【源版】分类与回归分析.
(整理)第6章回归分析

第6章回归分析变量之间的联系可以分为两类,一类是确定性的,另一类是非确定性的。
确定型的关系是指某一个或某几个现象的变动必然会引起另一个现象确定的变动,他们之间的关系可以使用数学函数式确切地表达出来,即y=f(x)。
当知道x的数值时,就可以计算出确切的y值来。
如圆的周长与半径的关系:周长=2πr。
非确定关系则不然,例如,在发育阶段,随年龄的增长,人的身高会增加。
但不能根据年龄找到确定的身高,即不能得出11岁儿童身高一定就是1米40公分。
年龄与身高的关系不能用一般的函数关系来表达。
研究变量之间既存在又不确定的相互关系及其密切程度的分析称为相关分析。
如果把其中的一些因素作为自变量,而另一些随自变量的变化而变化的变量作为因变量,研究他们之间的非确定因果关系,这种分析就称为回归分析。
在本章,我们将讲解回归分析有关的内容,而在下一章,我们将讲解相关分析的具体操作方法。
在SppS 10.0 For windows中回归分析分为以下几种:(主要讲前三种)●Linear:线性回归分析(data09-03)●Curve Estimation:曲线回归分析(data13-01)●Binary Logistic:二维 Logistic回归分析(data13-02)●Multinomial Logistic:多维Logistic回归分析●Ordinal:Ordinal回归分析●Proibit:概率单位回归分析●Nonlinear:非线性回归分析●Weight Estimation: 加权估测分析●2-Stage Least Squares: 两阶最小二乘分析8.1线性回归(data09-03)一元线性回归方程(卫生统计114~121页)直线回归分析的任务就是根据若干个观测(Xi,yi)i=1~n找出描述两个变量X、y之间关系的直线回归方程y^=a+bx。
y^是变量y的估计值。
求直线回归方程y^=a+bx,实际上是用回归直线拟合散点图中的各观测点。
lecture5回归分析PPT课件

标准差为
(X' X)1
如果 2未知,以ˆ 2代替 2,则 Var Cov(βˆ )的估计量为:ˆ( 2 X' X)1
βˆ 的标准差Se(βˆ )为 ˆ( 2 X' X)1 (X' X)1ˆ
X ki ˆ1
X X
2i 3i
X X
ki ki
ˆ2 ˆ3
X2 ki
ˆk
如果直接用矩阵微分,则
uˆ 2 Y' Y 2βˆ ' X' Y βˆ ' X' Xβˆ i
uˆ 2 i βˆ
2X' Y 2X' Xβˆ
0
βˆ (X' X)1 X' Y
二、 的估计量
2
RSS
uˆ 2 βˆ ' X' Y nY 2
i
n-k
TSS
(Yi Y )2 Y' Y nY 2
n-1
均方差 (Y' Y βˆ ' X' Y) /(k 1) (βˆ ' X' Y nY 2 ) /(n k )
多元回归模型的检验
一、拟合优度检验:
(一)、平方和的分解:
关系式可用 E(Y
X ) i
f ( Xi )表示
上述形式的方程即为总体回归函数。
如果是线性形式,则可将总体回归函数 写成下式:E(Y X i ) 0 1Xi
0 和 1 为未知的总体参数,又称其为回 归系数
样本回归函数的形式为:
分类、回归、聚类、降维、模型选择、数据预处理六大模块

分类、回归、聚类、降维、模型选择、数据预处理六大模块1.引言1.1 概述概述部分旨在介绍本文的主题和内容,为读者提供一个整体的了解。
本文主要围绕分类、回归、聚类、降维、模型选择和数据预处理这六个模块展开讨论。
这六个模块是机器学习领域中常见且重要的技术和方法,它们在数据分析和模式识别任务中起着关键作用。
首先,分类是一种对数据进行分组的技术,根据给定的特征将数据划分为不同的类别。
分类算法通过从已知的样本中学习规则和模式,从而对新的未知数据进行分类。
在实际应用中,分类算法被广泛应用于垃圾邮件过滤、图像识别、文本分类等领域。
其次,回归是一种用于预测连续变量的方法。
回归算法通过建立输入特征和输出变量之间的数学模型,来预测未知的连续变量值。
回归技术在金融市场预测、房价预测、销量预测等场景中表现出了很好的效果。
聚类是将相似的样本组合在一起的过程,旨在发现数据中的隐含模式和结构。
聚类算法通过计算样本之间的相似性或距离,将其分配到不同的簇中。
聚类技术在市场细分、社交网络分析、图像分割等方面具有广泛的应用。
降维是将高维数据映射到低维空间的过程,目的是减少数据的维度并保留有效的信息。
降维算法可以帮助我们在可视化、特征选择和数据压缩等方面处理复杂的数据。
模型选择是指在机器学习中选择最适合数据集的模型或算法。
不同的模型有不同的优缺点,模型选择方法可以通过评估和比较不同模型的性能来选择最佳模型。
数据预处理是指在数据分析之前对原始数据进行清洗、转换和归一化等预处理操作。
数据预处理方法可以帮助我们处理缺失值、异常值,提高数据的质量和可靠性。
通过对分类、回归、聚类、降维、模型选择和数据预处理这六个模块的研究和理解,我们可以更好地应对实际问题,从海量的数据中挖掘出有价值的信息,为决策和预测提供有力的支持。
在接下来的章节中,我们将详细介绍每个模块的定义、概念和常用算法,希望能为读者提供全面而深入的学习和理解。
1.2文章结构文章结构部分的内容可以从以下角度进行撰写:文章结构是指整篇文章的组织框架和布局,它直接关系到读者对文章内容的理解和逻辑的推演。
回归分析 ppt课件

精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
分类和回归——精选推荐

分类和回归上篇⽂章中,我们就机器学习的相关基础概念进⾏了阐述,包括机器学习的基本概念以及机器学习的分类。
不了解的童鞋可以看⼀下补补课,。
分类和回归问题作为典型的机器学习问题,⼀直困扰了我很久,在查了好多⽂献和推⽂后,整理下来下⾯的⽂档,希望可以帮助⼤家,更加细致全⾯的了解这两种算法。
分类算法和回归算法的区别:分类算法和回归算法是对真实世界不同建模的⽅法。
分类模型是认为模型的输出是离散的,例如⼤⾃然的⽣物被划分为不同的种类,是离散的。
回归模型的输出是连续的,例如⼈的⾝⾼变化过程是⼀个连续过程,⽽不是离散的。
因此,在实际建模过程时,采⽤分类模型还是回归模型,取决于你对任务(真实世界)的分析和理解。
3 分类算法3.1 常⽤分类算法的优缺点?接下来⾸先介绍常⽤分类算法的优缺点,如表2-1所⽰。
表2-1 常⽤分类算法的优缺点3.2 分类算法的评估⽅法分类评估⽅法主要功能是⽤来评估分类算法的好坏,⽽评估⼀个分类器算法的好坏⼜包括许多项指标。
了解各种评估⽅法,在实际应⽤中选择正确的评估⽅法是⼗分重要的。
⼏个常⽤术语这⾥⾸先介绍⼏个常见的模型评价术语,现在假设我们的分类⽬标只有两类,计为正例(positive)和负例(negative)分别是:1. True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;2. False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;3. False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;4. True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
四个术语组成混淆矩阵:1)P=TP+FN表⽰实际为正例的样本个数。
2)True、False描述的是分类器是否判断正确。
分类资料的回归分析

第十一章分类资料的回归分析――Regression菜单详解(下)(医学统计之星:张文彤)在很久很久以前,地球上还是一个阴森恐怖的黑暗时代,大地上恐龙横行,我们的老祖先--类人猿惊恐的睁大了双眼,围坐在仅剩的火堆旁,担心着无边的黑暗中不知何时会出现的妖魔鬼怪,没有电视可看,没有网可上...我是疯了,还是在说梦话?都不是,类人猿自然不会有机会和恐龙同时代,只不过是我开机准备写这一部分的时候,心里忽然想到,在10年前,国内的统计学应用上还是卡方检验横行,分层的M-H卡方简直就是超级武器,在流行病学中称王称霸,更有那些1:M的配对卡方,N:M的配对卡方,含失访数据的N:M 配对卡方之类的,简直象恐龙一般,搞得我头都大了。
其实恐龙我还能讲出十多种来,可上面这些东西我现在还没彻底弄明白,好在社会进步迅速,没等这些恐龙完全统制地球,Logistic模型就已经飞速进化到了现代人的阶段,各种各样的Logistic模型不断地在蚕食着恐龙爷爷们的领地,也许还象贪吃的人类一样贪婪的享用着恐龙的身体。
好,这是好事,这里不能讲动物保护,现在我们就远离那些恐龙,来看看现代白领的生活方式。
特别声明:我上面的话并非有贬低流行病学的意思,实际上我一直都在做流行病学,我这样写只是想说明近些年来统计方法的普及速度之快而已。
据我一位学数学的师兄讲,Logistic模型和卡方在原理上是不一样的,在公式推演上也不可能划等号,只是一般来说两者的检验结果会非常接近而已,多数情况下可忽略其不同。
§10.3 Binary Logistic过程所谓Logistic模型,或者说Logistic回归模型,就是人们想为两分类的应变量作一个回归方程出来,可概率的取值在0~1之间,回归方程的应变量取值可是在实数集中,直接做会出现0~1范围之外的不可能结果,因此就有人耍小聪明,将率做了一个Logit变换,这样取值区间就变成了整个实数集,作出来的结果就不会有问题了,从而该方法就被叫做了Logistic回归。
回归分析学习课件PPT课件

为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
回归及相关分析PPT课件

05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述
《回归分析方法》课件

线性回归模型的评估与优化
评估指标:R平方值、调整R平方值、F统计量、P值等 优化方法:逐步回归、岭回归、LASSO回归、弹性网络回归等 交叉验证:K折交叉验证、留一法交叉验证等 模型选择:AIC、BIC等模型选择方法来自01逻辑回归分析
逻辑回归分析的定义
逻辑回归是一种统计方法,用于预测二分类因变量 逻辑回归使用逻辑函数(logistic function)来估计概率 逻辑回归的目标是找到最佳的参数,使得模型能够准确预测因变量 逻辑回归广泛应用于医学、金融、市场营销等领域
逻辑回归模型的应用场景
预测客户是 否会购买产 品
预测客户是 否会违约
预测客户是 否会流失
预测客户是 否会响应营 销活动
预测客户是 否会购买保 险
预测客户是 否会进行投 资
01
多项式回归分析
多项式回归分析的定义
多项式回归分析是一种统计方法,用于建立因变量与多个自变量之 间的关系模型。 多项式回归分析通过使用多项式函数来拟合数据,从而得到更精确 的预测结果。 多项式回归分析的优点是可以处理非线性关系,并且可以处理多个 自变量之间的关系。
求解结果:得到模型的参 数值,用于预测和评估模
型的性能
套索回归模型的应用场景
预测股票价格 预测房价 预测汇率 预测商品价格
Ppt
感谢观看
汇报人:PPT
岭回归模型的参数求解
岭回归模型: 一种线性回归 模型,通过在 损失函数中加 入一个L2正 则项来防止过
拟合
参数求解方法: 梯度下降法、 牛顿法、拟牛
顿法等
梯度下降法: 通过迭代求解 参数,每次迭 代都沿着梯度 下降的方向更
新参数
牛顿法:通过 求解Hessian 矩阵的逆矩阵 来更新参数, 收敛速度快, 但计算复杂度
什么是回归分类知识点

什么是回归分类知识点回归分类是机器学习中的一种常见任务,其目标是根据给定的输入特征来预测输出变量的值,并将其划分为不同的类别。
在回归分类中,输出变量通常是连续的或有序的,而不是离散的。
回归分类的知识点可以从以下几个方面进行讨论:1. 数据预处理:在进行回归分类之前,需要对输入数据进行预处理。
这包括数据清洗、缺失值处理、特征选择和特征缩放等步骤。
数据清洗是指检查数据中的异常值和噪声,并对其进行处理。
缺失值处理是指对缺失数据进行填充或删除。
特征选择是指选择对输出变量有较大影响的特征。
特征缩放是指对不同特征的值进行缩放,以便它们具有相似的范围。
2. 模型选择:回归分类中常用的模型包括线性回归、逻辑回归、支持向量机、决策树、随机森林等。
每个模型都有其特点和适用范围。
选择适合特定问题的模型是回归分类中的重要环节。
在选择模型时,需要考虑模型的复杂度、训练时间、预测精度等因素。
3. 模型训练与评估:在回归分类中,通常将数据集划分为训练集和测试集。
使用训练集对模型进行训练,然后使用测试集对模型进行评估。
评估指标包括准确率、精确率、召回率、F1值等。
准确率是指模型预测正确的样本数占总样本数的比例。
精确率是指模型预测为正的样本中真正为正的比例。
召回率是指模型正确预测为正的样本占真正为正的比例。
F1值是综合了精确率和召回率的度量指标。
4. 特征工程:特征工程是指根据领域知识和特征之间的相关性,构建新的特征或对现有特征进行变换。
特征工程可以提高模型的预测性能。
常见的特征工程方法包括多项式特征、离散化、标准化、正则化等。
特征工程需要根据具体问题进行调整和优化。
5. 模型调优:在回归分类中,模型的超参数对模型的性能有很大影响。
超参数是指在模型训练之前需要设定的参数,如学习率、正则化系数等。
调优超参数可以通过网格搜索、随机搜索、贝叶斯优化等方法来实现。
调优超参数是提高模型性能的关键步骤。
回归分类是机器学习中的重要任务,它在许多实际应用中都有广泛的应用,如金融风险评估、医学诊断、推荐系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、方法选择
①CHAID(Chi-squared Automatic Interaction Detector),由 Kass于1980年提出,其核心思想是:根据给定的结果变量(即目标变 量)和经过筛选的特征指标(即预测变量)对样本进行最优分割,按 照卡方检验的显著性进行多元列联表的自动判断分组。其分类过程是: 首先选定分类的目标变量,然后用分类指标与结果变量进行交叉分类, 产生一系列二维分类表,分别计算二维分类表的χ2值,比较P值的大 小,以P值最小的二维表作为最佳初始分类表,在最佳二维分类的基 础上继续使用分类指标对目标变量进行分类,重复上述过程直到P大 于设定的有统计意义的α值时则分类停止。目标变量可以为nominal、 ordinal、continuous三种类型,每个拆分点可以有多个子结点。
过程:通过递归分割的过程构建决策树。
寻找初始分裂:整个训练集作为产生决策树的集合,训练集每个记录必须是已 经分好类的。决定哪个属性(Field)域作为目前最好的分类指标。一般的做法是穷 尽所有的属性域,对每个属性域分裂的好坏做出量化,计算出最好的一个分裂。量 化的标准是计算每个分裂的多样性(diversity)指标GINI指标。 生成一棵完整的树:重复第一步,直至每个叶节点内的记录都属于同一类。 数据的修剪:不同的算法有不同修剪规则(修剪成大小合适的树)。
分类树与回归树分析
——策树分类
浙江大学医学院流行病与卫生统计学教研室 沈毅
饮酒与产妇年龄发生早产的风险:
低风险
高风险
浙江大学医学院流行病与卫生统计学教研室 沈毅
决策树的基本概念:
分类:决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对 连续变量做决策树。一般的数据挖掘工具,允许选择分裂条件和修剪规则,以及控 制参数(最小节点的大小,最大树的深度等等)来限制决策树的过拟合(overfiting)。
三、模型验证
设定合适的验证模型的方式: ①Do not validate the tree:不另外建立数据集对模型进行验证,模型的建立
和检验都基于整个数据集。 ②Partition my data into subsamples:整个数据文件成两部分,即训练样
本(training sample)和检验样本(testing sample),如果通过训练样本 生成的模型能够较好地拟合检验样本,则表明生成的决策树对类似于当 前数据集结构的更大的数据集具有较好的通用性。 在生成满意的训练样本的决策树后,对样本进行检验,决策树即变为应用 检验样本后的结果,接着通过考察估计误差、gain系数,可以决定生成的 决策树的通用程度。当样本量较大时可以选择该法。 ③Cross-validation:该法将整个数据集拆分成数个相等大小的部分,分别以 每一部分作为检验样本,其余部分作为训练样本,生成数个决策树,并计 算各个决策树的危险估计(risk estimates)的平均值。该法适用于样本量较 小的情形。
浙江大学医学院流行病与卫生统计学教研室 沈毅
四、修剪树枝
在这一步中可以通过设置树状图的最大层数(Maximum Tree Depth)、根结点(Parent Node)及子结点(Child Node) 的最小例数(Minimum Number of Cases)来确定生成树的终止 规则(Stoping Rules);终止规则会随着所选定算法的不同而不 同;当目标变量是nominal型时,还可以估计对错误分类造成的费 用(costs);总之,这一部分比较复杂也较难掌握。
浙江大学医学院流行病与卫生统计学教研室 沈毅
②Exhaustive CHAID,由Biggs于1991年提出,通过 连续合并相近的对子反复检测来选择最佳拆分点,相对 于CHAID法需要花费较长的时间。目标变量可以为 nominal、ordinal、continuous三种类型,其每个拆分点 可以有多个子结点。
浙江大学医学院流行病与卫生统计学教研室 沈毅
④QUEST(Quick, Unbiased, Efficient Statistical Tree), 由Loh和Shih于1997年提出,是一种快速且可避免由多分类 预测变量引起的偏倚的算法。目标变量仅限于nominal型, 且其最后生成的是二叉树。
浙江大学医学院流行病与卫生统计学教研室 沈毅
二、模型定义
在这一步可以选择并定义目标变量和预测变量,如果选择 了QUEST法,则目标变量只能为nominal型。要改变变量的类 型,可以对变量类型进行重定义(define variables)。(注意: 目标变量类型的不同,树枝修剪的规则也不同)
浙江大学医学院流行病与卫生统计学教研室 沈毅
目标变量 预测变量
变量 住院总费用 年龄
婚否
性别 手术 护理 抢救 伴随病 费用类别 入院情况 转归情况
量化方法或单位
(元)
1:0~20 岁 2:21~40 岁 3:41~60 岁 4:≥61 岁 1:未婚 2:已婚 3:离婚 4:丧偶 1:男 2:女 0:无 1:有 0:无 1:有 0:无 1:有 0:无 1:有 1:自费 2:公费 3:其它 1:一般 2:急 3:危 1:有效 2:死亡 3:其他
浙江大学医学院流行病与卫生统计学教研室 沈毅
③C&RT(Classification and Regression Trees),由Breiman 等于1984年首次提出,CART在计算过程中充分利用二叉树的结构, 即根结点包含所有样本,对预测变量应用多种统计方法反复运算, 将根结点分割为两个子结点,这个过程又在子结点上重复进行,成 为一个回归过程,直至不可再分成为子结点为止,最后产生同质的 与目标变量有关的子集。其目标是以尽量小的树将目标变量分入同 质的组中。目标变量也可以为nominal、ordinal、continuous三种 类型,其最终生成一个二叉树。
浙江大学医学院流行病与卫生统计学教研室 沈毅
五、实例分析 分类决策树(回归树)在病例组合中的应用
根据医疗资源消耗相近的原则,选取每个病例的住院总费用为分组轴心(即目标变量), 以年龄、婚否、性别、手术、护理、抢救、伴随病、费用类别、入院情况、转归情况为分 类结点(即预测变量),并对目标变量和预测变量进行重新编码 。