时间序列分析论文
时间序列分析结课论文
- - .时间序列分析结课论文全国社会消费品零售总额的时间序列分析全国社会消费品零售总额的时间序列分析摘要时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。
市场经济中,政府对市场变化的即时反应是各国经济工作的重点。
在我国,随着市场经济的日益成熟,各级政府逐渐认识到短期计划的重要性。
在要求减少对市场干预的同时,政府在经济中的作用主要体现在保证经济运行的正常轨道,由于社会消费品零售总额反映了经济运行中的一个重要环节———消费,尤其是目前我国市场上的消费需求不足现象,使我国经济发展受到外需与内需两方的困扰。
因此对于社会消费品零售总额预测中的研究一直具有积极意义。
本文就以以我国1952年至2011年我国社会消费品零售总额为研究对象,做时间序列分析。
首先,对全国60多年来社会消费品零售总额的发展变化规律,运用SAS软件进行分析其发展趋势。
再则,通过检验说明模型拟合效果的好坏,再利用模型对下一年进行预测。
最后,从国家经济、政策和社会消费品零售市场发展等方面对社会消费品零售总额变化规律及未来走势进行分析。
关键字:社会消费品零售总额SAS软件时间序列分析预测一.引言社会消费品零售总额是指各种经济类型的批发零售业、贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农民居民零售额的总和。
这个指标能够反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需求的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。
随着消费环境的逐步改善,人们的消费能力不断增强,人们消费能力的增强直接带动了社会消费品零售总额的发展,“十一五”期间,面对复杂多变的国内外形势,特别是为应对国际金融危机的冲击,国家出台了一系列扩大内需、促进消费等政策措施,消费品市场的稳定发展对我国缓冲金融危机起到了明显的积极作用,消费需求已经成为经济增长的重要组成部分。
时间序列分析学年论文
2011-2012学年09级统计学专业学年论文题目运用SAS对中国历年运动员获世界冠军数进行建模并作预报.学生姓名学号成绩运用SAS对历年中国运动员获世界冠军数进行建模并作预测摘要:本文通过选取1978年-2009年中国历年运动员获得金牌数,运用SAS统计软件进行处理分析,选取显著的系数,建立模型,对年我国2010以后运动员金牌数做出预测。
关键字 SAS AR模型参数估计平稳时间序列1、引言在自然现象和经济现象中,人们为了对某些事物或系统的运行规律探索其究竟,需要观测所要研究的某种现象,从而得到一定顺序的数据资料。
通过分析这些数据资料,对事物或系统的未来发展进行预测或控制方法,称为时间系列分析。
从统计学的内容来看,研究数据的统计方法就是时间序列分析。
就此足以看到时间序列分析的重要性及其应用的广泛性。
时间序列的统计解释是某项统计指标按时间顺序记录的指标值数列时间序列的统计意义是某一系统程序运行过程中的不用时间点的响应,是系统行为量化数据的有序客观记录,反映了系统的结构特征和运行规律。
随机时间序列分析就是利用数学的方法描述时间序列的构成因素,具体地说就是对影响时间序列的长期趋势、季节变动、循环波动进行预订和估计;进一步的,将它们从时间序列中分离后,对剩余的一项时间序列的随机波动进行分析和建模;从而实现对时间序列变化规律的认识,预测或控制未来行为。
2、SAS介绍Statisticsl Analysisi System简称SAS,可以用来分析数据和编写报告。
它是美国SAS研究所的产品,在国际上被誉为标准通用软件,在我国深受医学、农林、财经、社会科学、行政管理等众多领域的专业工作者的好评。
SAS采用积木式模型结构,其中的SAS/STAT模块是目前功能最强的多元统计分析程序集,可以作回归分析、聚类分析、判别分析、主成分分析、因子分析、典型相关分析、各种实验设计的方差分析、协方差分析以及时间序列分析。
3、平稳时间序列的基本概念时间序列的统计特征函数,时间序列{Xt,t∈Z}是按时间次序排列的随机变量序列。
时间序列分析课程论文——时间序列分析在我国财政预算支出预测中的应用
时间序列分析在我国财政预算支出预测中的应用时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。
财政支出是一个地区或国家经济指标体系中的一个核心指标,它能综合反映经济活动总量和衡量个地区或国家的工业经济发展水平。
对财政支出进行定量分析并对其作出较为准确的预测则可以为相关部门或者企业制定发展规划、实施相关措施提供可靠的理论预测参考。
本文系统阐述了时间序列分析方法在社会消费品零售总额预测中的应用,运用ARMA模型对我国财政支出进行短期预测,利用2007年到2012年我国财政预算支出数据进行预处理和分析,发现该时间序列既包含趋势性又包含季节性,然后对其进行ARMA建模分析。
一、时间序列的特性分析在建立时间序列模型之前,必须对时间序列数据进行预处理,以便剔除那些不符合统计规律的异常样本,同时还要对这些数据的基本统计特征进行检验,以确保建立的时间序列模型的可靠性和置信度,并满足一定的精度要求。
对时间序列数据进行的预处理包括平稳性检验、纯随机性检验和季节性检验。
(一)时间序列定义所谓时间序列就是按照时间的顺序记录的一列有序数据。
对时间序列进行观察、研究,找寻它的变化发展规律,预测它将来的走势就是时间序列分析。
在统计研究中,常用按时间顺序排列的一组随机变量…,…来表示一个随机事件的时间序列,简记为{)或{)。
用或{}表示该随机序列的n个有序观察值,称之为序列长度为n的观察值序列。
(二)平稳性1、平稳时间序列的定义随机时间序列的平稳性分为严平稳和宽平稳。
严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。
设{)为一时间序列,对任意正整数m,任取,对任意整数,有则称时间序列为严平稳时间序列。
宽平稳是使用序列的特征统计量来定义的一种平稳性。
它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
时间序列分析论文
关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。
关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列.时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。
时间序列分析是定量预测方法之一.基本原理:1.承认事物发展的延续性。
应用过去数据,就能推测事物的发展趋势。
2。
考虑到事物发展的随机性.任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。
该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法.二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。
2.若为非平稳序列,则利用差分变换成平稳序列。
3。
对平稳序列,计算相关系数和偏相关系数,确定模型。
4.估计模型参数,并检验其显著性及模型本身的合理性.5.检验模型拟合的准确性。
6.根据过去行为对将来的发展做出预测。
三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标.居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。
一般来说,当CPI>3%的增幅时我们称为通货膨胀。
国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。
时间序列分析论文
时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。
文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。
关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。
一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。
如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。
从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。
尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。
但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。
2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。
表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。
但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。
因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。
基于时间序列分析对云南天气预测的本科论文
基于时间序列分析对云南天气预测的本科论文为了科学地分析云南省的经济发展状况,本文基于时间序列分析,选取了居民消费价格指数(Consumer Price Index, CPI)这一衡量经济发展状况的指标,依据以上年同月为100的1998年1月至2021年9月的云南省居民消费价格指数(CPI)的同比月度数据,从实证的角度分析了此期间云南省居民消费价格指数的变化规律,并由此建立了一阶自回归模型(AR(1))。
通过对该模型进行拟合精度的检验后,发现相对误差均很小,因此对云南省2021年10月~2022年2月的CPI 进行了预测。
结果表明,未来5个月云南省的CPI呈现缓慢增长的趋势,并且增长幅度不超过0、105%,说明未来5个月云南省通货膨胀压力较小,物价水平比较稳定,经济前景较为明朗,其经济发展状况受疫情影响较小。
本文对预测未来云南省的居民消费价格指数和经济发展趋势提供了一定的参考价值和理论依据。
1、引言居民消费价格指数(Consumer Price Index, CPI)是一个宏观经济指标,它反映了居民生活中所购买的商品及劳务价格水平的变动情况[1]。
它涵盖了居民衣、食、住、行等各领域,同老百姓的生活水平密切相关。
它也是描述我国是否发生通货膨胀的一项重要指标,如果居民消费价格指数的增长幅度过大,表明当前经济发展状况不稳定,有发生通货膨胀的风险[2]。
政府可以通过分析该指标进行相应的决策分析,从而应对风险挑战。
因此它也是国家进行物价总水平监测与调控以及国民经济核算的重要指标,在整个国民经济价格体系中具有极其重要的地位。
云南省国土资源广袤,具有对外贸易交往的区位优势,接壤三个国家,拥有丰富的动植物资源,独具优势的特色产业,使得它的经济发展方式和经济结构也受到显著影响,随之而来给居民的生活方式和消费水平也带来一定程度的影响。
并且2019年底发生的新冠肺炎疫情给全国乃至全世界的经济发展都造成了巨大影响,本文研究云南省的居民消费价格指数,可以反映居民的实际生活水平和质量,同时还可以利用所建模型来预测和评估未来云南省居民的消费价格指数以及分析此次疫情对云南省的经济发展造成的影响,从而可以判断该地区未来的经济发展趋势,以便各级部门做出相应的分析与决策,居民也可以做好相应准备。
时间序列分析范文
时间序列分析范文时间序列分析是一种用来分析和预测时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的观测数据,如股票价格、气温变化、销售数据等。
通过时间序列分析,我们可以了解时间序列数据的趋势、季节性变化和随机波动,以便做出准确的预测和决策。
首先,我们需要收集并整理时间序列数据。
数据可以通过实地观测、统计报告、调查问卷等方式获得。
数据的质量和准确性对于分析结果的可靠性至关重要。
接下来,我们需要对数据进行预处理。
这包括检查和处理数据中的缺失值、异常值和重复值。
同时,还需要进行数据的平稳性检验,即判断时间序列数据是否具有固定的均值和方差。
如果时间序列数据不平稳,需要进行差分或其他方法将其转化为平稳时间序列。
然后,我们可以选择适当的时间序列模型来拟合数据。
常用的时间序列模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。
选择合适的模型可以通过观察数据自相关图和偏自相关图,以及对各个模型的性质和参数估计方法的了解。
当模型被拟合后,我们还需要进行模型的检验和评估。
这包括检查模型的残差是否为白噪声序列,即不存在相关性和异方差性;评估模型的拟合优度和预测准确性。
常用的评估指标包括均方根误差(RMSE)、平均绝对百分比误差(MAPE)等。
最后,我们可以使用时间序列模型进行预测和决策。
预测是时间序列分析的主要目的之一,可以通过模型自动完成,也可以通过直观判断和经验方法进行。
预测结果可以用于制定生产计划、调整投资策略、优化供应链等。
时间序列分析在实际应用中有着广泛的应用。
在经济领域,时间序列分析可以用于预测股票价格、GDP增长、通胀率等,帮助决策者做出合理的经济政策。
在气象学中,时间序列分析可以用于预测天气变化,帮助人们做出出行计划。
在市场营销中,时间序列分析可以用于预测销售量、市场份额等,帮助企业做出营销决策。
总而言之,时间序列分析是一种重要的统计方法,被广泛应用于各个领域。
统计学专业优秀毕业论文范本经济数据的时间序列分析与
统计学专业优秀毕业论文范本经济数据的时间序列分析与预测在统计学专业的毕业论文中,经济数据的时间序列分析与预测是一个重要的研究方向。
本文将为大家提供一个优秀的论文范本,以展示在统计学专业中,如何进行经济数据的时间序列分析与预测。
一、引言经济数据是经济学研究的基础,而时间序列分析和预测是处理经济数据的重要方法之一。
时间序列分析旨在通过对历史数据的观察和分析,揭示数据内在的规律和趋势,为未来经济变化提供预测依据。
因此,时间序列分析在经济学中具有重要的研究价值和实际应用意义。
二、数据收集与整理经济数据的时间序列分析首先需要收集和整理相关的数据集。
收集数据的来源可以包括政府部门、研究机构、行业协会等。
在数据整理过程中,需要对数据进行清洗、处理异常值和缺失值,并将数据进行合适的时间区间划分。
三、时间序列模型的选择与建立时间序列模型是进行时间序列分析和预测的数学工具。
在选择时间序列模型时,需要根据数据的性质和特点进行合理的选择。
常用的时间序列模型包括ARMA模型、ARCH模型、GARCH模型等。
根据数据的特征,可以通过模型的拟合度、残差检验等指标进行模型的选择与建立。
四、模型参数估计与检验在时间序列模型建立完成后,需要对模型的参数进行估计和检验。
常用的参数估计方法包括极大似然估计、最小二乘估计等。
而模型的检验则可以通过残差分析、模型拟合度检验、序列平稳性检验等指标进行。
五、时间序列预测与评估时间序列预测是时间序列分析的重要任务之一。
通过对历史数据的观察和模型的建立,可以利用已有的信息对未来的经济发展进行预测。
常用的时间序列预测方法包括平滑法、回归法、ARIMA模型等。
在进行时间序列预测时,需要对预测结果进行评估,包括均方误差、平均绝对误差等指标。
六、实证分析与结果讨论在论文中,应该选取合适的经济数据进行实证分析,并对实证分析的结果进行详细的讨论和解释。
可以对模型的拟合度、稳定性、预测准确度等进行分析,并结合实际情况进行解释和推论。
时间序列分析课程论文
时间序列分析课程论文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】对70个化学反应数据序列建立时间序列模型班级:统计二班姓名:李灿对70个化学反应数据序列建立时间序列模型一、数据平稳性检验(1)用时序图进行初步判断Xt时序图从时序图可以看出70个化学反应的数据是平稳的,但这个判断比较粗糙,需要用统计方法进一步验证。
(2)用序列相关性进行检验Xt自相关图从相关图看出,自相关系数从二阶后迅速衰减为0,说明序列是平稳的。
(3)对该序列做单位根检验检验结果如下图所示T检验统计量的相伴概率值很显着,说明不存在绝对值大于1的单位根,说明序列是平稳的。
二、对序列进行的随机性进行检验Xt自相关图最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为非白噪声序列。
我们可以对序列采用B-J方法建模研究。
三、模型识别(即模型定阶)从自相关图可以看出自相关系数前两阶显着异于零外,其他都落入两倍标准差内,所以可以考虑用MA(2)拟合;偏自相关系数除了第一个显着异于零外,其他都落入两倍标准差内,且由非零转变为零的过程非常突然,所以可以尝试用AR(1)进行拟合;还可以考虑用ARMA(1,2)进行拟合。
对原序列做描述统计分析见图1,可见序列均值非0,我们通常对0均值平稳序列做建模分析,所以需要在原序列基础上生成一个新的0均值序列。
新序列的描述统计量见图2,相当于在原序列基础上作了个整体平移,所以统计特性没有发生根本改变。
我们对序列x进行分析。
Xt的描述统计量中心化处理后的Xt的描述统计图四、对模型的参数进行估计(1)尝试用AR(1)进行拟合从表中的数据可以看出T统计量的相伴概率非常显着,且模型的特征根在单位圆内,说明该过程是平稳的。
所以可得到如下AR(1)模型:(2)尝试用MA(2)模型进行拟合从表中可以看出MA(1)和MA(2)的相伴概率在显着性水平为的情况下是显着的,所以可以建立如下MA(2)模型(3)尝试建立ARMA(1,2)模型由参数估计结果看出,各系数均不显着,说明模型并不适合拟合ARMA(1,2) 模型。
时间序列 毕业论文
时间序列毕业论文时间序列是一种研究时间相关数据的统计方法,它在各个领域都有广泛的应用。
作为一种重要的数据分析工具,时间序列分析在经济学、金融学、气象学、环境科学等领域具有重要的研究价值和实际应用。
在经济学中,时间序列分析被广泛应用于经济预测、经济政策制定和经济波动研究等方面。
通过对历史数据进行分析和建模,可以预测未来的经济发展趋势,为政府和企业的决策提供科学的依据。
例如,通过对就业数据的时间序列分析,可以预测未来的就业趋势,为政府制定就业政策提供重要参考。
在金融学中,时间序列分析被广泛应用于股票价格预测、风险管理和投资组合优化等方面。
通过对历史股票价格数据的分析,可以发现价格的规律性和周期性,从而制定相应的投资策略。
例如,通过对股票价格的时间序列分析,可以发现股票价格存在一定的波动规律,从而在适当的时机进行买入和卖出,获取更好的投资回报。
在气象学中,时间序列分析被广泛应用于天气预测、气候变化研究和灾害预警等方面。
通过对历史气象数据的分析,可以预测未来的天气变化趋势,为农业生产、交通出行和防灾减灾提供重要参考。
例如,通过对气温、降水量等气象数据的时间序列分析,可以预测未来的气候变化趋势,为制定应对气候变化的政策提供科学依据。
在环境科学中,时间序列分析被广泛应用于环境监测、环境污染控制和自然资源管理等方面。
通过对历史环境数据的分析,可以发现环境变化的规律性和趋势,从而制定相应的环境保护和治理措施。
例如,通过对大气污染物浓度的时间序列分析,可以了解大气污染的季节性变化和长期趋势,为制定减排政策和改善空气质量提供科学依据。
总之,时间序列分析作为一种重要的数据分析方法,对于预测、决策和规划具有重要的意义。
它不仅可以帮助我们了解数据的变化规律和趋势,还可以为我们提供科学的决策依据。
在未来的研究中,我们可以进一步深化时间序列分析的方法和应用,为各个领域的发展和进步做出更大的贡献。
基于时间序列序列分析优秀论文
梧州学院论文题目基于时间序列分析梧州市财政收入研究系别数理系专业信息与计算科学班级 09信息与计算科学学号 200901106034 学生姓名胡莲珍指导老师覃桂江完成时间摘要梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。
近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。
给予一些有益于梧州市财政发展的建议。
本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。
关键词:梧州市;财政收入;时间序列分析;建立模型;建议Based onThe Time Series Analysis of Wuzhou city Finance IncomeStudiesAbstractWuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;We will improve the public finance expenditure mechanism, to build up a harmonious society.Key word : Wuzhou city; Financial income; Time series analysis; To establish model.Suggestions目录前言 (1)第一章时间序列的认识 (2)第一节时间序列分析问题 (2)第二节时间序列的建立 (4)第三节确定性时间序列分析方法 (6)第二章运用时间序列分析梧州市财政收入 (7)第一节梧州市的财政收入 (7)第二节建立模型 (9)第四章梧州市关于财政收入的可行性建议 (12)致谢 (13)参考文献 (14)前言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。
时间序列分析论文(一)
时间序列分析论文(一)
时间序列分析可以广泛运用于经济、金融、气象等领域,研究变量随时间变化的规律以及预测未来的趋势。
在这种情况下,编写一篇时间序列分析论文将具有重要的意义。
首先,论文需要建立一个完整的时间序列模型。
模型的构建应基于合适的时间序列理论,并考虑到相关变量之间的内在联系,充分利用样本数据进行拟合与检验,保证模型的准确性和可靠性。
其次,对模型进行预测和解释。
预测是时间序列分析最基本的应用,需要将模型中的参数进行估计,得出数据的预测值。
解释则是对模型所得结果的分析和理解,需要利用相关统计指标、图表来展现分析结果,并结合变量的实际背景进行解释。
另外,对论文内容的研究意义也需要进行分析。
时间序列分析可以用于预测经济、气象和金融等方面的变化趋势,对于政府和企业具有指导意义,也是学术界的热点研究领域。
因此,在分析中需要充分体现时效性和实用性。
最后,论文需要准确地撰写符合学术规范的引用和参考文献。
引用必须明确说明引用的文献来源、作者、出版年份等信息。
参考文献则要半角标点并依据规范格式列出相关内容,避免出现重复或错误。
综上所述,时间序列分析论文需要明确模型构建、预测解释、研究意义以及文献规范等要素,文章内容需清晰连贯、逻辑严密,以系统性的思维方式对问题进行探讨,具有广泛的实践应用价值。
应用时间序列分析期末论文
课程论文学生姓名曹天裕所在院系数理学院专业统计学学号************* 指导教师实证项目研究(课程论文)--------货币数量论的实证分析一问题的提出近几十年来,国内的房地产业发展迅速,开发的面积和规模也越来越大。
大多数国人对房地产这个话题的热情是经久不衰,房地产业内任何重大的政策和举措都对普通老百姓的生活产生深刻的影响。
2010年上半年,全国房地产开发投资19747亿元,同比增长38.1%,其中,商品住宅投资13692亿元,同比增长34.4%,占房地产开发投资的比重为69.3%。
6月当月,房地产开发完成投资5830亿元,比上月增加1845亿元,增长46.3%。
2010年上半年,全国房地产开发企业房屋施工面积30.84亿平方米,同比增长28.7%;房屋新开工面积8.05亿平方米,同比增长67.9%;房屋竣工面积2.44亿平方米,同比增长18.2%,其中,住宅竣工面积1.96亿平方米,增长15.5%。
2010年上半年,全国房地产开发企业完成土地购置面积18501万平方米,同比增长35.6%,土地购置费4221亿元,同比增长84.0%。
那么,房地产销售价格指数是否存在一定的内在规律呢,我们是否可以对其进行预测从而指导居民做出正确的选择呢?这便是本文所要探求和解决的问题。
理论综述时间序列分析就是对一组按时间顺序排列的随机变量进行统计分析,建立模型并对未来的趋势走向进行分析的统计方法。
本文运用时间序列分析软件SAS 进行分析。
数据的收集本文获取了我国1998-3-31到2009-12-31的房地产销售价格指数数据数据来源:8080productcommonmain.jsp模型的估计与调整首先,作出时序图,观察它的平稳性。
发现存在明显的长期趋势,做一阶差分。
从时序图可以认为序列基本平稳,再去观察它的自相关图。
自相关图显示序列平稳,考察差分后序列的随机性。
残差白噪声检验显示差分后序列蕴含着很强的相关信息,不能视为白噪声序列。
时间序列分析课程论文
摘要时间序列分析是应用广泛的数量分析方法,主要描述和探索事物随时间发生变化的数量规律,时间序列分析中最典型的ARMA 模型和ARIMA 模型在近几年的相关研究中有较多的应用并得到广泛关注,而本文基于国家统计局公布的江西省1978—2014 年的城镇化水平为分析数据,选择ARIMA 模型进行建模处理,一方面是因为ARIMA 模型在非平稳时间时间序列分析方面具有独特的优势,另一方面是模型能很好地拟合江西省城镇化发展水平的走势,模型的精度较好反映数据的真实水平。
对于实际问题的分析,结合当前我省城镇化发展水平的形势,本文以有明确记录以来的江西省城镇化率统计数据为依据,并根据SAS 软件对这些数据序列的平稳性与纯随机性进行检验,并利用SAS 软件处理的结果判断该数据是否为平稳序列且为非白噪声序列,通过对数据进行一阶差分等一系列处理,运用模型拟合数据时间序列,由于时间序列数据之间的相关关系,且历史数据对未来的发展有一定影响,结合对模型有很好预测结果,得出所有预测误差均没有超过1 %, 而且用来预测未来五年江西省城镇化发展水平达到60%,与省政府预计2020 年常住人口城镇化率达到或接近60%的目标基本保持一致,进一步体现了模型拟合的优越性,为对本省未来实现户籍改革一体化、全面提高城市化水平提供了可借鉴的参考且为省政府在制定健全人口信息管理体系政策方面提出建议。
针对分析出的结果以及相关文献资料的查阅,为江西省城镇化发展总结以下几点政策建议:(1)以人为本,科学发展;(2)改革旧体制,消除体制障碍;(3)加大投融资体制改革,多渠道筹措城市建设资金;(4)改善和加强归城镇化的宏观调控。
一、引言所谓城市化便是伴随经济增长城市增多和城市人口比重上升,首先,城市化是工业化推动的结果,即工业和商业发展形成聚集经济、进而产生对农村劳动力的持续不断的需求;其次,城市预期收入远高于农村,生活条件和个人发展条件比农村优越,因而吸引农村人口大量涌入城市;再次,农村劳动生产率的提高将越来越多的农村劳动力排挤出了农业生产领域,于是农村剩余劳动力就不得不去非农领域特别是城市寻找就业机会。
时间序列分析论文
浅谈时间序列分析摘要:时间序列是按时间顺序的一组数字序列,而时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。
时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。
应用过去数据,就能推测事物的发展趋势。
二是考虑到事物发展的随机性。
任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。
本文就时间序列分析发展背景、组成要素、分类、模型、建模及用途对时间序列分析进行简要概述。
关键词:时间序列分析;数理统计1.时间序列分析发展背景早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。
古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。
但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科——时间序列分析。
时间序列分析方法最早起源于1927 年数学家Yule 提出建立自回归模型( AR 模型) 来预测市场变化的规律。
1931 年, 另一位数学家在AR 模型的启发下, 建立了移动平均模型( MA 模型) , 初步奠定了时间序列分析方法的基础。
20 世纪60 年代后, 时间序列分析方法迈上了一个新的台阶, 在工程领域方面的应用非常广泛。
近几年, 随着计算机技术和信号处理技术的迅速发展, 时间序列分析理论和方法更趋完善。
2.时间序列的组成要素一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。
季节变动:是时间序列在一年内重复出现的周期性波动。
时间序列分析论文
摘要时间序列就是按照时间的顺序记录的一列有序数据。
对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势。
时间序列分析在日常生活中随处可见,有着非常广泛的应用领域。
本文用时间序列分析方法,对一段时间序列进行了拟合。
通过对2010年3月至2011年6月中国进出口额同比增长率序列进行观察分析,建立合适的ARIMA模型,对未来五个月的中国进出口额同比增长率序列进行预测。
然后对预测值和真实值进行比较,得出结论,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。
关键词:时间序列中国进出口额同比增长率预测白噪声目录1引言 (1)2模型的判别 (2)2.1原始序列分析 (2)2.2一阶差分序列分析 (3)3中国进出口同比增长率模型的建立选择、建立及检验 (4)3.1 模型的选择 (4)3.2 模型的建立 (4)3.3 模型的检验 (6)4利用模型进行预测 (8)5模型的评价 (10)参考文献 (11)1引言进出口总额指实际进出我国国境的货物总金额。
包括对外贸易实际进出口货物,来料加工装配进出口货物,国家间、联合国及国际组织无偿援助物资和赠送品,华侨、港澳台同胞和外籍华人捐赠品,租赁期满归承租人所有的租赁货物,进料加工进出口货物,边境地方贸易及边境地区小额贸易进出口货物(边民互市贸易除外),中外合资企业、中外合作经营企业、外商独资经营企业进出口货物和公用物品,到、离岸价格在规定限额以上的进出口货样和广告品(无商业价值、无使用价值和免费提供出口的除外),从保税仓库提取在中国境内销售的进口货物,以及其他进出口货物。
进出口总额用以观察一个国家在对外贸易方面的总规模。
同比增长率,一般是指和去年同期相比较的增长率。
在此是指和上个月的同期相比较的增长率。
本文应用时间序列方法对进出口额同比增长率进行建模分析和经济预测,结果可以反映一定时期进出口额同比增长率变动趋势和程度,可以观察我国进出口额变动对我国经济的影响,为相关人员提供进出口额变动状况,研究和制定相关经济政策。
季节效应分析(时间序列论文)
季节效应分析一、数据来源:P.122.例4.6,北京市1995——2000年月平均气温序列(附录1.10)。
二、研究目的:在日常生活中,我们可以见到许多有季节效应的时间序列,比如:四季的气温,每个月的商品零售额,某自然景点每季度的旅游人数等等。
他们都会呈现出明显的季节变动规律。
所谓季节效应就是在不同的季节中数据会呈现很明显的差异。
在对北京市1995——2000年月平均气温序列的分析中,把每月温度绘制成图,可以帮助我们更清楚地看到季节效应的存在。
三、理论背景:假如没有季节效应的影响,北京市的气温应该始终在某个均值附近随机波动,季节效应的存在,使得气温会在不同年份的相同月份呈现出相似的性质,通过建模我们可以提取季节变动和随机变动的信息,这个过程即是对有季节效应的建模过程。
四、数据统计分析:步骤一,初步了解数据信息,并作预处理:1,将原始数据(附录1.10)导入Eviews 6.0中,并删除序列SERIES01,将序列SERIES02重命名为X。
2,点击Quick ——Graph,在出现的对话框中输入X,点击确定,得到时序图,如下:由图可知,北京市1995——2000年每月的平均气温随着季节的变动有着非常规律的变化。
气温的波动主要受到两个因素的影响:一个是季节效应,一个是随机波动。
同时可以看出气温在剔除季节效应后是一个稳定的序列,因此不用对随机波动做差分处理。
3,了解该模型的平均值,进行零均值化处理。
在Eviews中,quick→series statistics →histogram and stats 得到该直方图如下:知该模型的均值为13.03333。
对模型进行零均值化处理。
在命令窗口中写genr y=x-13.03333。
生成x零均值化处理后的序列y。
步骤二,对零均值处理后的序列Y进行季节差分处理:1,在命令窗口中输入genr z=y-y(-12),按Enter键。
2,打开Z序列,点击View——Correlogram,出现对话框,在Correlogram of下选level,在lags to include下输入36,点击OK,得到Z序列的自相关和偏自相关图,如下:从自相关图和偏自相关图可以看出Z序列不是纯随机性序列可以建模。
时间序列分析范文
时间序列分析范文时间序列分析是一种统计学方法,用于分析和预测一系列按时间顺序排列的观测数据。
时间序列数据是在不同时间点上观察到的变量的连续观察结果。
这些变量可以是股票价格、气温、销售数据等。
通过对时间序列数据进行分析,可以揭示数据背后的规律、趋势和周期性,并基于这些规律进行预测和决策。
首先,描述性分析旨在理解和总结时间序列数据的特征和变化趋势。
描述性分析的常见方法包括绘制时间序列图、计算均值、方差和自相关系数等。
时间序列图是展示时间序列数据的最常见方法。
通过绘制时间序列图,我们可以观察到数据的趋势、季节性和异常值。
在时间序列图中,时间通常放在横轴上,变量的取值放在纵轴上。
均值是时间序列数据的一个重要统计量。
它表示了数据的中心趋势。
通过计算均值,我们可以判断数据整体上是向上还是向下变化,以及变化的幅度。
方差是数据分布的一个关键指标,它衡量了数据点相对于均值的离散程度。
自相关系数(ACF)是描述时间序列数据观察之间相关性的一种指标。
它可以帮助我们发现数据中的周期性和趋势。
其次,预测分析旨在使用时间序列数据来预测未来的趋势和变化。
预测分析的常见方法包括移动平均法、指数平滑法和自回归集成滑动平均法(ARIMA)等。
移动平均法是一种简单的预测方法,它基于数据在不同时间点上的平均值。
通过移动平均法,我们可以平滑数据的波动,并预测未来的变化趋势。
指数平滑法基于数据的指数加权平均值来进行预测。
指数平滑法给予最近观测值更大的权重,对过去的观测值赋予较小的权重。
这样可以适应数据的变动并提高预测的准确性。
ARIMA是一种广泛使用的时间序列预测方法,它结合了自回归(AR)、差分(I)和移动平均(MA)的元素。
ARIMA模型可以捕捉到时间序列数据中的趋势和周期性,并用于预测未来的值。
除了描述性分析和预测分析之外,时间序列分析还包括模型诊断和评估。
模型诊断可以通过检查模型的拟合程度来验证模型的准确性。
拟合程度可以通过计算残差的均方差或平均绝对误差来确定。
时间序列分析范文
时间序列分析范文
时间序列分析是利用统计学和计算机技术来研究和预测未来时期观测
到的系列观测值的趋势,它是一种重要的风险管理工具,主要用于金融信
息的预测、量化投资、金融市场的异动检测以及过去的趋势推测和预测。
时间序列分析可以帮助企业和个人快速、准确地了解过去的行业动态,预
测未来的发展趋势。
时间序列分析的基本概念可以分为三个层次,宏观部分,定义有关系
统的趋势和变化的综述;微观部分,关注各种因素与变量之间的关系;趋
势部分,注重系统的演化过程,考虑未来变化的方向,可以通过回归模型
等方法来进行实证研究。
ARIMA模型是建立在自回归模型和移动平均模型之上的,自回归模型
可以用来描述和预测时间序列中残差序列的趋势,移动平均模型可以用来
描述和预测时间序列中的反复性,ARIMA模型集合了以上两种模型的优点,使其成为预测时间序列最常用的模型。
ARIMA模型可以在任何时期预测,如短期预测,如一个月内预测,中
期预测,如一年内预测,长期预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。
关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列。
时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。
时间序列分析是定量预测方法之一。
基本原理:1.承认事物发展的延续性。
应用过去数据,就能推测事物的发展趋势。
2.考虑到事物发展的随机性。
任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。
该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。
二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。
2.若为非平稳序列,则利用差分变换成平稳序列。
3.对平稳序列,计算相关系数和偏相关系数,确定模型。
4.估计模型参数,并检验其显著性及模型本身的合理性。
5.检验模型拟合的准确性。
6.根据过去行为对将来的发展做出预测。
三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。
居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。
一般来说,当CPI>3%的增幅时我们称为通货膨胀。
国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。
经济学家用消费价格指数进行经济分析和利用时间序列构建经济模型。
总所周知,居民消费价格指数是反映一个国家或地区宏观经济运行状况好坏的必不可少的统计指标之一,是世界各国判断通货膨胀(紧缩)的主要标尺,是反映市场经济景气状态必不可少的经济晴雨表。
因此,我国也采用国际惯例,用消费价格指数作为判断通货膨胀的主要标尺。
由于CPI是反映社会经济现象的综合指标,对其定量分析必须建立在定性分析的基础上,因此CPI的预测趋势还要与国家宏观经济政策及我国市场的供求关系相结合。
如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。
因此,该指数过高的升幅往往不被市场欢迎。
基于以上种种,CPI指数的预测对我国各方面显得尤为重要。
本文针对烟酒及用品类居民消费价格指数,分析其时间序列,并进行了相关预测。
模型的建立一、数据的选择:选取2007年4月—2014年4月的各个月份的烟酒及用品类居民消费价格指数,如表1所示:表1 烟酒及用品类居民消费价格指数时间指数时间指数时间指数时间指数2007.4 99.4 2009.2 103.2 2010.12 101.5 2012.1 103.4 2007.5 99.3 2009.3 103.3 2011.1 101.6 2012.11 103.4 2007.6 99.3 2009.4 103.4 2011.2 101.7 2012.12 103.3 2007.7 99.3 2009.5 103.6 2011.3 101.7 2013.1 103.12007.8 99.6 2009.6 103.7 2011.4 101.7 2013.2 103.1 2007.9 99.8 2009.7 103.7 2011.5 101.7 2013.3 102.8 2007.1 99.8 2009.8 103.9 2011.6 101.6 2013.4 102.6 2007.11 99.8 2009.9 103.8 2011.7 101.5 2013.5 102.5 2007.12 100 2009.1 103.7 2011.8 101.4 2013.6 102.4 2008.1 100.2 2009.11 103.4 2011.9 101.3 2013.7 102.1 2008.2 100.3 2009.12 102.9 2011.1 101.3 2013.8 101.7 2008.3 100.5 2010.1 102.8 2011.11 101.3 2013.9 101.8 2008.4 100.8 2010.2 102.7 2011.12 101.3 2013.1 101.7 2008.5 101 2010.3 102.6 2012.1 101.2 2013.11 101.7 2008.6 101.1 2010.4 102.4 2012.2 101.2 2013.12 101.7 2008.7 101.4 2010.5 102.1 2012.3 101.4 2014.1 101.8 2008.8 101.5 2010.6 101.9 2012.4 101.6 2014.2 101.7 2008.9 101.7 2010.7 101.8 2012.5 101.8 2014.3 101.7 2008.1 102 2010.8 101.8 2012.6 102 2014.4 101.7 2008.11 102.4 2010.9 101.6 2012.7 102.42008.12 103 2010.1 101.5 2012.8 102.92009.1 103.1 2010.11 101.4 2012.9 103.2数据来源:中国统计年鉴二、平稳性检验及修正1.时序图利用Eviews软件画出时序图,如图1.平稳的时间序列可以看做一条围绕其均值上下波动的曲线。
若时间序列的统计规律随着时间的位移而发生变化,则为非平稳序列。
X图1 原始数据的时序图由以上时序图可以看出序列上下波动明显,大致可判断不具有平稳性。
2.自相关图图2 序列的自相关图由图可以看出,自相关图呈正弦波指数衰减,为不平稳时间序列。
d进行单位根检验。
3.对原始数据进行一阶差分,并对差分后的序列{})(x一阶差分后的时序图,如图3:图3 一阶差分后的时序图由图3,可大致看出,一阶差分后,序列波动较稳,可能是平稳序列。
图4 一阶差分后的自相关图由上图可以看出,自相关图较快的减少至虚线内,可见,差分后的序列具有平稳性。
为了更加准确的判断一阶差分后的序列是否为平稳序列,下面对差分后的序列进行单位根检验。
图5 一阶差分的单位根检验由单位根检验结果可知,T统计量的值为-3.890147,比置信水平1%、5%和10%的临界值都要小,除此之外,05=p,所以拒绝原假设,不存在单位根,.0<.00032所以,一阶差分后的序列为平稳序列。
三、模型的建立与参数估计由图5的相关图可以看出,序列{})(xd的偏自相关函数具有一阶滞后截尾,自相关系数具有拖尾性,所以选择AR(1)模型并利用最小二乘法进行模拟。
图6 最小二乘法拟合AR(1)模型从拟合的结果来看,AR(1)的参数估计中关于自变量的估计值有0.05=,p<且T统计量的绝对值显著大于2,而AR(1)的参数估计中,0.05=,且T6152p>.0统计量的绝对值大于2,所以常数C的系数不显著,顾去掉常数C后重新建立模型。
图7 改进的拟合AR(1)模型此时,模型的特征值在单位元内,随意模型是平稳的,且模型的参数估计值的T 统计量的绝对值大于2,05.0<p ,所以模型是显著的,得到模型:t t x x ε+=-1688679.0模型的显著性检验一、残差检验下面对拟合后的模型进行残差检验,如图8:图8 残差检验从图8的真值、拟合值和残差图可以看出,模型的拟合效果较好,残差是围绕零均值随机波动的。
二、Q 检验图10 Q检验由残差序列的自相关系数与偏自相关系数的延迟K阶下的Q统计值的P值都显著大于0.05,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型效果显著有效。
模型预测一.预测结果通过对AR(1)模型的预测可以得到2014年5月至2014年10月的烟酒及用品类居民消费价格指数预测值。
图11 预测动态图表2 未来6期预测值及置信上下限时间预测值95%置信下限95%置信上限2014.05 101.7268 101.5314709 101.9221219 2014.06 101.7536 101.4773311 102.0298686 2014.07 101.7804 101.4420066 102.1188142 2014.08 101.8072 101.4164208 102.198**** ****.09 101.8341 101.3970587 102.2710466 2014.1 101.8609 101.3821176 102.3396511二.结论分析由预测值可以看出,烟酒及用品类居民消费价格指数呈缓慢增长趋势,但增长幅度不大。
参考文献:[1]庞皓,《计量经济学》第二版,[M].北京.科学出版社出版,2013。
[2]中话人民共和国国家统计局/ 2013.[3]《应用时间序列分析》王燕编著,北京:中国人民大学出版社2005年7月第一版。