·山东济宁市一模)两根足够长的平行金属导轨固定于同一水平面内,两导轨间的距离为L ,导轨上垂直放置两根导体棒a 和b ,俯视图如图5甲所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B 、竖直向上的匀强磁场.两导体棒与导轨接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x 0,现给导体棒a 一向右的初速度v 0,并开始计时,可得到如图乙所示的Δv -t 图象(Δv 表示两棒的相对速度,即Δv =v a -v b ),求:图5(1)0~t 2时间内,回路产生的焦耳热; (2)t 1时刻,棒a 的加速度大小; (3)t 2时刻,两棒之间的距离.答案 (1)14m v 02(2)B 2L 2v 08mR (3)x 0+m v 0R B 2L 2解析 (1)t 2时刻,两棒速度相等以v 0的方向为正方向,由动量守恒定律得m v 0=(m +m )v 由能量守恒定律得Q =12m v 02-12×2m v 2联立解得Q =14m v 02。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。

MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。

t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。

求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。

专题三电磁感应单杆与双杆问题答案

专题三电磁感应单杆与双杆问题答案

(1 N)
F合 mg sin F安 ma
a 3m / s2
(3)动能定理:
mgh

Q

1 2
mvm2 ax

0
Q 18.75J
棒产生的热量为Q1 则:
Q1

r R
r
Q

棒有:
Fm cos37°=mgsin37°+BIabL Iab=1A (2)因为Iab = IR
2r r 3r
(2)对系统,由动量守恒定律,得:mv (2m m)v
解得:v 1 gR 3
(3)系统释放热量应等于系统机械能减少量,故有
Q 1 mv2 1 3mv2
2
2
解得 Q 1 mgR 3
变式1
1、解:(1)由牛顿第二定律: 得:
由运动学公式:
得:
2、
可得Qab= QR = 0.5J Qcd =(2I)2Rcdt= 4I2Rabt= 2J 由能量守恒得
mgs sin 37

1 2
mv2
Qab
Qcd
QR
即可得s = 4m
例2:
解:
(1)由动能定理,得:
mgR(1
cos60)

1 2
mv 2
解得:v gR
I
E
Bl gR
4、
a
B
c
绝缘水平细绳
Icd=Iab+ IR = 2A
又由闭合欧姆定律可得
37°
b
d
BLv

Icd (Rcd

Rab R ) Rab R
R 37°
联立可得v= 6 m/s

高考物理 双基突破二专题 电磁感应中的“双杆”模型精练

高考物理 双基突破二专题 电磁感应中的“双杆”模型精练

专题33 电磁感觉中的“双杆”模型1.一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行圆滑导轨竖直搁置在磁场内,如下图,磁感觉强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现使劲向上拉动导体棒ab,使之匀速上涨(导体棒ab、cd与导轨接触优秀),此时cd静止不动,则ab上涨时,以下说法正确的选项是A.ab遇到的拉力大小为2 NB.ab向上运动的速度为2 m/sC.在2 s内,拉力做功,有0.4 J的机械能转变为电能D.在2 s内,拉力做功为0.6 J【答案】BC2.粗细平均的电阻丝围成的正方形线框原来整个置于有界匀强磁场内,磁场方向垂直于线框平面,其界限与正方形线框的边平行,现使线框沿四个不一样方向以同样速率v匀速平移出磁场,如下图,线框移出磁场的整个过程A.四种状况下ab两头的电势差都同样B.①图中流过线框的电荷量与v的大小没关C.②图中线框的电功率与v的大小成正比D.③图中磁场力对线框做的功与v2成正比【答案】B【分析】由法拉第电磁感觉定律E=ΔΦ/Δt,闭合电路欧姆定律I=E/R,电流定义式I=q/Δt可得q=ΔΦ/R,线框沿四个不一样方向移出磁场,流过线框的电荷量与v的大小没关,选项B正确。

四种状况下ab两头的电势差不同样,选项A错误。

②图中线框的电功率P=E2/R,E=BLv,P与v的二次方大小成正比,选项C错误;③图中磁场力F=BIL,I=E/R,E=BLv,磁场力对线框做功W=FL,磁场力对线框做的功与v成正比,选项D错误。

7.(多项选择)在如下图的倾角为θ的圆滑斜面上,存在着两个磁感觉强度大小均为B 的匀强磁场,地区Ⅰ的磁场方向垂直斜面向上,地区Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚超出GH进入磁场Ⅰ区时,恰巧以速度v1做匀速直线运动;当ab边下滑到JP与MN 的中间地点时,线框又恰巧以速度v2做匀速直线运动,从ab边超出GH到抵达MN与JP的中间地点的过程中,线框的动能变化量为ΔE k,重力对线框做功大小为W1,安培力对线框做功大小为W2,以下说法中正确的有A.在下滑过程中,因为重力做正功,所以有v2>v1B.从ab边超出GH到抵达MN与JP的中间地点的过程中,线框的机械能守恒C.从ab边超出GH到抵达MN与JP的中间地点的过程中,有W1-ΔE k的机械能转变为电能D.从ab边超出GH到抵达MN与JP的中间地点的过程中,线框动能的变化量大小ΔE k =W1-W2【答案】CD8.(多项选择)如图甲所示,圆滑绝缘水平面上,虚线MN的右边存在磁感觉强度B=2 T的匀强磁场,MN的左边有一质量m=0.1 kg的矩形线圈abcd,bc边长L1=0.2 m,电阻R =2 Ω。

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN PQ 是间距为L 的平行金属导轨,置于磁感强度为 B 、方向垂直导轨所在平面向里的匀强磁场中,M P间接有一阻值为 R 的电阻•一根与导轨接触良好、阻值为R / 2的金属导线ab 垂直导轨放置(1) 若在外力作用下以速度 v 向右匀速滑动,试求 ab 两点间的电势差。

(2) 若无外力作用,以初速度 v 向右滑动,试求运动过程中产生的热量、通过 及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成 37°角,宽L=0.4 m ,上、下两端各有一个电阻Ro = 1 Q ,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度 B = 2T.ab 为金属杆,其长度为 L = 0.4 m ,质量m= 0.8 kg ,电阻r =0.5 Q,棒与框架的动摩擦因数g = 0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻 R )产生的热量 Q = 0.375J(已知 sin37 ° = 0.6,cos37° =0.8 ; g 取 10m /s2)求: ⑴杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移2、杆与电容器连接组成回路例3、如图所示,竖直放置的光滑平行金属导轨,相距L ,导轨一端接有一个电容器,电容量为C,匀 强磁场垂直纸面向里,磁感应强度为B,质量为m 的金属棒ab 可紧贴导轨自由滑动.现让ab 从高h 处 由静止下滑,不考虑空气阻力,也不考虑任何部分的电阻和自感作用 .求金属棒下落的时间? 问金属 棒的做什么运动?棒落地时的速度为多大?3、杆与电源连接组成回路穿过导轨面.横跨在导轨上的直导线 ab 的质量m =0.1kg 、电阻R =0.8 Q ,导轨电阻不计.导轨间通过开关 S 将电动势E =1.5V 、 内电阻r =0.2 Q 的电池接在M P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线 a b的加速度多大?随后 ab 的加速 度、速度如何变化?(2) 在闭合开关S 后,怎样才能使ab 以恒定的速度u =7.5m/s 沿导轨向 右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明)例4、光滑U 型金属框架宽为 L ,足够长,其上放一质量为 m 的金属棒ab ,左端连接有一电容为 C 的电容器,现给棒一个初速 速度。

(完整版)电磁感应中双杆模型问题答案

(完整版)电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

最新电磁感应中的单杆和双杆问题(习题,答案)学习资料

最新电磁感应中的单杆和双杆问题(习题,答案)学习资料

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

电磁感应中的“双杆问题

电磁感应中的“双杆问题

电磁感应中的“双杆问题”1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。

ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。

电磁感应双杆专题高三物理总结及练习第二轮专题复习北京海淀

电磁感应双杆专题高三物理总结及练习第二轮专题复习北京海淀

专题二 双杆专题24.如图所示,有一个连通的,上、下两层均与水平面平行的“U”型的光滑金属平行导轨,在导轨面上各放一根完全相同的质量为m 的匀质金属杆A 1和A 2,开始时两根金属杆与轨道垂直,在“U”型导轨的右侧空间存在磁感应强度大小为B 、方向竖直向上的匀强磁场,杆A 1在磁场中,杆A 2在磁场之外。

设两导轨面相距为H ,平行导轨宽为L ,导轨足够长且电阻不计,金属杆单位长度的电阻为r 。

现在有同样的金属杆A 3从左侧半圆形轨道的中点从静止开始下滑,在下面与金属杆A 2发生碰撞,设碰撞后两杆立刻粘在一起并向右运动。

求:(1)回路内感应电流的最大值;(2)在整个运动过程中,感应电流最多产生的热量;(3)当杆A 2、A 3与杆A 1的速度之比为3∶1时,A 1受到的安培力大小。

23.如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。

区域中两条平行直光滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。

ab 棒静止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量,ab 棒以速度v 1开始向右运动。

(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间;(3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。

24.如图13所示,光滑、足够长、不计电阻、轨道间距为l 的平行金属导轨MN 、PQ ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B 1;右半部分为Ⅱ匀强磁场区,磁感应强度为B 2,且B 1=2B 2。

在Ι匀强磁场区的左边界垂直于导轨放置一质量为m 、电阻为R 1的金属棒a ,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m 、电阻为R 2的金属棒b 。

高考物理电磁感应双杆模型(答案)

高考物理电磁感应双杆模型(答案)

1、双杆所在轨道宽度相同一一常用动量守恒求稳定速度1.两根足够长的固定的平行金属导轨位于同一水平面内,两 导轨间的距离为L 。

导轨上面横放着两根导体棒 ab 和cd ,构 成矩形回路,如图所示•两根导体棒的质量皆为m 电阻皆为R,回路中其余部分的电阻可不计•在整个导轨平面内都有竖 直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨 无摩擦地滑行•开始时,棒cd 静止,棒ab 有指向棒cd 的初速度V o .若两导体棒在运动中始终不接触,求: (1 )在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的 3/4时,cd 棒的加速度是 多少?解析:ab 棒向cd 棒运动时,磁通量变小,产生感应电流. ab 棒受到与运动方向相反的安培力作用作减速运动, cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流, ab 棒继续减速,cd 棒继续加速.临 界状态下:两棒速度达到相同后,回路面积保持不变,磁通 量不变化,不产生感应电流,两棒以相同的速度 v 作匀速运动. (1)从初始至两棒达到速度相同的过程中, 两棒总动量守恒,有mv ° =2mv根据能量守恒,整个过程中产生的总热量 Q = —mv (2 - —(2m)v^ —mv 22 2 4(2) 设ab 棒的速度变为初速度的 3/4时,cd 棒的速度为V 1, 则由动量守恒可知:3mv 0二m —v 0 mv 1。

此时回路中的感应电动势和感应电流43 E分别为:E =( v 0「vJBL , | 。

此时cd 棒所受的安4 2R培力:F = IBL ,所以cd 棒的加速度为 a=Fm【解析】丄一下滑进入磁场后切割磁感线,在 C L ;电路中产 生感应电流,一二'、二'各受不同的磁场力作用而分别作变减 速、变加速运动,电路中感应电流逐渐减小,当感应电流为 零时,"、J不再受磁场力作用,各自以不同的速度匀速 滑动。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)电磁感应中的双杆模型问题与强化训练一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动。

其实质是单杆问题,但要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态,有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能为A。

变为B。

先减小后不变C。

等于F D。

先增大再减小答案】AB解析:由于b静止不动,所以它所受的摩擦力只有在a运动时才会产生。

当a向上运动时,b所受的摩擦力会逐渐减小,直到a停止运动时,b所受的摩擦力为0.因此,选项A和B是正确的。

题2】如图所示,两条平行的金属导轨相距L=1m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=1Ω和RPQ=2Ω。

MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t=时刻起,MN棒在水平外力F1的作用下由静止开始以a=1m/s²的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态。

t=3s时,PQ棒消耗的电功率为8W,不计导轨的电阻,水平导轨足够长,XXX始终在水平导轨上运动。

电磁感应双杆模型专项训练

电磁感应双杆模型专项训练

电磁感应双杆模型1.(7分) 如图20所示,MN 和PQ 是同一水平面内的平行光滑金属导轨,相距L =0.50m 。

CD 和EF 是置于导轨上的两根金属棒,它们的质量均为m =0.10kg ,电阻均为r =1.0Ω,其余电阻可忽略不计。

整个装置处在磁感应强度B =1.0T 、方向竖直向下的匀强磁场中。

某时刻,金属棒CD 突然获得一个瞬时冲量,以v =4.0m/s 的速度开始向右运动,求: (1)金属棒EF 所能达到的最大速度v m ;(2)在整个过程中,金属棒EF 产生的热量Q 。

2.(10分)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5m ,其电阻不计,两导轨及其构成的平面均与水平面成30º角。

完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止。

g 取10m/s 2,求:(1)通过棒cd 的电流I 的大小; (2)棒ab 受到的力F 的大小; (3)棒ab 运动速度的大小。

3.(11分)如图17所示,平行且足够长的两条光滑金属导轨,相距0.5 m ,与水平面夹角均为30°,金属导轨的电阻不计.导轨之间的匀强磁场垂直穿过导轨平面,磁感应强度B =0.4 T .金属棒ab 和cd 的质量分别为0.1 kg 和0.2 kg ,电阻均为0.1 ,垂直导轨放置.某时刻棒ab 在外力作用下,沿着导轨向上滑动,与此同时,棒cd 由静止释放.在运动过程中,棒ab 始终保持速度v 0=1.5m/s 不变,两金属棒与导轨始终垂直且接触良好.取重力加速度g =10 m/s 2.求:(1)棒ab 产生的感应电动势;(2)闭合回路中的最小电流和最大电流;(3)棒cd 最终稳定运动时的速度大小.图2030ºabc dNQMPBF a Bb30°c d30°v 0图174. (11分)如图所示,两根平行的光滑金属导轨MN、PQ放在水平面上,左端向上弯曲,导轨间距为L,电阻不计。

高考双杆电磁感应大题

高考双杆电磁感应大题

1、如图所示,电阻不计且足够长的U形金属框架放置在绝缘水平面上,框架与水平面间的动摩擦因数μ=0.2,框架的宽度l=0.4 m、质量m1=0.2 kg.质量m2=0.1 kg、电阻R=0.4 Ω的导体棒ab垂直放在框架上,整个装置处于竖直向上的匀强磁场中,磁感应强度大小B=0.5 T.对棒施加图示的水平恒力F,棒从静止开始无摩擦地运动,当棒的运动速度达到某值时,框架开始运动.棒与框架接触良好,设框架与水平面间最大静摩擦力与滑动摩擦力相等,g取10 m/s2.求:(1)框架刚开始运动时棒的速度v;(2)欲使框架运动,所施加水平恒力F的最小值;(3)若施加于棒的水平恒力F为3 N,棒从静止开始运动0.7 m时框架开始运动,则此过程中回路中产生的热量Q.2、如图所示,两根足够长的平行金属导轨固定在倾角=300的斜面上,导轨电阻不计,间距L=0.4m。

导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问(1)cd下滑的过程中,ab中的电流方向;(2)ab将要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。

3、相距L=1.5m的足够长金属导轨竖直放置,质量为m1=1kg金属棒ab和质量为m2=0.27kg的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)。

虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同。

电磁感应双杆习题

电磁感应双杆习题

【题文】(多选)两根相距为L的足够长的金属弯角光滑导轨如图所示放置,它们各有一边在同一水平面内,另一边与水平面的夹角为37° ,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,导轨的电阻不计,回路总电阻为2R,整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中,当ab杆在平行于水平导轨的拉力F作用下以速度v沿导轨匀速运动时,Cd杆恰好处于静止状态,重力加速度为g,以下说法正确的是()A. ab杆所受拉力F的大小为mg tan37°B.回路中电流为唯野二BLC.回路中电流的总功率为mgv sin3702 2D. m与v大小的关系为"e」L二2Rgtan37【答案】解:A、对于cd杆,分析受力如图,根据平衡条件得:Fmmgtan37° ;对ab杆,由于感应电流的大小、导线的长度相等,两杆所受的安培力大小相等,由平衡条件得知,F=F安,则得:F=mg tan37c.故A正确.B、cd杆所受的安培力F安二BIL,又F安二mgtan370 ,则得电流为|gan37 ,故B错误. BLC、回路中电流的总功率等于拉力的功率,为'Fv二mgvtan37° ,故C错误.2 2 2 2D、根据E=BLv, 1建,F安二BIL得,F安身』二,结合F $=mgtan37° ,得::二・故2R2R 2Rgtan37D正确.故选:AD【解析】【标题】云南省德宏州芒市第一中学2014-2015学年高二下学期期中考试物理试题【结束】【题文】如图所示,两根足够长的光滑平行金属导轨*,图间距为1=0. 5m,其电阻不计,两导轨及其构成的平面均与水平面成30角,完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两帮质量均为"0.02kg,电阻均为R=0.1O,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度BR.2T,棒ab在平行于导轨向上的力尸作用下,沿轨道向上匀速运动,而棒cd恰好能够保持静止,取gnOm/s?,问:(1)通过棒cd的电流/是多少,方向如何?(2)棒ab受到的力尸多大?(3)棒cd每产生Q=0.1J的热量,力尸做的功〃是多少?【答案】(1)/=L4,方向由右手定则可知由d到c(2) F = Q2N(3)IV = 0.4J【解析】试题分析;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练:电磁感应——双杆问题一、单选题(共5小题,每小题5.0分,共25分)1.如图所示,两根光滑的平行金属导轨位于水平面内,匀强磁场与导轨所在平面垂直,两根金属杆甲和乙可在导轨上无摩擦地滑动,滑动过程中与导轨接触良好且保持垂直.起初两根杆都静止.现突然给甲一个冲量使其获得速度v而开始运动,回路中的电阻不可忽略,那么在以后的运动中,下列说法正确的是()A.甲克服安培力做的功等于系统产生的焦耳热B.甲动能的减少量等于系统产生的焦耳热C.甲机械能的减少量等于乙获得的动能与系统产生的焦耳热之和D.最终两根金属杆都会停止运动2.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨等宽的粗糙金属细杆ab、cd和导轨垂直且接触良好.已知ab、cd杆的质量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下运动,以下说法正确的是()A.cd杆一定向下做匀速直线运动B.cd杆一定向下做匀加速直线运动C.F做的功等于回路中产生的焦耳热与ab杆克服摩擦做功之和D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和3.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体ab及cd长均为0.2 m,电阻均为0.1 Ω,重均为0.1 N,现用力向上推动导体ab,使之匀速上升(与导轨接触良好),此时,cd恰好静止不动,那么ab上升时,下列说法正确的是() A.ab受到的推力大小为2 NB.ab向上的速度为2 m/sC.在2 s内,推力做功转化的电能是0.8 JD.在2 s内,推力做功为0.6 J4.如图所示,两平行金属导轨固定在水平面上.匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动.两棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉棒cd,经过足够长时间以后()A.两棒间距离保持不变B.棒ab、棒cd都做匀速运动C.棒ab上的电流方向是由a向bD.棒cd所受安培力的大小等于5.如图所示,两平行金属导轨固定在水平面上.匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动.两棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉棒cd,经过足够长时间以后()A.两棒间距离保持不变B.棒ab、棒cd都做匀速运动C.棒ab上的电流方向是由a向bD.棒cd所受安培力的大小等于二、多选题(共5小题,每小题5.0分,共25分)6.(多选)如图所示,两根光滑平行的金属导轨,放在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身电阻不计,斜面处在一匀强磁场中,方向垂直斜面向上,一质量为m、电阻不计的金属棒,在沿斜面并与棒垂直的恒力F作用下沿导轨匀速上滑,并上升了h高度,则在上滑h的过程中()A.金属棒所受合外力所做的功等于mgh与电阻R上产生的热量之和B.恒力F与重力的合力所做的功等于电阻R上产生的热量C.金属棒受到的合外力所做的功为零D.恒力F与安培力的合力所做的功为mgh7.(多选)如图所示,相距为L的两条足够长的平行金属导轨右端连接有一定值电阻R,整个装置被固定在水平地面上,整个空间存在垂直于导轨平面向下的匀强磁场,磁感应强度大小为B,两根质量均为m,电阻都为R,与导轨间的动摩擦因数都为μ的相同金属棒MN、EF垂直放在导轨上.现在给金属棒MN施加一水平向左的作用力F,使金属棒MN从静止开始以加速度a做匀加速直线运动,若重力加速度为g,导轨电阻不计,最大静摩擦力与滑动摩擦力相等.则下列说法正确的是()A.从金属棒MN开始运动到金属棒EF开始运动经历的时间为t=B.若从金属棒MN开始运动到金属棒EF开始运动经历的时间为T,则此过程中流过电阻R的电荷量为q=C.若从金属棒MN开始运动到金属棒EF开始运动经历的时间为T,则金属棒EF开始运动时,水平拉力F的瞬时功率为P=(ma+μmg)aTD.从金属棒MN开始运动到金属棒EF开始运动的过程中,两金属棒的发热量相等8.在倾角为θ的斜面上固定两根足够长的光滑平行金属导轨PQ、MN,相距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下.有两根质量均为m的金属棒a、b,先将a棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c连接,连接a棒的细线平行于导轨,由静止释放c,此后某时刻,将b也垂直导轨放置,a、c此刻起做匀速运动,b 棒刚好能静止在导轨上.a棒在运动过程中始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计.则()A.物块c的质量是2m sinθB.b棒放上导轨前,物块c减少的重力势能等于a、c增加的动能C.b棒放上导轨后,物块c减少的重力势能等于回路消耗的电能D.b棒放上导轨后,a棒中电流大小是9.(多选)如图所示,电阻不计的光滑金属导轨平行放置在倾角为θ的斜面上,下端接有固定电阻和金属棒cd,它们的电阻均为R.两根导轨间宽度为L,磁感应强度为B的匀强磁场垂直于导轨面向上.质量为m、电阻不计的金属棒ab垂直放置在金属导轨上,在沿斜面向上且与金属棒垂直的恒力F的作用下,沿导轨以速率v匀速上滑,而金属棒cd保持静止.以下说法正确的是()A.金属棒ab中的电流为B.作用在金属棒ab上各力的合力做功为零C.金属棒cd的质量为D.金属棒ab克服安培力做功等于整个电路中产生的焦耳热10.(多选)如图所示,间距l=0.4 m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2 T,方向垂直于斜面.甲、乙两金属杆电阻R相同、质量均为m=0.02 kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5 m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2,则()A.每根金属杆的电阻R=0.016 ΩB.甲金属杆在磁场中运动的时间是0.4 sC.甲金属杆在磁场中运动过程中F的功率逐渐增大D.乙金属杆在磁场中运动过程中安培力的功率是0.1 W三、计算题(共11小题,每小题18.0分,共198分)11.如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为1 m,电阻不计,导轨足够长.两根金属棒ab和a′b′的质量都是0.2 kg,电阻都是1 Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18 W.(g=10 m/s2,sin37°=0.6,cos 37°=0.8)求:(1)ab棒达到的最大速度;(2)ab棒下落了30 m高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?12.如图所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.13.如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5 T,在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10 m/s2,问(1)cd下滑的过程中,ab中的电流方向;(2)ab将要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少.14.如图所示,水平放置足够长的电阻不计的粗糙平行金属导轨MN、PQ相距为l=0.2 m,三根质量均为m=5 g的导体棒a、b、c相距一定距离垂直放在导轨上且与导轨间动摩擦因数均为μ=0.5,导体棒b、c的电阻均为R=1.0 Ω,导体棒a的电阻为r=0.5 Ω.有磁感应强度为B=0.5 T的范围足够大的匀强磁场垂直于导轨平面方向向上.现用一平行于导轨水平向右的足够大的拉力F作用在导体棒a上,使之由静止开始向右做加速运动,导体棒始终与导轨垂直且接触良好,设最大静摩擦力等于滑动摩擦力,忽略导体棒间的相互作用,求:(1)当导体棒c刚开始运动时,导体棒a的速度大小;(2)当导体棒c刚开始运动时撤去拉力F,撤力后电路中产生焦耳热为Q=6.0×10-2J,撤去拉力F后导体棒a在导轨上滑行的距离.15.如图所示,在足够长的两条平行金属导轨的左端接有一个定值电阻R0,两导轨间的距离L=0.5 m,在虚线的区域内有与导轨平面垂直的匀强磁场,磁感应强度B=0.2 T,虚线间的距离s=1.0 m.完全相同的金属棒ab、cd与导轨垂直放置,两棒间用2.0 m长的绝缘轻杆连接.棒与导轨间无摩擦,两棒电阻皆为r=0.3 Ω,导轨电阻不计.已知R0=2r.现用一外力从图示位置水平向右拉cd棒,使两棒以v=5.0 m/s的速度向右匀速穿过磁场区域.求:(1)从cd棒刚进磁场到ab棒刚离开磁场的过程中通过ab棒的电流大小和方向;(2)从cd棒刚进磁场到ab棒刚离开磁场的过程中拉力做的功;(3)若cd棒刚进入磁场时将水平外力去掉,经一段时间cd棒出磁场,求此段时间内通过cd 棒的电量.16.在如图所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感应强度为B,导轨左端的间距为L1=4l0,右端间距为L2=l0.今在导轨上放置AC、DE两根导体棒,质量分别为m1=2m0,m2=m0,电阻R1=4R0,R2=R0.若AC棒以初速度v0向右运动,求AC 棒运动的过程中产生的总焦耳热QAC,以及通过它们的总电量q.17.如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域内存在一有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上.电阻相同、质量均为m的两根相同金属杆甲和乙放置在导轨上,甲金属杆恰好处在磁场的上边界处,甲、乙相距也为l.在静止释放两金属杆的同时,对甲施加一沿导轨平面且垂直于甲金属杆的外力,使甲在沿导轨向下的运动过程中始终以加速度a=g sinθ做匀加速直线运动,金属杆乙进入磁场时即做匀速运动.(1)求金属杆的电阻R;(2)若从开始释放两金属杆到金属杆乙刚离开磁场的过程中,金属杆乙中所产生的焦耳热为Q,求外力F在此过程中所做的功.18.如图(a)所示,间距为L、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B,在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示.t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域Ⅰ内的导轨上由静止释放.在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好.已知ab棒和cd棒的质量均为m、电阻均为R,区域Ⅱ沿斜面的长度为2L,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g.求:(1)通过cd棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab棒在区域Ⅱ内运动时cd棒消耗的电功率和热量;(3)ab棒开始下滑至EF的过程中流过导体棒cd的电量.19.如图所示,两根竖直放置的平行光滑金属导轨,上端接阻值R=3 Ω的定值电阻.水平虚线A1、A2间有与导轨平面垂直的匀强磁场B,磁场区域的高度为d=0.3 m.导体棒a的质量ma=0.2 kg,电阻Ra=3 Ω;导体棒b的质量mb=0.1 kg,电阻Rb=6 Ω.它们分别从图中P、Q处同时由静止开始在导轨上无摩擦向下滑动,且都能匀速穿过磁场区域,当b刚穿出磁场时a正好进入磁场.设重力加速度为g=10 m/s2,不计a、b之间的作用,整个过程中a、b 棒始终与金属导轨接触良好,导轨电阻忽略不计.求:(1)在整个过程中,a、b两棒克服安培力做的功分别是多少;(2)a、b棒进入磁场的速度大小;(3)分别求出P点和Q点距A1的高度.20.如图所示,两根粗细均匀的金属杆AB和CD的长度均为L,电阻均为R,质量分别为3m 和m,用两根等长的、质量和电阻均不计的、不可伸长的柔软导线将它们连成闭合回路,悬跨在绝缘的、水平光滑的圆棒两侧,AB和CD处于水平。

相关文档
最新文档