机械优化实例及matlab工具箱
机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计长江大学机械工程学院机械11005班刘刚摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。
本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。
关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。
机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。
国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。
国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。
计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。
目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。
一、机械优化设计研究内容概述机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。
该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。
优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。
机械优化设计实验报告

《机械优化设计》课程实验报告M a t l a b优化工具箱一、实验目的和要求熟悉Matlab7.0软件的界面和基本功能,了解Matlab优化工具箱的常用算法;使用Matlab优化工具箱的f m i n u n c/f m i n s e a r c h函数求解多变量非线性无约束优化问题;使用Matlab优化工具箱的f m i n c o n函数求解多变量非线性约束优化问题。
二、实验设备和软件台式计算机,Matlab7.0软件。
三、实验内容求解下列优化问题的最优解。
要求:(1)编写求解优化问题的M文件,(2)在命令窗口输入求解优化问题的命令,并得出计算结果。
1、标量优化问题1) f=x2-10x+362) f=x4-5x3+4x2-6x+603) f=(x+1)(x-2)22、多变量非线性无约束优化问题1) f=4(x1-5) 2+( x2-6) 2初始点:x0=[8,9]T;2) f=(x12+x2-11)2+( x1+ x22-7)2初始点:x0=[1,1]T;3) f=[1.5- x1(1- x2)]2+[2.25- x1(1- x22)]2+[2.625- x1(1- x23)]2初始点:x0=[2,0.2]T;4) f=( x12+12 x2-1)2+(49 x1+49 x2+84 x1+2324 x2-681)2初始点:x0=[1,1]T;5) f=( x1+10 x2)2+5(x3- x4)2+( x2-2 x3)4+10(x1- x4)4初始点:x0=[3,-1,0,1]T;3、多变量非线性约束优化问题1) f=( x1-2)2+( x2-1)2g1= x12-x2≤0g2= x1+x2-2≤0初始点:x0=[3,3]T;2) f= x23[( x1-3)2-9]/273≤0g1=x2-x1/3≤0g2=-x1+x2/3≤0g3=x1+x2/3-6≤0g4=-x1≤0g5=-x2≤0初始点:x0=[1,5]T;3) f=1000- x12-2x2 2-x32-x1x2-x1x3g1=-x1≤0g2=-x2≤0g3=-x3≤0g4=x12+x22+x3 2-25=0g5=8x1+14x2+7x3-56=0初始点:x0=[2,2,2]T4)f=100(x2-x12)2+(1-x1)2+90(x4-x32)2+(1-x3)2+10[(x2-1)2+(x4-1)2]+19.8(x2-1)(x4-1)-10≤x1≤10-10≤x2≤10-10≤x3≤10-10≤0x4≤10初始点:x0=[-3,-1,-3,-1]T;四、M文件、在命令窗口输入的求解命令清单及计算结果记录>>1、(1)目标函数的M文件function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)} x =5.0000fval =11.00002、(2)目标函数的M文件function f=fun2(x)f=x^4-5*x^3+4*x^2-6*x+60调用求解命令x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun2,lb,ub,options)x =3.2796fval =22.65902、(3)目标函数的M文件function f=fun3(x)f=(x+1)*(x-2)^2调用求解命令> x0=0;options=optimset('LargeScale','off');lb=0;ub=10;[x,fval]=fminbnd(@fun3,lb,ub,options)x =2.0000fval =1.9953e-0113(1)目标函数的M文件function f=fun4(x)f=4*(x(1)-5)^2+(x(2)-6)^2调用求解命令x0=[8,9];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun4,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =5.00006.0000fval =1.7876e-0123(2)目标函数的M文件function f=fun5(x)f=(x(1)^2+x(2)-11)^2+(x(1)+x(2)^2-7)^2调用求解命令>> x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun5,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 2.0000fval =5.2125e-0123(3)目标函数的M文件function f=fun6(x)f=[1.5-x(1)*(1-x(2))]^2+[2.25-x(1)*(1-x(2)^2)]^2+[2.625-x(1)*(1-x(2)^3)]^2调用求解命令x0=[2,0.2];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun6,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =3.0000 0.5000fval =3.9195e-0143(4)目标函数的M文件function f=fun7(x)f=(x(1)^2+12*x(2)-1)^2+(49*x(1)+49*x(2)+84*x(1)+2324*x(2)-681)^2调用求解命令x0=[1,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun7,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun. x =0.9570 0.2333fval =7.37643(5)目标函数的M文件function f=fun8(x)f=(x(1)+10*x(2))^2+5*(x(3)-x(4))^2+(x(2)-2*x(3))^4+10*(x(1)-x(4))^4调用求解命令>> x0=[3,-1,0,1];options=optimset('LargeScale','off');[x,fval]=fminunc(@fun8,x0,options)Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =0.0015 -0.0002 -0.0031 -0.0031fval =6.3890e-009三、3、(1)目标函数的M文件function f=fun9(x)f=(x(1)-2)^2+(x(2)-1)^2约束函数的M文件function [c,cep]=con1(x)c=[x(1)^2-x(2);x(1)+x(2)-2];cep=[]当前窗口条用求解命令x0=[3,3];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun9,x0,[],[],[],[],[],[],@con1,options)Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin12x =1.0000 1.0000fval =1.00003、(2)目标函数的M文件function f=fun10(x)f=x(2)^3*[(x(1)-3)^2-9]/27*3^(1/2)约束函数的M文件function [c,cep]=con2(x)c=[x(2)-x(1)/3^(1/2);-x(1)+x(2)/3^(1/2);x(1)+x(2)/3^(1/2)-6];cep=[]当前窗口条用求解命令x0=[1,5];lb=[0,0];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun10,x0,[],[],[],[],lb,ub,@con2,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.Active inequalities (to within options.TolCon = 1e-006):lower upper ineqlin ineqnonlin13x =4.5000 2.5981fval =-7.59383、(3)目标函数的M文件function f=fun11(x)f=1000-x(1)^2-2*x(2)^2-x(3)^2-x(1)*x(2)-x(1)*x(3)约束函数的M文件function [c,cep]=con3(x)c=[];cep=[x(1)^2+x(2)^2+x(3)^2-25;8*x(1)+14*x(2)+7*x(3)-56];当前窗口条用求解命令x0=[2,2,2];lb=[0,0,0];ub=[];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun11,x0,[],[],[],[],lb,ub,@con3,options)Optimization terminated: first-order optimality measure lessthan options.TolFun and maximum constraint violation is lessthan options.TolCon.No active inequalitiesx =3.5121 0.2170 3.5522fval =961.71523、(4)目标函数的M文件function f=fun12(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10*[(x(2)-1) ^2+(x(4)-1)^2]+19.8*(x(2)-1)*(x(4)-1)约束函数的M文件function [c,cep]=con4(x)cep=[];当前窗口条用求解命令x0=[-3,-1,-3,-1,];lb=[-10,-10,-10,-10];ub=[10,10,10,10];options=optimset('LargeScale','off');[x,fval]=fmincon(@fun12,x0,[],[],[],[],lb,ub,@con4,options)Optimization terminated: Magnitude of directional derivative in searchdirection less than 2*options.TolFun and maximum constraint violationis less than options.TolCon.No active inequalitiesx =1.0001 1.0002 0.9999 0.9997fval =2.3989e-007五、质疑和建议对于一维标量优化问题搜索,在当前窗口中调用求解命令时,[x,fval]=fminbnd(@fun1,lb,ub,options)可以改成[x,fval]=fminbnd(@fun1,-10,10)如下:function f=fun1(x)f=x^2-10*x+36调用求解命令x0=0;options=optimset('LargeScale','off');lb=-10;ub=10;[x,fval]=fminbnd(@fun1,lb,ub,options)或{ x0=0; [x,fval]=fminbnd(@fun1,-10,10)}x =5.0000fval =11.0000。
利用matlab求解机械设计优化问题-螺栓【整理版】

利用matlab求解机械设计优化问题-螺栓【整理版】3.机械优化设计应用实例机械优化设计把数学规划理论与数值方法应用于设计中,用计算机从大量可行方案中找出最优化设计方案,从而大大提高设计质量和设计效率。
MATLAB 具有解决线性规划和非线性规划、约束优化和无约束优化问题的内部函数,因而可以完成这一功能。
现举一例:螺栓组联结的优化设计 如图4所示的压力容器螺栓组联接中,已知D 1= 400mm,D 2 =250mm ,缸内工作压力为p=1.5 MPa ,螺栓材料为35号钢,σs =320Mpa,安全系数S=3,取残余预紧力Q ’p =1.6F,采用铜皮石棉密封垫片。
现从安全、可靠、经济的角度来选择螺栓的个数n 和螺栓的直径d 。
3.1 设计问题分析若从经济性考虑,螺栓数量尽量少些、尺寸小些,但这会使降低联结的强度和密封性,不能保证安全可靠的工作;若从安全、可靠度考虑,螺栓数量应多一些、尺寸大一些为好,显然经济性差,甚至造成安装扳手空间过小,操作困难。
为此,该问题的设计思想是:在追求螺栓组联结经济成本最小化的同时,还要保证联结工作安全、可靠。
3 .2 设计变量 目标函数 约束条件3.2 .1 设计变量 选取螺栓的个数n 和直径d(mm)为设计变量:T 21T ]x [x ]d [n X ==3.2 .2 目标函数 追求螺栓组联结经济成本C n 最小为目标。
而当螺栓的长度、材料和加工条件一定时,螺栓的总成本与nd 值成正比,所以本问题优化设计的目标函数为min F(X) = C n = n d = x 1x 2① 强度约束条件 为了保证安全可靠地工作,螺栓组联结必须满足强度条件][32.521σπσ≤=d Qca ; 其中Mpa S s 106.3320][===σσ; n n p n D F F F F Q Q p πππ6093742505.16.246.26.26.1222'=⨯=⨯==+=+=N ; 对于粗牙普通螺纹:由文献[3]推荐,小径 d 1=0.85d 所以,强度约束条件为:0106146192106146192106105624)(2212211≤-=-=-=x x nd nd X g ② 密封约束条件 为了保证密封安全,螺栓间距应小于10d ,所以,密封约束条件为:01040010)(2112≤-=-=x x d n D X g ππ③ 安装扳手空间约束条件 为了保证足够的扳手空间,螺栓间距应大于5d ,所以,安装约束条件为:040055)(1213≤-=-=x x n D d X g ππ ④ 边界约束条件 0)(14≤-=x X g ;0)(25≤-=x X g3.3 .3 建立数学模型综上所述,本问题的数学模型可表达为:设计变量:T 21]x [x X =目标函数:min F(X) = x 1x 2约束条件: s.t. 0)(≤X g i ( i = 1, 2, 3, 4, 5,)现运用MATLAB 的优化函数进行求解 :先编写M 文件function [c,ceq]=mynas(x)c(1)=146192/(x(1)*x(2)^2)-106; % 非线性不等式约束c(2)=400*pi/x(1)-10*x(2);c(3)=-400*pi/x(1)+5*x(2);ceq=[]; % 非线性等式约束在MATLAB 命令窗口输入:fun='x(1)*x(2)'; % 目标函数x0=[4,6]; % 设计变量初始值A=[-1,0;0,-1]; % 线性不等式约束矩阵b=[0;0];Aeq=[]; % 线性等式约束矩阵beq=[];lb=[]; % 边界约束矩阵ub=[];[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,@mynlsub) % 调用有约束优化函数运行结果如下:x = 11.4499 10.9751fval = 125.6637所以,该问题优化结果为:n =11.4499 ,d = 10.9751,目标函数最小值:F(X)= 125.6637。
机械优化实例及matlab工具箱

s
f (x)
( xMi xmi )2 ( yMi ymi )2
i 1
设计实例2:
3)确定约束条件
(1)由曲柄存在条件,可得:
g1(x) l1 l2 l3 l4 0 g2 (x) l1 l3 l2 l4 0 g3(x) l1 l4 l2 l3 0
l1 ) 2
]
0
优化设计工具
优化设计工具
第1部分 MATLAB基础 第2部分 优化计算工具
第1部分 MATLAB基础
1.1 MATLAB环境简介 1.2 数据表示 1.3 数组 1.4 源文件(M-文件)
1.1 MATLAB窗口
启动MATLAB 其窗口如右
1、Command Window (命令窗口)
g3 ( x)
1
7 45
x13 x2
0
g4 ( x)
1
1 321
x1 x22
0
g5 (x) x1 0
g6 (x) x2 0
盖板优化实例
盖板优化实例
运行结果:
x = 0.6332 25.3264 fval = 101.3056
function f=myfun(x) f=3*x(1)^2+2*x(1)*x(2)+x(2)^2
%然后调用函数 fminunc x0=[1,1];
[x,fval]=fminunc(myfun,x0)
2.2 无约束非线性优化函数
[结果] x=
1.0e-008 * -0.7512 0.2479 fval = 1.3818e-016
[代码] f = [-5; -4; -6]; A = [1 -1 1;3 2 4;3 2 0]; b = [20; 42; 30]; lb = zeros(3,1); [x,fval] = linprog(f,A,b,[],[],lb)
MATLAB在机械设计与动力学仿真中的应用实例

MATLAB在机械设计与动力学仿真中的应用实例1. 引言机械设计与动力学仿真是现代工程领域非常重要的一个环节。
通过仿真软件可以在设计前对机械系统进行全面的分析和验证,大大减少了实际试制的时间和成本。
而MATLAB作为一种功能强大的科学计算软件,被广泛应用于机械设计与动力学仿真中。
本文将通过几个实际应用例子来展示MATLAB在这一领域的应用。
2. 机械结构分析机械结构的分析是机械设计的基础。
MATLAB提供了各种方法和工具,可以帮助工程师对机械结构进行静力学和动力学分析。
例如,可以利用MATLAB的有限元分析工具对机械结构进行强度校核。
通过输入结构的几何参数和材料性质,MATLAB可以计算出结构的应力和变形情况,从而判断是否满足设计要求。
此外,还可以利用MATLAB的多体动力学分析工具对机械结构的振动和冲击响应进行模拟和优化,以确保结构的安全性和可靠性。
3. 机械传动系统分析机械传动系统是机械设备中的重要组成部分,对于许多机械设备的运转效果和精度起着至关重要的作用。
MATLAB可以对不同类型的机械传动系统进行仿真分析,从而帮助工程师优化设计参数和减小误差。
例如,可以利用MATLAB的信号处理工具箱对传动系统中的振动和噪音进行分析和消除,提高系统的稳定性和准确性。
此外,还可以利用MATLAB的优化工具箱对传动系统的传动比、齿轮模数等参数进行优化,以满足设计要求。
4. 机械控制系统仿真机械控制系统在现代机械设备中起着至关重要的作用。
MATLAB提供了强大的控制系统设计和仿真工具,可以帮助工程师进行各种机械控制系统的仿真分析和优化设计。
例如,可以利用MATLAB的控制系统工具箱对机械控制系统的稳定性和性能进行评估和改进。
此外,还可以利用MATLAB的仿真工具对机械控制系统进行实时仿真,通过改变输入信号,观察输出响应,从而优化控制算法和参数。
5. 系统性能优化在机械设计与动力学仿真中,系统性能优化是一个重要的目标。
机械优化设计Matlab-优化工具箱基本用法

Matlab 优化工具箱x = bintprog (f , A, b, Aeq, Beq , x0, options ) 0—1规划 用MATLAB 优化工具箱解线性规划命令:x=linprog(c ,A ,b ) 2、模型:命令:x=linprog(c ,A ,b ,Aeq ,beq ) 注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].min z=cX1、模型:3、模型:命令:[1]x=linprog(c,A,b,Aeq,beq,VLB,VUB)[2]x=linprog(c,A,b,Aeq,beq,VLB,VUB, X0)注意:[1] 若没有等式约束,则令Aeq=[ ],beq=[]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1 max解编写M文件小xxgh1。
m如下:c=[-0.4 —0。
28 —0.32 —0.72 -0.64 -0。
6];A=[0。
01 0.01 0.01 0.03 0。
03 0.03;0。
02 0 0 0。
05 0 0;0 0。
02 0 0 0。
05 0;0 0 0.03 0 0 0。
08];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2解: 编写M文件xxgh2.m如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表.问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
MATLAB优化工具箱

MATLAB优化工具箱主要包含线性和非线性规划、约束和无 约束优化、多目标和多标准优化、全局和区间优化等功能, 以及用于优化模型构建和结果可视化的工具。
MATLAB优化工具箱的功能
实例
使用MATLAB求解一个简单的非线性规划问题,以最小化一个非线性目标函数,在给定约 束条件下。
使用MATLAB优化工具箱求解约束优化问题
要点一
约束优化问题定义
约束优化问题是一类带有各种约束条 件的优化问题,需要求解满足所有约 束条件的最优解。
要点二
MATLAB求解约束优 化问题的步骤
首先使用fmincon函数定义目标函数 和约束条件,然后调用fmincon函数 求解约束优化问题。
MATLAB优化工具箱的应用领域
MATLAB优化工具箱广泛应用于各种领域,例如生产管 理、金融、交通运输、生物信息学等。
MATLAB优化工具箱可以用于解决一系列实际问题,例 如资源分配、生产计划、投资组合优化、路径规划等。
MATLAB优化工具箱还为各种实际问题的优化提供了解 决方案,例如采用遗传算法、模拟退火算法、粒子群算 法等现代优化算法解决非线性规划问题。
用户可以使用MATLAB中的“parfor”循环来 并行计算,以提高大规模问题的求解速度。
05
MATLAB优化工具箱的优势和不足
MATLAB优化工具箱的优势
01
高效灵活
02
全面的优化方法
MATLAB优化工具箱提供了高效的优 化算法和灵活的使用方式,可以帮助 用户快速解决各种优化问题。
MATLAB优化工具箱包含了多种优化 算法,包括线性规划、非线性规划、 约束优化、无约束优化等,可以满足 不同用户的需求。
matlab优化工具箱介绍

matlab优化工具箱介绍在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。
另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1.1 优化工具箱中的函数优化工具箱中的函数包括下面几类:9.1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得options优化参数。
●optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param')val = optimget(options,'param',default)描述:val = optimget(options,'param') 返回优化参数options中指定的参数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑ppt
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
编辑ppt
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xMxAl1cos()l5cos () yMyAl1si n ()l5sin()
[τ]=60MPa。轴所受扭矩为M=1.5×106N·mm。
分析
设计变量:外径D、内径d、长度l
设计要求:满足强度,稳定性和结构尺寸要 求外,还应达到重量最轻目的。
编辑ppt
设计实例1:
所设计的空心传动轴应满足以下条件: (1)扭转强度
空心传动轴的扭转切应力不得超过许用值,即
空心传动轴的扭转切应力:
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
编辑ppt
设计实例2:
点M的坐标: xMxAl1cos()l5cos () yMyAl1si n ()l5sin()
( ) arccosl12 l22 l32 l42 2l1l4 cos
16D (D4 d4)
编辑ppt
设计实例1:
空心传动轴的扭切应力:
16D (D4 d4)
经整理得:
d4D41.2 7150D0
编辑ppt
设计实例1:
(2)抗皱稳定性 扭转切应力不得超过扭转稳定得临界切应力:
'
空心传动轴的扭转稳定的临界切应力为:
' 0.7E(Dd)3/2
2D
编辑ppt
设计实例1:
机械优化设计实例 及matlab优化工具
编辑ppt
机械优化设计实例
➢ 机械优化设计的一般过程 ➢ 建立数学模型的基本原则 ➢ 机械优化设计实例
编辑ppt
机械优化设计的一般过程
机械优化设计全过程一般可分为:
1)建立优化设计的数学模型。 2)选择适当的优化方法。 3)编写计算机程序。 4)准备必要的初始数据并上机计算。 5)对计算机求得的结果进行必要的分析。
编辑ppt
1.1 MATLAB窗口
启动MATLAB 其窗口如右
1、Command Window (命令窗口)
2、Workspace (工作区)
编辑ppt
1.2 数据表示
1、变量 变量用标识符表示(字母打头、字母、
数字、下划线组成,长度≤19)。可以合 法出现而定义。
区分大小写字母,以当前值定义其类型。 2、函数名
函数名用标识符表示。
编辑ppt
1.3 数组
行向量、列向量、矩阵 1.3.1 创建数组的常用方法
1)直接列表定义数组
例如:
x=[1 2 3 4 5 6 7 8 9 0] y=[1,2,3,4,5,6,7,8,9,0] z=[1,2,3,4,5;2,3,4,5,6,7]
编辑ppt
1.3 数组
2)域表定义数组 变量=初值:增量:终值|初值:终值 变量=(初值:增量:终值)*常数 例如: x=0:0.02:10 y=1:80
编辑ppt
建立数学模型的基本原则
1)设计变量的选择: 尽量减少设计变量数目 设计变量应当相互独立
2)目标函数的确定: 选择最重要指标作为设计追求目标
3)约束条件的确定: 性能约束和边界约束
编辑ppt
设计实例1:
试设计一重量最轻的空心传动轴。空心传动轴 的D、d分别为轴的外径和内径。轴的长度不得 小于3m。轴的材料为45钢,密度为7.8×10-6㎏ /㎜,弹性模量E=2×105MPa,许用切应力
整理得:
1D544.3d4D4 DDd3/2 0
(3)结构尺寸
l l min d 0 Dd0
编辑ppt
设计实例1:
设:
x
1
D
x
2
d
x
3
l
则数学模型为:
mf(i ) n 6 .1(D 2 2 d 2 )l 1 6 0
6.1(2 x12x22)x31 0 6
编辑ppt
设计实例1:
(1)由曲柄存在条件,可得:
g1(x) l1 l2 l3 l4 0 g2(x) l1 l3 l2 l4 0 g3(x) l1 l4 l2 l3 0
(2)由杆长必须大于零及曲柄1为最短杆,可得:
g4(x)el10
编辑ppt
设计实例2:
(3)由满足传动角条件γ>[γ],可得:
g5(x)
[]arccol22sl32 (l4
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos 0 ' 其中'将由设计编的 辑ppt已知条件 出给 。
设计实例2:
该问题有8个设计变量,记为:
x x1 , x 2 , , x8 T
l1 ,l2 ,l3 ,l4,l5 ,
,
,
T 0
编辑ppt
设计实例2:
g 3(X ) 3 l 3 x 3 0
g4(X)dx20
g 5 (X ) D d x 1 x 2 0
编辑ppt
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
2l2l3
l1)2
0
g6(x)
[][18。 0arccol22sl32 (l4
2l2l3
l1)2
]0
编辑ppt
பைடு நூலகம்
优化设计工具
编辑ppt
优化设计工具
第1部分 MATLAB基础 第2部分 优化计算工具
编辑ppt
第1部分 MATLAB基础
1.1 MATLAB环境简介 1.2 数据表示 1.3 数组 1.4 源文件(M-文件)
g 1 ( X ) d 4 D 4 1 . 2 D 1 7 5 x 2 0 4 x 1 4 1 . 2 1 5 7 0 0 g 2 ( ) 1 D 4 . 3 5 d D 44 4 D D d 3 /2 1 x 1 4. 3 5 x 2 x 4 1 4 4 x 1 x 1 x 2 3 /2 0
2)确定目标函数
将曲柄一周转角分为s等分,要求连秆曲线最佳地逼近预 期轨迹mm,具体可由连杆曲线上的s个点M最佳地逼近 预期轨迹上的s个点m予以实现。由此可按点距和最小的 原则建立如下目标函数:
s
f(x) (xM ixm )2 i(yM iym )2 i
i 1
编辑ppt
设计实例2:
3)确定约束条件