时间序列分析小论文

合集下载

季节效应分析(时间序列论文)

季节效应分析(时间序列论文)

季节效应分析一、数据来源:P.122.例4.6,北京市1995——2000年月平均气温序列(附录1.10)。

二、研究目的:在日常生活中,我们可以见到许多有季节效应的时间序列,比如:四季的气温,每个月的商品零售额,某自然景点每季度的旅游人数等等。

他们都会呈现出明显的季节变动规律。

所谓季节效应就是在不同的季节中数据会呈现很明显的差异。

在对北京市1995——2000年月平均气温序列的分析中,把每月温度绘制成图,可以帮助我们更清楚地看到季节效应的存在。

三、理论背景:假如没有季节效应的影响,北京市的气温应该始终在某个均值附近随机波动,季节效应的存在,使得气温会在不同年份的相同月份呈现出相似的性质,通过建模我们可以提取季节变动和随机变动的信息,这个过程即是对有季节效应的建模过程。

四、数据统计分析:步骤一,初步了解数据信息,并作预处理:1,将原始数据(附录1.10)导入Eviews 6.0中,并删除序列SERIES01,将序列SERIES02重命名为X。

2,点击Quick ——Graph,在出现的对话框中输入X,点击确定,得到时序图,如下:由图可知,北京市1995——2000年每月的平均气温随着季节的变动有着非常规律的变化。

气温的波动主要受到两个因素的影响:一个是季节效应,一个是随机波动。

同时可以看出气温在剔除季节效应后是一个稳定的序列,因此不用对随机波动做差分处理。

3,了解该模型的平均值,进行零均值化处理。

在Eviews中,quick→series statistics →histogram and stats 得到该直方图如下:知该模型的均值为13.03333。

对模型进行零均值化处理。

在命令窗口中写genr y=x-13.03333。

生成x零均值化处理后的序列y。

步骤二,对零均值处理后的序列Y进行季节差分处理:1,在命令窗口中输入genr z=y-y(-12),按Enter键。

2,打开Z序列,点击View——Correlogram,出现对话框,在Correlogram of下选level,在lags to include下输入36,点击OK,得到Z序列的自相关和偏自相关图,如下:从自相关图和偏自相关图可以看出Z序列不是纯随机性序列可以建模。

应用时间序列论文

应用时间序列论文

应用时间序列在A市GDP预测中的应用学院:商学院专业:金融学班别: 金融1103学生姓名: 王文倩指导教师: 于国才摘要时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

GDP的增长是指一个国家或一个地区生产商品和劳务能力的增长。

GDP增长不仅代表了人均国民收入增加, 也包括社会制度结构的变化。

目前对投资与经济增长的关系研究一般认为, 投资与GDP增长之间存在着正相关关系, 即投资的增长会促进GDP增长。

改革开放以来, 投资在GDP增长中的作用越来越明显, 所以对GDP增长序列进行时间序列分析。

关键词:时间序列;GDP;预测分析一、时间序列相关概念(一)时间序列一个随着变量t变化的量y(t),当t1 < t2 <…< t N<…时的观测值y(t1), y(t2),…y(t N), …构成离散有序的集合,称为一个时间序列,记为{y(t)}。

如果变量t表示时间,那么一组根据时间顺序排列的观测数据就是一个时间序列。

时间序列分析就是根据这种特殊的数据形成和发展的一套统计分析方法的完整体系。

一般在研究时间序列问题时会涉及下面的记号和概念:●指标集T指标集T够理解为时间t的取值范围。

对于一般的随机过程,它是一个连续的变化范围,例如取(-∞ , +∞),此时前面随机过程可以记为{y(t),t∈(-∞ , +∞)}.●采样间隔△t采样间隔△t表示为时间序列中相邻两个数据的时间间隔。

在实际研究中,整个序列间一般都采取一致的时间间隔,这使得分析结果更有意义。

●平稳随机过程平稳随机过程定义如下:如果对∀ t1 , t2,…,t n,h∈T^和任意整数n,都能使(y t1,y t2,…,y tn)与(y t1+h,y t2+h,…,y tn+h)同分布,那么概率空间(W,F,P)上的随机过程{y(t),t∈T}称为(严)平稳过程。

时间序列ARIMA期末论文完整版

时间序列ARIMA期末论文完整版

时间序列ARIMA期末论文完整版时间序列A R I M A期末论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]ARIMA模型在总人口预测中的应用【摘要】人口发展与社会经济的发展是密不可分的,研究我国总人口的发展,对我国人口数进行分析和预测,有利于及时控制人口的增长调节人口平衡,利于政府及时了解发展趋势并做出反应对策使我国人口发展步入健康的轨道。

本文利用时间序列建模原理和思路,并结合软件对1962年——2014年我国年底总人口数据做分析和预测。

找到对原始数据有着较好的拟合度和较高的预测精度的模型。

利用此模型可对我国年底总人口进行合理的预测。

【关键词】ARIMA建模总人口人口预测目录一、引言 (3)研究背景 (3)研究现状 (4)二、模型建立 (5)模型识别 (5)模型的参数估计 (8)模型的诊断 (10)2.模型的预测 (12)三、模型的优缺点及推广 (13)模型的优缺点 (13)模型的推广 (13)结束语 (14)【参考文献】 (15)附录 (16)一、引言研究背景我国是世界上人口最多的国家,自1980年开始,年末中国大陆总人口就已经超过了10亿,并一直保持约占世界总人口的五分之一,亚洲人口的三分之一。

中国人口的发展同中国社会的发展一样经过了漫长而曲折的道路。

在世纪的进程中,目前我国进入了一个全新的时代,要想在21世纪——这个充满竞争与挑战的时代中变的富强、屹立于世界民族之林,实现我们的中国梦,这全取决于人。

能否顺利解决人口现状等问题,是我国乃自世界共同面临的问题,由于地球的资源是有限的,它不可能无限制的容纳人口,当人口过多,会由于经济跟不上,工作岗位欠缺,医疗等水平不足,从而导致整个社会处于一种动荡之中;然而如果人口过少,又会由于人员不足,导致各方面人力资源不足,无法正常完成各项必须社会活动,这也会极大地限制一个国家的发展,因此,对人口的研究是具有相当的意义的。

我国由于幅员广阔,民族众多,各民族发展水平不一,同时作为世界第一人口大国,我国的耕地面积却相对不足,因此我国每年都需要从国外大量进口粮食,由于过分依赖于进口这对我国的发展影响巨大,为此甚至有国外反华势力叫嚣只要断绝给中国供粮,三五年之内中国必定大乱。

时间序列分析论文-V1

时间序列分析论文-V1

时间序列分析论文-V1时间序列分析是一种能够从时间上刻画和预测数据变化趋势的方法,越来越受到许多学科的关注和应用,尤其在经济学、金融学和天气学等领域得到了广泛的应用。

本文将介绍时间序列分析的基本概念以及相关论文的研究内容和方法。

1.时间序列分析的基本概念时间序列分析是一种建立在时间轴上的数据分析方法,利用过去数据的变化趋势或周期性规律预测未来数据的变化趋势或周期性规律。

时间序列数据的主要特征是:时间是自变量,其他变量是因变量。

时间序列分析主要包括三个部分:趋势分析、季节性分析和周期性分析。

2.相关论文的研究内容和方法(1)《基于时间序列分析的气温研究》该论文主要分析了气温时间序列对于气候变化的影响。

通过对气温数据的拟合分析得到了气温的变化趋势,进一步分析了季节性和周期性对于气温的影响,并预测了未来气温的变化趋势。

该论文的方法是将时间序列分析和数据拟合结合起来,利用多项式回归对气温进行拟合,进一步分析有关因素的影响。

(2)《基于时间序列分析的经济增长预测模型研究》该论文主要研究了时间序列分析在经济增长预测中的应用。

该研究通过分析GDP的时间序列数据,利用ARIMA模型对未来经济增长进行预测。

这种模型可以利用过去的数据来预测未来的发展趋势,对于政府制定经济政策和企业的发展规划都有很大的帮助。

(3)《基于时间序列分析与神经网络的股票价格预测研究》该研究主要探讨了时间序列分析与神经网络在股票价格预测中的应用。

该研究利用时间序列对过去的股票数据进行分析,同时采用了神经网络的方法对股票价格的未来变化趋势进行预测。

该研究的方法可提高投资决策的准确性,为股票市场的短期波动提供指导。

3.总结本文介绍了时间序列分析的基本概念和相关论文的研究内容和方法,展示了时间序列分析在不同领域的应用。

随着技术的发展和数据的丰富,时间序列分析的应用将会越来越广泛,未来有望成为许多学科的重要研究方法。

时间序列分析法范文

时间序列分析法范文

时间序列分析法范文1.数据收集:收集时间序列数据,确保数据准确性和完整性。

2.数据可视化:绘制时间序列数据的图表,以便观察其趋势和周期性。

3.时间序列分解:将时间序列数据分解为趋势、周期和随机成分。

趋势部分表示数据的长期变化趋势,周期部分表示数据的循环变化趋势,随机部分表示数据的不规律波动。

4.数据平稳性检验:判断时间序列数据是否具有平稳性,即均值和方差是否稳定。

5.模型拟合:根据数据的特征选择适当的时间序列模型,如AR模型(自回归模型)、MA模型(移动平均模型)或ARMA模型(自回归移动平均模型)。

6.模型检验:利用统计方法对拟合好的模型进行检验,如检查残差序列是否为白噪声序列。

7.模型预测:基于拟合好的模型,对未来的时间序列数据做出预测。

时间序列分析中最常用的模型之一是ARIMA模型(自回归整合移动平均模型)。

ARIMA模型基于时间序列数据的自相关性和移动平均性来做出预测。

ARIMA模型的三个参数分别代表自回归部分的阶数(AR)、差分次数(I)和移动平均部分的阶数(MA),通过对这三个参数的选择和拟合,可以得到最优的模型。

时间序列分析还可以应用于季节性数据的预测。

季节性数据具有明显的周期性,例如每年销售额的变化或每月的气温变化。

对季节性数据进行分析时,需要使用季节性ARIMA模型(SARIMA),该模型结合了ARIMA模型和季节性变化的效应。

在金融领域,时间序列分析可用于股票市场的预测和波动性分析。

例如,可以利用时间序列分析来研究股票市场的趋势,预测未来的股价,并进行风险管理。

时间序列分析的优点包括可以从历史数据中提取有用的信息,预测未来的趋势,并进行风险管理。

它还可以帮助研究人员了解时间序列数据的动态特征和影响因素。

然而,时间序列分析也存在一些局限性,例如对数据平稳性的要求较高,数据的缺失或异常值可能会影响预测结果的准确性。

总之,时间序列分析是一种有效的统计方法,可帮助我们理解和预测随时间变化的数据。

时间序列分析论文

时间序列分析论文

时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。

文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。

关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。

一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。

如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。

从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。

尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。

但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。

2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。

表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。

但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。

因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。

计量经济学时间序列分析论文

计量经济学时间序列分析论文

时间序列期末论文安徽财经大学姓名:鲍志祥班级:093财管二班学号:20093069073企业商品价格总指数的时间序列分析摘要利用Eviews软件判断企业商品价格总指数序列为非平稳序列且为非白噪声序列,对非平稳序列进行一阶差分后得到平稳序列,分析运用一阶自回归AR(1)模型拟合时间序列,由于总指数序列值之间密切的相关关系,且历史数据对未来的发展有一定影响,利用Forecast 命令预测未来4个月的企业商品价格总指数。

关键词:Eviews;平稳序列;AR(p)模型;一阶差分理论准备:拿到一个观察值序列之后,首先要判断它的平稳性.通过平稳性检验,序列可分为平稳序列和非平稳序列两大类.对于平稳序列,由于它不具有二阶矩形平稳的性质,所以对它的统计分析要周折一些,通常要进行进一步的检验、变换或处理之后,才能确定适当的拟和模型。

如果序列平稳,建模比较容易,但并不是所有的平稳序列都值得建模。

只有那些序列值之间具有密切的相关关系,历史数据对未来的发展有一定影响的序列,才值得我们花时间去挖掘历史数据中的有效信息,用于预测序列未来的发展。

如果序列值彼此之间没有任何相关性,那就意味着该序列是一个没有任何记忆的序列,过去的行为对将来的发展没有丝毫影响,这种序列我们称之为纯随机序列。

从统计分析的角度而言,纯随机序列是没有任何分析价值的序列。

如果序列xt是均值非平稳的,对其进行d次差分后,变成了平稳的序列Δdxt,这个差分后的平稳序列的适应性模型为ARMA(p,q) ,此时就称对原始序列xt建立了ARIMA(p,d,q)模型。

问题:判断企业商品价格总指数序列的平稳性与纯随机性,处理数据并利用拟合模型,预测未来4个月的企业商品价格总指数。

表1企业商品价格总指数数据(来源:东方财富网)图1企业商品价格总指数序列{x i}的时序图由图1我们可以看出序列在上下波动比较大,大致判断不具有平稳性。

图2 序列{x i}的自相关图由图2可知,自相关图呈正弦波指数衰减,为不平稳时间序列。

时间序列论文

时间序列论文

.《时间序列分析》课程论文基于ARMAX模型的财政收入与税收的时间序列分析与预测班级:13级应用统计学1班学号:*********:乐乐基于ARMAX模型的财政收入与税收的时间序列分析与预测摘要财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和,是衡量一国政府财力的重要指标。

其中税收收入是国家财政收入的重要组成部分,一般占到财政收入的90%以上,是政府机器的经济基础。

本文利用《应用时间序列分析》的知识通过sas 统计软件对1978-2012年中国财政收入与税收数据进行分析,通过单位根检验,发现两者都是非平稳时间序列,并且存在协整关系,所以拟合了ARIMAX模型。

由于残差序列非白噪声,所以对残差序列又进行了进一步的拟合,最后对模型进行预测,做出预测图。

关键词:财政收入与税收 ARIMAX模型预测一、引言财政与税收关系到国家发展、民生大计。

财政收入与税收对社会资源配置、收入分配、国民经济发展、企业经济活动、居民切身利益及政府决策行为都有重大影响。

近年来,随着我国经济的持续高速发展和国家财政与税收的大幅度增长,以及我国经济体制改革的不断深化和国家对经济发展宏观调控力度的不断加大,国家也适时出台了一系列有关财政与税收管理的新规定、新政策和新的监管制度。

可以看出两者地位越来越重要,作用越来越明显。

通过本文的分析,旨在找出两者的关系,为我国财政与税收做出合理的解释,为以后的收入做出合理的预测。

二、数据分析(一)、序列平稳性检验1、时序图:图 1 原数据时序图图1中,红色为y(财政收入)序列书序图;黑色为x(税收收入)序列时序图。

从时序图中可以看出x序列、y序列均显著非平稳。

并且两者都有明显的增加趋势。

2、单位根检验:表 1 序列x的单位根检验The ARIMA ProcedureAugmented Dickey-Fuller Unit Root TestsType Lags Rho Pr<Rho Tau Pr<Tau F Pr>F表 2 序列y的单位根检验Augmented Dickey-Fuller Unit Root Tests单位根检验的原假设H0:序列为非平稳序列,如果 P> 0.05,则接受原假设,认为序列非平稳,否者序列为平稳序列。

时间序列分析论文

时间序列分析论文

关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。

关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列。

时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一。

基本原理:1.承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

2.考虑到事物发展的随机性。

任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。

二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。

2.若为非平稳序列,则利用差分变换成平稳序列。

3.对平稳序列,计算相关系数和偏相关系数,确定模型。

4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。

6.根据过去行为对将来的发展做出预测。

三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。

居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。

一般来说,当CPI>3%的增幅时我们称为通货膨胀。

国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。

时间序列 毕业论文

时间序列 毕业论文

时间序列毕业论文时间序列是一种研究时间相关数据的统计方法,它在各个领域都有广泛的应用。

作为一种重要的数据分析工具,时间序列分析在经济学、金融学、气象学、环境科学等领域具有重要的研究价值和实际应用。

在经济学中,时间序列分析被广泛应用于经济预测、经济政策制定和经济波动研究等方面。

通过对历史数据进行分析和建模,可以预测未来的经济发展趋势,为政府和企业的决策提供科学的依据。

例如,通过对就业数据的时间序列分析,可以预测未来的就业趋势,为政府制定就业政策提供重要参考。

在金融学中,时间序列分析被广泛应用于股票价格预测、风险管理和投资组合优化等方面。

通过对历史股票价格数据的分析,可以发现价格的规律性和周期性,从而制定相应的投资策略。

例如,通过对股票价格的时间序列分析,可以发现股票价格存在一定的波动规律,从而在适当的时机进行买入和卖出,获取更好的投资回报。

在气象学中,时间序列分析被广泛应用于天气预测、气候变化研究和灾害预警等方面。

通过对历史气象数据的分析,可以预测未来的天气变化趋势,为农业生产、交通出行和防灾减灾提供重要参考。

例如,通过对气温、降水量等气象数据的时间序列分析,可以预测未来的气候变化趋势,为制定应对气候变化的政策提供科学依据。

在环境科学中,时间序列分析被广泛应用于环境监测、环境污染控制和自然资源管理等方面。

通过对历史环境数据的分析,可以发现环境变化的规律性和趋势,从而制定相应的环境保护和治理措施。

例如,通过对大气污染物浓度的时间序列分析,可以了解大气污染的季节性变化和长期趋势,为制定减排政策和改善空气质量提供科学依据。

总之,时间序列分析作为一种重要的数据分析方法,对于预测、决策和规划具有重要的意义。

它不仅可以帮助我们了解数据的变化规律和趋势,还可以为我们提供科学的决策依据。

在未来的研究中,我们可以进一步深化时间序列分析的方法和应用,为各个领域的发展和进步做出更大的贡献。

基于时间序列序列分析优秀论文

基于时间序列序列分析优秀论文

梧州学院论文题目基于时间序列分析梧州市财政收入研究系别数理系专业信息与计算科学班级 09信息与计算科学学号 200901106034 学生姓名胡莲珍指导老师覃桂江完成时间摘要梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。

近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。

给予一些有益于梧州市财政发展的建议。

本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。

关键词:梧州市;财政收入;时间序列分析;建立模型;建议Based onThe Time Series Analysis of Wuzhou city Finance IncomeStudiesAbstractWuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;We will improve the public finance expenditure mechanism, to build up a harmonious society.Key word : Wuzhou city; Financial income; Time series analysis; To establish model.Suggestions目录前言 (1)第一章时间序列的认识 (2)第一节时间序列分析问题 (2)第二节时间序列的建立 (4)第三节确定性时间序列分析方法 (6)第二章运用时间序列分析梧州市财政收入 (7)第一节梧州市的财政收入 (7)第二节建立模型 (9)第四章梧州市关于财政收入的可行性建议 (12)致谢 (13)参考文献 (14)前言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。

时间序列分析论文(一)

时间序列分析论文(一)

时间序列分析论文(一)
时间序列分析可以广泛运用于经济、金融、气象等领域,研究变量随时间变化的规律以及预测未来的趋势。

在这种情况下,编写一篇时间序列分析论文将具有重要的意义。

首先,论文需要建立一个完整的时间序列模型。

模型的构建应基于合适的时间序列理论,并考虑到相关变量之间的内在联系,充分利用样本数据进行拟合与检验,保证模型的准确性和可靠性。

其次,对模型进行预测和解释。

预测是时间序列分析最基本的应用,需要将模型中的参数进行估计,得出数据的预测值。

解释则是对模型所得结果的分析和理解,需要利用相关统计指标、图表来展现分析结果,并结合变量的实际背景进行解释。

另外,对论文内容的研究意义也需要进行分析。

时间序列分析可以用于预测经济、气象和金融等方面的变化趋势,对于政府和企业具有指导意义,也是学术界的热点研究领域。

因此,在分析中需要充分体现时效性和实用性。

最后,论文需要准确地撰写符合学术规范的引用和参考文献。

引用必须明确说明引用的文献来源、作者、出版年份等信息。

参考文献则要半角标点并依据规范格式列出相关内容,避免出现重复或错误。

综上所述,时间序列分析论文需要明确模型构建、预测解释、研究意义以及文献规范等要素,文章内容需清晰连贯、逻辑严密,以系统性的思维方式对问题进行探讨,具有广泛的实践应用价值。

时间序列分析论文

时间序列分析论文

浅谈时间序列分析摘要:时间序列是按时间顺序的一组数字序列,而时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

二是考虑到事物发展的随机性。

任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

本文就时间序列分析发展背景、组成要素、分类、模型、建模及用途对时间序列分析进行简要概述。

关键词:时间序列分析;数理统计1.时间序列分析发展背景早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。

古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。

但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科——时间序列分析。

时间序列分析方法最早起源于1927 年数学家Yule 提出建立自回归模型( AR 模型) 来预测市场变化的规律。

1931 年, 另一位数学家在AR 模型的启发下, 建立了移动平均模型( MA 模型) , 初步奠定了时间序列分析方法的基础。

20 世纪60 年代后, 时间序列分析方法迈上了一个新的台阶, 在工程领域方面的应用非常广泛。

近几年, 随着计算机技术和信号处理技术的迅速发展, 时间序列分析理论和方法更趋完善。

2.时间序列的组成要素一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。

季节变动:是时间序列在一年内重复出现的周期性波动。

基于时间序列序列分析论文

基于时间序列序列分析论文

梧州学院论文题目基于时间序列分析梧州市财政收入研究系别数理系专业信息与计算科学班级 09信息与计算科学学号 ************ 学生姓名胡莲珍指导老师覃桂江完成时间摘要梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。

近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。

给予一些有益于梧州市财政发展的建议。

本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。

关键词:梧州市;财政收入;时间序列分析;建立模型;建议Based onThe Time Series Analysis of Wuzhou city Finance IncomeStudiesAbstractWuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;We will improve the public finance expenditure mechanism, to build up a harmonious society.Key word : Wuzhou city; Financial income; Time series analysis; To establish model.Suggestions目录前言 (1)第一章时间序列的认识 (2)第一节时间序列分析问题 (2)第二节时间序列的建立 (4)第三节确定性时间序列分析方法 (6)第二章运用时间序列分析梧州市财政收入 (7)第一节梧州市的财政收入 (7)第二节建立模型 (9)第四章梧州市关于财政收入的可行性建议 (12)致谢 (13)参考文献 (14)前言财政收入,是指政府为履行其职能、实施公共政策和提供公共物品与服务需要而筹集的一切资金的总和。

时间序列分析论文

时间序列分析论文

摘要时间序列就是按照时间的顺序记录的一列有序数据。

对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势。

时间序列分析在日常生活中随处可见,有着非常广泛的应用领域。

本文用时间序列分析方法,对一段时间序列进行了拟合。

通过对2010年3月至2011年6月中国进出口额同比增长率序列进行观察分析,建立合适的ARIMA模型,对未来五个月的中国进出口额同比增长率序列进行预测。

然后对预测值和真实值进行比较,得出结论,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。

关键词:时间序列中国进出口额同比增长率预测白噪声目录1引言 (1)2模型的判别 (2)2.1原始序列分析 (2)2.2一阶差分序列分析 (3)3中国进出口同比增长率模型的建立选择、建立及检验 (4)3.1 模型的选择 (4)3.2 模型的建立 (4)3.3 模型的检验 (6)4利用模型进行预测 (8)5模型的评价 (10)参考文献 (11)1引言进出口总额指实际进出我国国境的货物总金额。

包括对外贸易实际进出口货物,来料加工装配进出口货物,国家间、联合国及国际组织无偿援助物资和赠送品,华侨、港澳台同胞和外籍华人捐赠品,租赁期满归承租人所有的租赁货物,进料加工进出口货物,边境地方贸易及边境地区小额贸易进出口货物(边民互市贸易除外),中外合资企业、中外合作经营企业、外商独资经营企业进出口货物和公用物品,到、离岸价格在规定限额以上的进出口货样和广告品(无商业价值、无使用价值和免费提供出口的除外),从保税仓库提取在中国境内销售的进口货物,以及其他进出口货物。

进出口总额用以观察一个国家在对外贸易方面的总规模。

同比增长率,一般是指和去年同期相比较的增长率。

在此是指和上个月的同期相比较的增长率。

本文应用时间序列方法对进出口额同比增长率进行建模分析和经济预测,结果可以反映一定时期进出口额同比增长率变动趋势和程度,可以观察我国进出口额变动对我国经济的影响,为相关人员提供进出口额变动状况,研究和制定相关经济政策。

时间序列分析在吉林省GDP预测中的应用论文

时间序列分析在吉林省GDP预测中的应用论文

时间序列分析在吉林省GDP预测中的应用论文摘要:本论文旨在探讨时间序列分析在吉林省GDP预测中的应用。

首先,通过对吉林省GDP数据进行收集和整理,建立起时间序列数据集。

然后,使用经典的时间序列分析方法,包括平稳性检验、自相关函数(ACF)和偏自相关函数(PACF)的计算以及ARIMA模型的建立和参数估计。

最后,通过对历史数据的预测和预测结果的评估,验证了时间序列分析在吉林省GDP预测中的有效性和可行性。

1. 引言吉林省是中国东北地区的一个重要经济热点,其GDP表现对整个区域和国家的发展至关重要。

准确预测吉林省的GDP对政府决策和企业战略制定具有重要意义。

时间序列分析作为一种基于历史数据的预测方法,具有广泛应用的潜力。

2. 数据收集和整理本文通过吉林省统计年鉴和国家统计局的数据平台,收集了历年吉林省的GDP数据。

通过数据清洗和整理,得到了一个完整的时间序列数据集。

3. 时间序列分析方法3.1 平稳性检验为了应用时间序列分析方法,首先需要确保序列具有平稳性。

本文使用单位根检验(ADF检验)和KPSS检验来检验吉林省GDP序列的平稳性。

3.2 自相关函数和偏自相关函数的计算自相关函数(ACF)和偏自相关函数(PACF)是用来分析时间序列中的自相关性和偏自相关性的常用工具。

通过计算ACF和PACF,可以确定ARIMA模型的阶数。

3.3 ARIMA模型的建立和参数估计ARIMA模型是一种常用的时间序列分析模型,可以有效地描述时间序列的动态特征。

本文使用ARIMA模型对吉林省GDP进行建模和预测。

首先,根据ACF和PACF的结果,选择合适的ARIMA模型阶数。

然后,使用最小二乘估计法对模型参数进行估计。

最后,通过残差分析对模型进行诊断和改进。

4. 预测和评估本文将训练得到的ARIMA模型用于预测吉林省未来一定时间段内的GDP。

通过与实际观测值进行比较,评估模型的准确性和预测能力。

同时,使用误差分析方法,包括均方根误差(RMSE)和平均绝对误差(MAE),来评估模型的预测性能。

时间序列分析与经济预测作文

时间序列分析与经济预测作文

时间序列分析与经济预测作文时间序列分析与经济预测时间序列分析是一种重要的经济预测方法,它基于过去的数据来预测未来的趋势和走势。

通过对历史数据的分析,可以帮助我们理解经济现象的规律,并为未来的决策提供参考。

时间序列是指按照时间顺序排列的一组数据,例如每月的销售额、每年的GDP增长率等。

通过对时间序列数据进行分析,可以发现其中存在的周期性、趋势性和随机性等特点,从而进行经济预测。

时间序列分析的基本思想是建立数学模型来描述时间序列的演变过程。

常用的时间序列分析方法有平滑法、趋势法和季节性分解法等。

其中,平滑法可以消除数据的随机波动,使趋势更加明显;趋势法可以识别数据的长期趋势,判断未来的发展方向;季节性分解法可以将数据分解为趋势、季节和随机成分,以揭示不同成分对整体的影响。

经济预测是时间序列分析的重要应用领域之一。

在经济预测中,我们可以利用时间序列分析来预测未来的经济变量,如通货膨胀率、利率水平和股市指数等。

通过建立合适的时间序列模型,并根据历史数据的趋势和周期性等特征,可以对经济变量的未来走势进行预测。

经济预测在决策制定中起到了至关重要的作用。

政府部门可以利用经济预测来制定经济政策,例如调整货币政策来稳定通货膨胀率;企业可以利用经济预测来进行市场预测,帮助制定销售策略和生产计划;投资者可以根据经济预测来进行投资决策,以获得更好的回报。

然而,时间序列分析和经济预测也存在一些局限性和挑战。

首先,时间序列数据的特点多种多样,选择合适的模型并不是一件容易的事情。

其次,时间序列分析依赖于历史数据,对于经济环境的突发事件和结构性变化往往无法准确预测。

此外,时间序列分析往往假设数据具有平稳性,而实际上经济数据往往存在非平稳性,这也给分析带来了一定的困难。

综上所述,时间序列分析是一种重要的经济预测方法,可以帮助我们理解经济现象的规律,预测未来的趋势和走势。

然而,在应用时间序列分析进行经济预测时,我们需要注意数据的特点和模型的选择,同时也要认识到时间序列分析的局限性和挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ARIMA模型的我国全社会固定资产投资预测摘要:本文采用ARIMA模型,用Eviews6.0软件对我国1980—2012年的全社会固定资产投资额进行了深入分析,并预测了2013年我国全社会固定资产投资额。

结果表明,ARIMA(4,1,3)模型能够提供较准确的预测效果,可以用于未来的预测,并为我国固定资产投资提供可靠的依据。

关键词:ARIMA模型固定资产投资额时间序列预测一、引言改革开放以来,我国的经济发展取得了举世瞩目的成就。

投资是拉动经济增长的三驾马车之一,因此研究我国全社会固定资产投资对研究我国经济增长有着重要的现实意义。

我国的全社会固定资产投资总额持续增加:1980年仅为910.9亿元,1993年首次突破10000亿元达到13072.3亿元;到2006年则猛增至109998.2亿元。

尤其是进入21世纪以来,随着中国加入WTO,外商投资大量增加,推动了经济政策的调整与完善,也给经济与投资增长增添了活力。

此前,已经有学者做过相关研究。

2010年李惠在《ARIMA模型在我国全社会固定资产投资预测中的应用》中,通过1980-2007年我国全社会固定资产投资的相关数据,运用统计学和计量经济学原理,从时间序列的定义出发,运用ARIMA建模方法,将ARIMA模型应用于我国历年全社会固定资产投资数据的分析与预测,检验得出ARIMA(4,2,4)模型为最佳,建议政府抓住投资机遇,合理安排投资比例和投资金额,促进经济的健康发展。

2007年靳宝琳和赫英迪在《ARIMA模型在太原市全社会固定资产投资预测中的应用》一文中采用Eviews软件系统中的时间序列建模方法对太原市的固定资产投资总额资料进行了分析,建立了ARIMA模型。

结果显示ARIMA(2,1,3)模型提供了较准确的预测效果,可用于未来的预测,为太原市全社套固定资产投资的预测提供了一种方便实用的方法。

王新华在《ARIMA模型在武汉市全社会固定投姿预测中的应用》中,采用ARIMA模型,对武汉市1950—2003年的全社会固定资产投资额进行了深入分析。

结果表明,ARIMA(8,1,9)模型提供较准确的预测效果,可以用于未来的预测,并为武汉市固定资产投资提供可靠的依据。

对全社会固定资产投资有影响的因素很多,而这些因素彼此之间的关系很复杂。

因此运用数理经济模型(即揭示经济活动中各个因素间的理论关系用确定性数学方程加以表述的方法来分析和预测是较为困难的)。

所以,本文把我国全社会固定资产投资总额看成是一个时间序列,利用历史数据分析并得到其规律性,从而预测其未来值。

二、模型的建立及预测过程1、模型的建立ARIMA 模型全称为差分自回归移动平均模型,简记ARIMA ,是由博克思和詹金斯于70年代初提出的一著名时间序列预测方法,所以又称为box-jenkins 模型、博克思-詹金斯法。

其中ARIMA (p ,d ,q )称为差分自回归移动平均模型,AR 是自回归,p 为自回归项; MA 为移动平均,q 为移动平均项数,d 为时间序列成为平稳时所做的差分次数。

所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。

ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。

①自回归模型AR(p) 如果时间序列{t y }满足:t p t p t t y y y εφφ+++=-- (11)其中:t ε是独立同分布的随机变量序列,并且对于任意的t ,E(t ε)=0,Var(t ε)=2εσ>0,则称时间序列{t y }服从p 阶自回归模型,记为AR (p )。

②移动平均模型MA(q) 如果时间序列{t y }满足:q t q t t t y -----=εθεθε (11)则称时间序列{t y }服从q 阶移动平均模型,记为MA (q )。

q θθθ,,,21 是 q 阶移动平均模型的系数。

③ ARMA(p,q)模型 如果时间序列{t y }满足:t p t p t t y y y εφφ+++=--...11q t q t -----εθεθ (11)此模型是模型AR(p)与MA(q)的组合形式,记作ARMA(p,q)。

当 p=0 时,ARMA(0, q) = MA(q);当q = 0时,ARMA(p, 0) = AR(p)。

④ ARIMA (p,d,q )模型对于非平稳序列,经过几次差分后,如果能得到平稳的时间序列,就称这样的序列为单整序列。

设t y 是 d 阶单整序列,记作:t y ~ I(d)。

如果时间序列{}t y 经过d 次差分后是一个ARIMA(p,q)过程,则称原时间序列是一个p 阶自回归、d 阶单整、q 阶移动平均过程,记作ARIMA (p,d,q ),d 代表差分的次数。

2.ARIMA 模型预测的基本程序(1)根据时间序列的散点图、自相关图和偏自相关图,以及ADF 单位根检验观察其方差、趋势及其季节性变化规律,识别该序列的平稳性。

(2)数据进行平稳化处理。

如果数据序列是非平稳的,则需对数据进行差分处理。

对数据进行对数转换可以减低数据的异方差性。

(3)根据时间序列模型的识别规律,建立相应的模型:①若平稳时间序列的偏相关函数是截尾的,而自相关函数是拖尾的,则可断定此序列适合AR模型;②若平稳时间序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定此序列适合MA模型;③若平稳时间序列的偏相关函数和自相关函数均是拖尾的,则此序列适合ARMA模型。

(4)进行参数估计。

(5)进行假设检验,诊断模型的残差是否为白噪声,并检验模型的估计效果。

(6)进行预测。

三、ARIMA模型在我国全社会固定资产投资预测中的应用从《中国统计年鉴》上搜集计算整理出1980-2012年的年末全社会固定资产投资总额资料(见表1)表1 1980-2012年的年末全社会固定资产投资单位(亿元)年份固定资产投资总额(X)年份固定资产投资总额(X)年份固定资产投资总额(X)1980 910.9 1991 5594.5 2002 43499.91981 961.0 1992 8080.1 2003 55566.61982 1230.4 1993 13072.3 2004 70477.41983 1430.1 1994 17042.1 2005 88773.611984 1832.9 1995 20019.3 2006 109998.21985 2543.2 1996 22913.5 2007 137323.91986 3120.6 1997 24941.1 2008 172828.41987 3791.7 1998 28406.2 2009 224598.81988 4753.8 1999 29854.7 2010 251683.81989 4410.4 2000 32917.7 2011 311485.11990 4517.0 2001 37213.5 2012 364835. 01.平稳性检验时间序列数据建模,需要具备的前提条件是其序列平稳。

因此,首先需要对数据进行平稳性检验。

绘制时序图,可以看到序列有明显上升趋势,因此,全社会固定资产投资额具有很强的非平稳性(见图1)。

需要进行平稳化处理。

1图2首先对原始数据取自然对数,令t t X Y ln ,所得结果见表2,绘制时序图,可以看到序列仍然有明显上升趋势,因此,全社会固定资产投资额取对数后仍具有很强的非平稳性(见图2)。

图3是对t Y 进行单位根检验的结果,结果显示序列不平稳,需要进一步进行平稳化处理。

表2年份 t Y年份 t Y年份 t Y1980 6.814 1991 8.630 2002 10.681 1981 6.868 1992 8.997 2003 10.925 1982 7.115 1993 9.478 2004 11.163 1983 7.265 1994 9.743 2005 11.394 1984 7.514 1995 9.904 2006 11.608 1985 7.841 1996 10.039 2007 11.830 1986 8.046 1997 10.124 2008 12.060 1987 8.241 1998 10.254 2009 12.322 1988 8.467 1999 10.304 2010 12.436 1989 8.392 2000 10.402 2011 12.649 19908.416200110.524201212.807图3对t Y进行一阶差分处理,令1--=ttt YYZ,绘制时序图,可以看到序列仍然没有明显上升趋势,因此,全社会固定资产投资额差分后基本上平稳(见图4)。

图5是对t Z进行单位根检验的结果,结果显示序列基本上平稳。

图4图52.模型定阶及参数估计需要对模型的p值和q值进行筛选。

用Eviews软件作出直到滞后16期的ACF图和PACF图。

从图6中根据拖尾和截尾的情况来看,考虑p=3,4,q=3,4,5,再通过AIC值进行筛选,图7为各个组合的AIC值,可以看到当p=4,q=3的时候,AIC的值最小,根据AIC值最小化原-.1.0.1.2.3.4.51980198519901995200020052010Z则进行择优,可以认为ARIMA(4,1,3)模型较好。

图6图7 AIC值、用Eviews软件估计参数得到图8结果,从图中可以看到MA的二阶滞后项的系数检验非常不显著。

因此,剔除这一项,得到修正后的ARIMA(4,1,3),图9为修正后的参数估计。

根据修正结果,得到模型的表达式为:3143215520.33663.07443.03418.02742.04524.01828.0-----------++=tttttttt ZZZZZεεε图8qp 3 4 53 -2.5965 -2.59844 -4.205 -2.2651 -2.5936v .. . ..图93.模型的检验模型检验也就是对模型残差项是否为白噪声过程的检验,如果模型通过检验,则可以进行预测。

否则重新建模,通过对ARIMA(4,1,3)的残差的ACF图和PACF图的观察(图10),残差的自相关函数的AC值和偏自相关函数的PAC值全部落在置信区间内。

因此残差服从白噪声分布,所以说模型ARIMA参数选择是正确了,拟合的效果能符合要求。

图104.模型的预测根据时间序列{t Z }的ARIMA (4,1,3)模型:3143215520.33663.07443.03418.02742.04524.01828.0-----------++=t t t t t t t t Z Z Z Z Z εεε我们可以推出时间序列{t Y }的ARIMA (4,1,3)的预测公式为:+=-1t t Y Y 143213663.07443.03418.02742.04524.01828.0---------++t t t t t t Z Z Z Z εε35520.3--t ε进而推出时间序列{t X }的ARIMA (4,1,3)的预测公式为:35520.313663.047443.033418.022742.014524.01828.0--------+---+=t t t Zt Zt Zt Zt t e X εεε因此,根据公式,对2013年的全社会固定资产投资的预测为:408276.1244亿元。

相关文档
最新文档