2017年徐汇区初三数学二模试卷及答案
【精选3份合集】2017-2018学年上海市徐汇区某名校中考二模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是() A .3y x = B .3y x=C .1y x=-D .2yx【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误;y=3x 的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x的图象在二、四象限,故选项C 错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误; 故选B.2.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① a bc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补【答案】C【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C . 考点:角的度量.4.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤)近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18B .36C .41D .58【答案】C【解析】根据已知三点和近似满足函数关系y=ax 2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.5.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.7.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用8.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.72.510⨯C.6⨯D.52.5100.2510⨯B.7⨯2510【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.9.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A .28cm 2B .27cm 2C .21cm 2D .20cm 2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE , 则矩形ABDC ∽矩形FDCE , 则AB BDDF DC= 设DF=xcm ,得到:68=x 6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm 1. 【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】C【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程. 二、填空题(本题包括8个小题) 11.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.【答案】6.【解析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论. 【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE ∥AD , ∴△BOE ∽△AOD ,∴22BOE AODSOB SOA=, ∵OA=AC , ∴OD=DC ,∴S △AOD =S △ADC =12S △AOC , ∵点A 为函数y=9x(x >0)的图象上一点,∴S △AOD =92, 同理得:S △BOE =12, ∴112992BOE AOD S S ==, ∴13OB OA =,∴23AB OA=, ∴23ABC AOCS S=, ∴2963ABCS⨯==, 故答案为6.12.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.【答案】160°【解析】试题分析:先求出∠COA 和∠BOD 的度数,代入∠BOC=∠COA+∠AOD+∠BOD 求出即可. 解:∵∠AOD=20°,∠COD=∠AOB=90°, ∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°, 故答案为160°. 考点:余角和补角.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球. 【答案】1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x=20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8【解析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影=1·AB CE=8,2故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).【答案】43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=ABBC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=tan 30x,∵两次测量的影长相差8米,∴00tan 30tan 60x x-=8,∴x=43, 故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 16.计算:﹣1﹣2=_____. 【答案】-3【解析】-1-2=-1+(-2)=-(1+2)=-3, 故答案为-3.17.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论. 【详解】设第n 层有a n 个三角形(n 为正整数), ∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…, ∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2. 故答案为2. 【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键.18.将一个含45°角的三角板ABC ,如图摆放在平面直角坐标系中,将其绕点C 顺时针旋转75°,点B 的对应点'B 恰好落在轴上,若点C 的坐标为(1,0),则点'B 的坐标为____________.【答案】()12,0+【解析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为2,从而求出B′的坐标.【详解】解:∵∠ACB=45°,∠BCB′=75°, ∴∠ACB′=120°, ∴∠ACO=60°, ∴∠OAC=30°, ∴AC=2OC ,∵点C 的坐标为(1,0), ∴OC=1, ∴AC=2OC=2,∵△ABC 是等腰直角三角形,2AB BC ∴== 2B C A B '''∴== 12OB '∴=+∴B′点的坐标为(12,0)+ 【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题. 三、解答题(本题包括8个小题)19.如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).【答案】39米【解析】过点A 作AE ⊥CD ,垂足为点E , 在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE= BC=28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.20.如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx+b 的图象和反比例函数y =m x的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;直接写出一次函数的值小于反比例函数值的x 的取值范围.【答案】(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB=6,,(3)﹣4<x <0或x >2.【解析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x,得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx+b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积 =12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x <0或x >2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.22.有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?【答案】(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.23.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.24.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C .求双曲线的解析式;点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.【答案】(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A (2,3).∵A 点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x; (2)在y=12x+2中,令y=0可求得:x=﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.25.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【答案】(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为32x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.26.在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.【答案】这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个【答案】B 【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.2.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C 【解析】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点. 3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5B .4C .3D .2【答案】D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可. 【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C .考点:科学记数法—表示较小的数.5)A .9B .±9C .±3D .3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81=9,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C 【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .。
2017年上海市各区数学二模压轴题图文解析

本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。
可作学习材料,切勿做其他用途。
更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。
2017年徐汇区初三数学一模试卷及答案

2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x . 二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b ,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(本题满分10分)计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.解:原式123113232-+--⨯= 20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于 点B ,与y 轴交于点C ,顶点为D . 求:(1)点D C B 、、坐标; (2)BCD ∆的面积.解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;图3FABC E图2ABCD A B CD E F图1令0=y ,得0542=--x x ,解得11-=x 、52=x ; ∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形15=.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,BC =b.求:(1)向量(用向量a 、b 表示); (2)B tan 的值. 解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =; ∵AB DE //,AC AB ⊥,可得AC DE ⊥; ∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形; ∴AB DE =;∴=a=,=b BC 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ; 又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC , ∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号);图4ABC DEF(2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈). 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ;∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =; ∵B DAB ∠=∠,∴BD AD =;∴CD BD CE AE =; ∴AB DE //.AB DF BD ⋅=2;(2)∵BD 是DF 和AB 的比例中项,∴ 又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠; ∴ADF ∆∽DBA ∆; ∴1==BD ADDF AF ; ∴AF DF =.24.(本题共3小题,每题4分,满分12分)图6ADE如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B(点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E . (1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.解:(1)∵抛物线32++-=bx x y 与y 轴交于点又抛物线32++-=bx x y 与x 轴交于点A B 的左侧),∵OC OB =;∴)0,3(B ; ∴0339=++-b ,解得2=b ; ∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ;∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ; ∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (4分) (2)当PEQ ∆是等腰三角形时,求BD 的长; (4分)(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值. (6分)PCE C解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴ABBDAP DF =;即323x y y x =--, ∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠; ∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .QPDBAC EF。
上海市徐汇区2017年中考数学二模试卷(含解析)

2017年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.2.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>13.如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A.18° B.24° C.36° D.54°.4.已知直线y=ax+b(a≠0)经过点A(﹣3,0)和点B(0,2),那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=25.某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.6.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形二、填空题(本大题共12题,每题4分,满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m,0.0000077用科学记数法表示为.8.方程=的解是.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1,4),那么k的范围是.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是.11.将抛物线y=x2﹣2x+1向上平移2个单位后,所得抛物线的顶点坐标是.12.在实数,π,3°,tan60°,2中,随机抽取一个数,抽得的数大于2的概率是.13.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选.14.如果t是方程x2﹣2x﹣1=0的根,那么代数式2t2﹣4t的值是.15.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.16.如图,在平行四边形ABCD中,AE⊥CD,垂足为E,AF⊥BC,垂足为F,AD=4,BF=3,∠EAF=60°,设=,如果向量=k(k≠0),那么k的值是.17.如图,在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,AB=3,AC=2,那么AD的长是.18.如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子.三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简,再求值:÷﹣(其中a=)20.解方程组:.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?22.如图,已知梯形ABCD中,ADǁBC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE 的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.24.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.25.如图,已知△ABC中,AB=AC=5,BC=6,点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作∠ODP=∠B,交边AC于点P,交圆O与点E.设OB=x.(1)当点P与点C重合时,求PD的长;(2)设AP﹣EP=y,求y关于x的解析式及定义域;(3)联结OP,当OP⊥OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.2017年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是()A.﹣2 B.2 C.﹣6 D.6.【考点】13:数轴.【分析】本题可以采用两种方法:(1)在数轴上直接数出表示﹣4和表示2的两点之间的距离.(2)用较大的数减去较小的数.【解答】解:根据较大的数减去较小的数得:2﹣(﹣4)=6,故选D.【点评】本题考查了数轴,掌握数轴上两点间的距离的计算方法是解题的关键.2.已知点M(1﹣2m,m﹣1)在第四象限内,那么m的取值范围是()A.m>1 B.m<C.<m<1 D.m<或m>1【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据坐标系内点的横纵坐标符号特点列出关于m的不等式组求解可得.【解答】解:根据题意,可得:,解不等式①,得:m<,解不等式②,得:m<1,∴m<,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A.18° B.24° C.36° D.54°.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】先根据平行线的性质,得出∠ABC=36°,再根据BE平分∠ABC,即可得出∠ABE=∠ABC.【解答】解:∵AB∥CD,∠C=36°,∴∠ABC=36°,又∵BE平分∠ABC,∴∠ABE=∠ABC=18°,故选:A.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.已知直线y=ax+b(a≠0)经过点A(﹣3,0)和点B(0,2),那么关于x的方程ax+b=0的解是()A.x=﹣3 B.x=﹣1 C.x=0 D.x=2【考点】FC:一次函数与一元一次方程.【分析】直线y=ax+b与x轴交点的横坐标的值即为关于x的方程ax+b=0的解.【解答】解:∵直线y=ax+b(a≠0)经过点A(﹣3,0),∴关于x的方程ax+b=0的解是x=﹣3.故选A.【点评】本题本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.5.某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是()A.12和10 B.30和50 C.10和12 D.50和30.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】众数就是出现次数最多的数,据此即可判断,中位数就是大小处于中间位置的数,根据定义判断.【解答】解:这组数据中30元出现次数最多,故众数是:30元;40个数据中位数是第20个数据50元与第21个数据50元的平均数,故中位数是:50元.故选B.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是()A.等腰梯形 B.直角梯形 C.矩形 D.菱形【考点】LI:直角梯形;L9:菱形的判定;LC:矩形的判定.【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可.【解答】解:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形;故选:C.【点评】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理;熟记对角线相等的平行四边形是矩形是解决问题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.人体中成熟的红细胞的平均直径为0.0000077m,0.0000077用科学记数法表示为7.7×10﹣6.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000077=7.7×10﹣6,故答案为:7.7×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.方程=的解是x1=2,x2=﹣1 .【考点】AG:无理方程.【分析】将方程两边平方整理得到关于x的一元二次方程,然后求解即可.【解答】解:方程两边平方得,x2﹣x=2,整理得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验,x1=2,x2=﹣1都是原方程的根,所以,方程的解是x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.9.如果反比例函数y=(k≠0)的图象经过点P(﹣1,4),那么k的范围是﹣4 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点P(﹣1,4)代入反比例函数y=(k≠0),求出k的值即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(﹣1,4),∴4=,解得k=﹣4.故答案为:﹣4.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是k>﹣.【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=32﹣4(﹣k)>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4(﹣k)>0,解得k>﹣.故答案为k>﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.将抛物线y=x2﹣2x+1向上平移2个单位后,所得抛物线的顶点坐标是(1,2).【考点】H6:二次函数图象与几何变换.【分析】根据配方法先化为顶点式,再根据上加下减左加右减的原则得出解析式,最后确定顶点坐标即可.【解答】解:y=x2﹣2x+1=(x﹣1)2,平移后的解析式为y=(x﹣1)2+2,∴顶点的坐标为(1,2),故答案为(1,2).【点评】本题考查了二次函数的图象与几何变换,掌握用配方法把一般式化为顶点式以及顶点坐标的求法是解题的关键.12.在实数,π,3°,tan60°,2中,随机抽取一个数,抽得的数大于2的概率是.【考点】X4:概率公式.【分析】先找出大于2的数,再根据概率公式即可得出答案.【解答】解:在实数,π,3°,tan60°,2中,大于2的数有,π,则抽得的数大于2的概率是;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选甲.【考点】W7:方差;W2:加权平均数.【分析】先确定平均数较大的运动员,再选出方差较小的运动员.【解答】解:因为甲的平均数较大,且甲的方差较小,比较稳定,所以选择甲参加比赛.故答案为:甲.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好14.如果t是方程x2﹣2x﹣1=0的根,那么代数式2t2﹣4t的值是 2 .【考点】A3:一元二次方程的解.【专题】11 :计算题.【分析】根据一元二次方程的解的定义得到t2﹣2t﹣1=0,则t2﹣2t=1,然后利用整体代入的方法计算代数式2t2﹣4t的值.【解答】解:当x=t时,t2﹣2t﹣1=0,则t2﹣2t=1,所以2t2﹣4t=2(t2﹣2t)=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是36 .【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据相似三角形的判定和性质结论得到结论.【解答】解:∵DG∥BC,AH⊥BC,∴AH⊥DG,△ADG∽△ABC,∴,即,∴DE=6,∴DG=2DE=12,∴矩形DEFG的周长=2×(6+12)=36.故答案为:36.【点评】本题考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.16.如图,在平行四边形ABCD中,AE⊥CD,垂足为E,AF⊥BC,垂足为F,AD=4,BF=3,∠EAF=60°,设=,如果向量=k(k≠0),那么k的值是﹣.【考点】LM:*平面向量;L5:平行四边形的性质.【分析】根据AE⊥CD、AF⊥BC及∠EAF=60°可得∠C=120°,由平行四边形得出∠B=∠D=60°、AB∥CD且AB=CD,利用三角函数求得DE=2、AB=6,CE=4,最后可得==﹣=﹣.【解答】解:∵AE⊥CD、AF⊥BC,∴∠AEC=∠AFC=90°,∵∠EAF=60°,∴∠C=360°﹣∠AEC﹣∠AFC=120°,∵四边形ABCD是平行四边形,∴∠B=∠D=60°,∴DE=ADcosD=4×=2,AB===6,则CE=CD﹣DE=AB﹣DE=6﹣2=4,∵AB∥CD,且AB=CD,∴==﹣=﹣=﹣,故答案为:﹣.【点评】本题主要考查四边形内角和、平行四边形的性质、三角函数的应用及平面向量的计算,熟练掌握平行四边形的性质是解题的关键.17.如图,在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,AB=3,AC=2,那么AD的长是.【考点】S9:相似三角形的判定与性质.【分析】根据题意得到△ACD∽△BCA,然后根据题目中的数据即可求得AD的长.【解答】解:∵在△ABC中,AD平分∠BAC交边BC于点D,BD=AD,∴∠BAD=∠CAD,∠BAD=∠ABD,∴∠ABC=∠CAD,又∵∠ACD=∠BCA,∴△ACD∽△BCA,∴,∵BD=AD,AB=3,AC=2,∴,解得,AD=,CD=,故答案为:.【点评】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出三角形相似的条件.18.如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子α+β=180°.【考点】R2:旋转的性质;K7:三角形内角和定理;KH:等腰三角形的性质.【分析】先过A作AF⊥CD,根据旋转的性质,得出∠ADE=∠ACB=α,AC=AD,∠CAD=2β,再根据等腰三角形的性质,即可得到Rt△ADF中,∠DAF+∠ADF=β+α﹣90°=90°,据此可得α与β的等量关系.【解答】解:如图,过A作AF⊥CD,由旋转可得,∠ADE=∠ACB=α,∵CD⊥DE,∴∠ADC=α﹣90°,由旋转可得,AC=AD,∠CAD=2β,∴∠DAF=β,∴Rt△ADF中,∠DAF+∠ADF=90°,即β+α﹣90°=90°,∴α+β=180°.故答案为:α+β=180°.【点评】本题主要考查了旋转的性质,三角形内角和定理以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造直角三角形,依据等腰三角形三线合一的性质进行计算.三、(本大题共7题,第19-22题每题10分;第23、24每题12分;第25题14分;满分78分)19.先化简,再求值:÷﹣(其中a=)【考点】6D:分式的化简求值.【分析】先算除法,再算减法,最后把a的值代入进行计算即可.【解答】解:原式=•﹣=(a﹣1)﹣3=a﹣1﹣3=a﹣4.当a=时,原式=﹣4=﹣3.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.20.解方程组:.【考点】AF:高次方程.【分析】由②得出(2x﹣3y)2=16,求出2x﹣3y=±4,把原方程组转化成两个二元一次方程组,求出方程组的解即可.【解答】解:由②得:(2x﹣3y)2=16,2x﹣3y=±4,即原方程组化为和,解得:,,即原方程组的解为:,.【点评】本题考查了解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.21.某足球特色学校在商场购买甲、乙两种品牌的足球.已知乙种足球比甲种足球每只贵20元,该校分别花费2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是购得乙种足球数量的2倍,求甲、乙两种足球的单价各是多少元?【考点】B7:分式方程的应用.【分析】设购买一个甲品牌的足球需x元,则购买一个乙品牌的足球需(x+20)元,根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可.【解答】解:(1)设购买一个甲种足球需要x元,=×2,解得,x=50,经检验,x=50是原分式方程的解,所以x+20=70(元),答:购买一个甲种足球需50元,一个乙种足球需70元.【点评】本题考查分式方程的应用,关键是根据数量作为等量关系列出方程.22.如图,已知梯形ABCD中,ADǁBC,AC、BD相交于点O,AB⊥AC,AD=CD,AB=3,BC=5.求:(1)tan∠ACD的值;(2)梯形ABCD的面积.【考点】LH:梯形;T7:解直角三角形.【分析】(1)作DE∥AB交BC于E,交AC于M,证出DE⊥AC,由等腰三角形的性质得出AM=CM,证明四边形ABED是平行四边形,得出DE=AB=3,在Rt△ABC中,由勾股定理求出AC=4,得出AM=CM=2,由平行线分线段成比例定理得出DM=EM=DE=,即可求出tan∠ACD==;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积,即可得出答案.【解答】解:(1)作DE∥AB交BC于E,交AC于M,如图所示:∵AB⊥AC,DE∥AB,∴DE⊥AC,∵AD=CD,∴AM=CM,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=3,在Rt△ABC中,AC===4,∴AM=CM=2,∵AD∥BC,∴DM:EM=AM:CM=1:1,∴DM=EM=DE=,∴tan∠ACD===;(2)梯形ABCD的面积=△ABC的面积+△ACD的面积=×3×4+×4×=9.【点评】本题考查了梯形的性质、等腰三角形的性质、勾股定理、平行线的性质、平行线分线段成比例定理、梯形和三角形面积的计算等知识;本题综合性强,有一定难度.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE 的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【考点】LA:菱形的判定与性质.【分析】(1)如图2中,首先证明四边形DMEN是平行四边形,再证明ME=MD即可证明.(2)如图1中,取BE的中点F,连接DM、DF.只要证明△DMG≌△DFN即可.【解答】证明:(1)如图2中,∵AM=ME.AD=DB,∴DM∥BE,∴∠GDN+∠DNE=180°,∵∠GDN=∠AEB,∴∠AEB+∠DNE=180°,∴AE∥DN,∴四边形DMEN是平行四边形,∵DM=BE,EM=AE,AE=BE,∴DM=EM,∴四边形DMEN是菱形.(2)如图1中,取BE的中点F,连接DM、DF.由(1)可知四边形EMDF是菱形,∴∠AEB=∠MDF,DM=DF,∴∠GDN=∠AEB,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点评】本题考查菱形的判定和性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先确定出抛物线解析式,①设出点D坐标,用三角形ABD的面积建立方程即可得出点D坐标;②分点M在OD上方,利用内错角相等,两直线平行,即可得出点M的纵坐标,即可得出M的坐标,带你M在OD下方时,求出直线DG的解析式,和抛物线解析式联立求出直线和抛物线的交点即可判断不存在;(2)设出点D的坐标,利用平行线分线段成比例定理表示出OE,OF求和即可得出结论.【解答】解:(1)∵抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),∴A(﹣2,0),4a+4=0,∴a=﹣1,AB=4,∴抛物线的解析式为y=﹣x2+4,①设D(m,﹣m2+4),∵△ABD的面积为4,∴4=×4(﹣m2+4)∴m=±,∵点D在第一象限,∴m=,∴D(,2),②如图1,点M在OD上方时,∵∠MDO=∠BOD,∴DM∥AB,∴M(﹣,2),当M在OD下方时,设DM交x轴于G,设G(n,0),∴OG=n,∵D(,2),∴DG=,∵∠MDO=∠BOD,∴OG=DG,∴,∴n=,∴G(,0),∵D(,2),∴直线DG的解析式为y=﹣2x+6①,∵抛物线的解析式为y=﹣x2+4②,联立①②得,x=,y=2,此时交点刚好是D点,所以在OD下方不存在点M.(2)OE+OF的值不发生变化,理由:如图2,过点D作DH⊥AB于H,∴OF∥DH,∴,设D(b,﹣b2+4),∴AH=b+2,DH=﹣b2+4,∵OA=2,∴,∴OF=,同理:OE=2(2+b),∴OE+OF=2(2﹣b)+2(2+b)=8.【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的判定,平行线分线段成比例定理,解(1)的关键是求出抛物线解析式,难点是分情况求出点M的坐标,解(2)的关键是作出辅助线.25.如图,已知△ABC中,AB=AC=5,BC=6,点O是边BC上的动点,以点O为圆心,OB为半径作圆O,交AB边于点D,过点D作∠ODP=∠B,交边AC于点P,交圆O与点E.设OB=x.(1)当点P与点C重合时,求PD的长;(2)设AP﹣EP=y,求y关于x的解析式及定义域;(3)联结OP,当OP⊥OD时,试判断以点P为圆心,PC为半径的圆P与圆O的位置关系.【考点】MR:圆的综合题.【分析】(1)如图1中,首先求出cos∠B,cos∠A,如图2中,当点P与C重合时,只要证明PA=PD 即可;(2)如图2中,作CG⊥AB于G,OH⊥BD于H.分两种情形①当≤x≤时,如图4中.②当<x<时,如图5中,作PG⊥AB于G.(3)如图6中,连接OP.根据cos∠C=cos∠B==,列出方程,求出两圆的半径,圆心距即可判断.【解答】解:(1)如图1中,作AH⊥BC于H,CG⊥AB于G,∵AB=AC=5,AH⊥BC,∴BH=CH=3,AH=4,∵•BC•AH=•AB•CG,∴CG=,AG==,∴cos∠B=,cos∠BAC=,如图2中,当点P与C重合时,∵OB=OD,∴∠B=∠ODB=∠ACB,∵∠ADO=∠B+∠BOD=∠CDO+∠ADP,∠ODP=∠B,∴∠ADP=∠BOD=∠BAC,∴PA=PD=5;(2)如图2中,作CG⊥AB于G,OH⊥BD于H.∵AD=2AG=,∵BD=2BH=2OB•cos∠B=x,∴x+=5,∴x=,如图3中,当P、E重合时,作EG⊥AD于G.根据对称性可知,B、E关于直线OD对称,∴DB=DE=AE=x,∵cos∠A==,∴=,解得x=,当点D与A重合时x=5,∴x=,当≤x≤时,如图4中,∵y=PA﹣PE=PD﹣PE=DE=BD=x,∴y=x,当<x<时,如图5中,作PG⊥AB于G.∵BD=DE=x,DG=AG=(5﹣x),∴AP=AG÷cos∠A=(5﹣x),∴y=AP﹣EP=(5﹣x)﹣[x﹣(5﹣x)]=﹣x+,综上所述,y=.(3)如图6中,连接OP.连接OP,∵OP⊥AC,∴cos∠C=cos∠B==,∴=,∴x=,PC=,OP=,∵<+,∴以点P为圆心,PC为半径的圆P与圆O的位置关系是相交.【点评】本题考查圆综合题、锐角三角函数、等腰三角形的判定和性质等知识,解题的关键是寻找特殊点解决问题,学会构建方程的解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
上海各区二模题含解析

2017年上海市初三二模数学汇编之18题(十六区全)1.(2017徐汇二模)如图,在V ABC 中,(90180)ACB αα∠=<<o o ,将V ABC 绕点A 逆时针旋转2β后得V AED ,其中点E 、D 分别和点B 、C 对应,联结CD ,如果⊥CD ED ,请写出一个关于α与β的等量关系式 :________________.【考点】图形的旋转、等腰三角形【解析】根据题意:ACB ADE α∠=∠=,90CDE ∠=︒Q ,90ADC α∴∠=-︒,2,BAE DAC AC BC β∠=∠==Q , 90ACD ADC β∴∠=∠=︒-,180αβ∴+=︒.2.(2017黄埔二模)如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、C 落到对角线AC 上点M 、N 处.已知2MN =,1NC =,则矩形ABCD 的面积是 .【考点】图形的翻折、勾股定理【解析】设AB x =,由题意可得:2,3.AN AD x AC x ==+=+在Rt ADC V 中,222AD DC AC +=,即222(2)(3)x x x ++=+.解得:1x =+((319ABCD S AD DC ∴=⨯==+X3.(2017静安二模)如图,A e 和B e 的半径分别为5和1,3AB =,点O 在直线AB 上. O e 与A e 、B e 都内切,那么O e 半径是 .【考点】圆与圆的位置关系图(1)图(2)【解析】根据题意:,A O O B OA R R OB R R =-=-,|||62|3O AB OA OB R ∴=-=-=32RO ∴=,924.(2017闵行二模)如图,在Rt ABC V 中,90,8,6,C AC BC ∠=︒==点D E 、分别在边AB AC 、上,将ADE V 沿直线DE 翻折,点A 的对应点在边AB 上,联结'A C .如果''A C A A =,那么BD = .【考点】勾股定理、图形的翻折【解析】根据题意: 115'''5,''222A A AB AC AB AD DB A B =======15''2BD BA A D ∴=+=5.(2017普陀二模)将ABC V 绕点B 按逆时针方向旋转得到EBD V ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,BDC ABC V :V,已知BC =,5AC =,那么DBF V 的面积等于 .【考点】图形的旋转、相似、八字形【解析】223BDC ABC BC CD CA CD AD AC CD ∴=⋅∴==∴=-=Q V :V333=588BDF BDF BDF BDE ABC BDE S S S AD DF DF ADF BEF EB EF S DE S S ∴=∴==∴==V V V V V V Q V :V6.(2017杨浦二模)如图,在Rt ABC V 中,90, 4.C CA CB ∠=︒==将ABC V 翻折,是得点B 与点AC 的中点M 重合,如果折痕与边AB 的交点为E ,那么BE 的长为 .【考点】图形的翻折、勾股定理、等腰直角三角BBA33154588216BDF ABC S S ∴==⨯=V VHBA【解析】过点M 作MH AB ⊥,设BE x =,根据题意得:,AB ME BE x AH MH HE x ======,在Rt MHE V 中,222222+)MH HE ME x x x +=∴=∴=( 7.(2017嘉定二模)如图,在ABC V 中,390,10,cos 5ACB AB A ∠=︒==,将ABC V 绕着点C 旋转,点A 、B 的对应点分别记为'A 、'B ,''A B 与边AB 相交于点E ,如果''A B AC ⊥那么线段'B E 的长为 .【考点】图形的旋转、母子三角形、锐角三角比【解析】根据题意:3'''cos '1065A C AB A =⋅=⨯=,318''cos '655A F A C A =⋅=⨯=32''''5B F A B A F ∴=-=,246,55CF AF AC CF ==∴=-=Q42424''3155AEF ABC EF AF B E B F EF ∴==∴=-=QV :V 8.(2017长宁、金山、青浦二模)如图,在Rt ABC V 中,,AB AC D E =、是斜边BC 上两点,45DAE ∠=︒,将ADC V 绕点A 顺时针旋转90︒后,得到AFB V .设,=BD a EC b =.那么AB = .【考点】图形的翻折、勾股定理【解析】将ABD V 沿AD 翻折得到ADF V ,联结EF .根据题意得:,ABD AFD AEF AEC ≅≅V V V V ,,DF BD a EF EC b ∴====.45B C DFA AFE ∠=∠=∠=∠=︒90DFE ∴∠=︒DE ∴=+BC BD DE EC a b AB ∴=+=++=9.(2017崇明二模)如图,已知ABC V 中,3,4,BC AC BD ==平分ABC ∠,将ABC V 绕着点A 旋转后,点B 、C 的对应点分别记为11B C 、,如果点1B 落在射线BD 上.那么1CC 的长度为 .BBB【考点】图形的旋转、八字形、旋转相似【解析】1111111,//ABB CBB ABB AB B CBB AB B AB BC ∠=∠∠=∠∴∠=∠∴Q1111111AB B D BB AD AB BB ABB ACC BC DC DB AC CC ∴==∴=∴=V :V,即154CC =1CC ∴=10. (2017虹口二模)如图,在Rt ABC V 中,490,10,sin ,5C AB B ∠=︒==点D 在斜边AB 上,把ACD V 沿直线CD 翻折,使得点A 落在同一平面内的'A 处,当'A D 平行Rt ABCV 的直角边时,AD 的长为 .【考点】图形的翻折、八字形【解析】图(2)根据题意12,1332AC AB ∠=∠∠=∠∴∠=∠∴⊥QA'B2416''''//'4455AC BC A D A ECE A E A D BC A D AD AB BC CE⋅∴==∴=∴=∴=∴=Q 图(3)根据题意1238AD AC ∠=∠=∠∴==.综上:4AD =或8.11. (2017松江二模)如图,已知在矩形ABCD 中,4,=8AB AD =,将ABCV 沿对角线AC 翻折,点B 落在点E 处,联结DE ,则DE 的长为 .【考点】图形的翻折、八字形、勾股定理【解析】根据题意:123AF CF ∠=∠=∠∴=,设AF x =,在Rt AFC V 中2222216(8)5AE EF AF x x x +=∴+-=∴=,//EF DF AF CF ED AC ==∴Q355DE EF DE AC FC ∴==∴=12.(2017宝山二模)如图,E F 、分别在E正方形ABCD 的边AB 、AD 上的点,且AE AF =,联结EF ,将AEF V 绕点A 逆时针旋转45︒,使E 落在1E ,F 落在1F ,联结1BE 并延长交1DF 于点G,如果1AB AE ==,则DG = .【考点】图形的旋转、勾股定理、全等、八字型、A 字型【解析】根据题意:11ABE AF D ABF ADG AQB DQG AQB DQG ≅∴∠=∠∠=∠∴V V Q V :V34DG DQ DG AB BQ ∴===13. (2017奉贤二模)如图,在矩形ABCD 中,点E 是边AD 上的一点,过点E 作EF BC ⊥.垂足为点F ,将BEF V 绕点E 逆时针旋转,使点B落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好使边DC 的中点,那么ADAB的值是 .【考点】图形的旋转、一线三等角【解析】根据题意:,EBF EFN ENM NMC DEM ENM ≅≅V V V V :V :V设CM x =,则2,DM CM CD AB EN x ED CN x ED ⋅===∴=∴==2AD MN x BN MN x AB ∴=∴==∴=14. (2017 浦东二模)如图,矩形ABCD 中,4,7AB AD ==,点E F 、分别在边上,AD BC、且点B F、关于过点E的直线对称,如果以CD 为直径的圆与EF 相切,那么AE = .MF2x7-2x4【考点】图形的翻折、勾股定理【解析】根据题意:设AE x = ,则7DE x =-,2,72BF x FC x ==-, ,7,142DEG HEG HFG CFG DE HE x CF HF x ≅≅∴==-==-QV V V V143,BE FE x ∴==-在Rt ABE V 中,222AB AE BE +=,即2216(143x x +=-) 解得:12153,()2x x ==舍去,故 3.AE =。
月徐汇区中考数学二模试卷及答案

2016学年第二学期徐汇区学习能力诊断卷初三数学试卷2017.4(时间100分钟满分150分)考生注意:1 •本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2•除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1 •如果数轴上表示2和4的两点分别是点A和点B,那么点A和点B之间的距离是(A) 2 ; (B) 2 ;(C) 6 ; (D)6 •2.已知点M (1 2m, m1)在第四象限内,那么m的取值范围是(A) m 1 ;(B) m 1;(C)1m 1 ;(D)1m 或m 1 2223.如图1, AB//CD , BE平分ABC ,C36,那么ABE的大小是(A) 18 ; (B) 24 ; (C)36 ; (D)54 •4•已知直线y ax b(a 0)经过点A( 3,0)和点B(0,2),那么关于x的方程ax b 0 的解是(A) x 3; (B) x 1; (C) x 0; (D) x 2 •5•某校开展“阅读季”活动,小明调查了班级里40名同学计划购书的花费情况,并将结果绘制成如图2所示的条形统计图,根据图中相关信息,这次调查获取的样本数据的众数和中位数分别是(A) 12和10; (B) 30 和50; (C) 10和12; (D) 50和30 •6.如图3,在ABC中,AC BC ,点D、E分别是边AB、AC的中点,延长DE到F , 使得EF DE,那么四边形ADCF是(A)等腰梯形;(B)直角梯形;(C)矩形;(D)菱形.&方程x2 xk9•如果反比例函数y —(k 0)的图像经过点P( 1,4),那么k的值是__▲x0.0000077 用A表示为二•填空题(本大题共7.人体中红细胞的直径科学记数法C图3E将数210•如果关于X的方程x 3x k 0有两个不相等的实数根,那么k的取值范围是_▲2x 1向上平移2个单位后,所得新抛物线的顶点坐标是12.在实数.、5、、30、tan60、2中,随机抽取一个数,抽得的数大于2的概率是▲ _. 13•甲、乙、丙、丁四名跳高运动员赛前几次选拔赛成绩如表1所示,根据表中的信息,如果要从中选择一名成绩好又发挥稳定的运动员参加比赛,那么应该选_.(表2 214. 如果t是方程X 2x 1 0的一个根,那么代数式2t 4t的值是__▲—.15. 如图4,四边形DEFG是ABC的内接矩形,其中点D、G分别在边AB、AC上,点E、F 在边BC 上, DG 2DE , AH 是ABC 的高,BC 20, AH 15,那么矩形DEFG 的周长是_▲_ .16. 如图5,在口ABCD中,AE CD,垂足为E , AF BC ,垂足为F , AD 4 ,uuu rBF 3, EAF 60,设AB a,如果向量CE ka(k 0),那么k的值是_▲ __.17. 如图6,在ABC中,AD平分BAC交边BC于点D , BD AD , AB 3 , AC 2,那么AD的长是▲-.18.如图7,在ABC 中,ACB (90180 ),将ABC绕着点A逆时针旋转90 )后得AED,其中点E、D分别和点B、C对应,联结CD,如果CD ED,请写出一个关于与的等量关系式:19. (本题满分10分)弓色于3a 3(其中a 1).a a a 1 a 1 2 120. (本题满分10 分)满分78分)211.将抛物线y x2 (0先化简,再求值:x 2y 3;解方程组: 2 24x 12xy 9y 1621. (本题满分10分) 某足球特色学校在商场购买甲、乙两种品牌的足球•已知乙种足球比甲种足球每只贵 20元,该校分别花费 2000元、1400元购买甲、乙两种足球,这样购得甲种足球的数量是 购得乙种足球数量的 2倍,求甲、乙两种足球的单价各是多少元? 22. (本题共2小题,每小题5分,满分10分) 如图8,已知梯形 ABCD 中,AD // BC , AD CD , 求: (1) (2) 23. (本题共 AC 、BD 相交于点O , AB AC , AB 3,BC 5. tan ACD 的值; 梯形ABCD 的面积. 2小题,每小题6分,满分12分) A DO图8如图9-1,在Rt ABC 中, ACB 90 ,点D 是边AB 的 边BC 上,AE BE ,点M 是AE 的中点,联结 CM ,点G 在 作 GDN (1) 如图 (2) 如图 AEB 交边BC 于N . 9-2,当点G 和点 9-1,当点G 和点 M 重合时,求证:四边形 M 、C 不重合时,求证: DMEN 是菱形;DG24.(本题满分 12 分)如图10, 已知抛物线y 点B(2,0),与y 轴交于点C , ax 2 4(a 0)与 x 轴 A 点D 是抛物线在第一象限 (1 )当 ABD 的面积为4时, ① 求点D 的坐标; ② 联结OD ,点M 是该抛物线上的点,MDO BOD ,求点M 的坐标;(4分) (2)直线BD 、AD 分别交y 轴于点 E 、F ,那么0E 请说明理由. (4分) 25.(本题满分14分) 如图11,已知 ABC 中,AB 点,以点O 为圆心,OB 为半径作圆 ODP B ,交边AC 于点P ,C中点,点E 在 线段CM 上,CED 图9-1N 交于点A 和的点.(4 且 分) NA OF D 图9-2B的值是否变化,6,点0是边 AC 5, BC O ,交边AB 于点D ,过点D 交圆O 于点E •设OB x .(1 )当点P 与点C 重合时,求PD 的长;(4分)D 作BC 上的动(2)设AP EP y ,求y 关于x 的函数解析式及定义域;图10(5分) (3)联结OP ,当OP OD 时,试判断以点P 为圆心,PC 的圆P 与圆O 的/亠护¥方 位置关糸.为半径 (5分)21. 2016学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. D ;2. B ;3. A ;4. A ;5. B ;6. C .二•填空题:(本大题共12题,满分48分)68. x 2 或 x1 ; 9. 4;10.9277.7 10k ;11. (1,2);124513. 甲; 14.2 ; 15. 36 ;216. - ;17. 3.10 . 18.180 等.;35三、 (本大题共7 题,第 19、 20、 21、22题每题10分, ,第 23、 24题每题12分, 第25题 14分,满分78分)与方程①组合得方程组;由题意,得空00卫也2x x 20解得x 50;经检验,x 50是原方程的根,且符合题意;所以 x 2070 ;19. 解:原式 a (a 1)a(a 3) (a 1)(a当 a —<2 V2 11时,原式3(a 1). a 1.2 1 4 .2 3.20. 解:由方程②得2x 3y (I)x 2y2x 3y3,或(n)4;解方程组(I )、 (n)得•••原方程组的解是y 11,或2解:设甲种足球的单价为每个x 元,x 2y 3, 2x 3y 4; 1,十 x17, 或2 y10; X 2 17, y 210.则乙种足球的单价为每个 (x 20)元.答:甲种足球的单价为每个50元,乙种足球的单价为每个70元.21.②由题意,分两种情况:•••点 D( . 2,2)••/ AD CD , •DACDCA ; • DCA ACB ;AB AC ,• BAC 90;• AC - BC 2AB 2. 52324;tan ACDAB tan ACB ——AC 34 •(2)过点D 作DG AC ,垂足为G .•/ AD CD ,•1•- CG -AC 22;在Rt DGC 中,DGC 90 ,• -tan DCGDG CG ;• DG CG tan DCG 2 34 3 . 2;1 …S AB CD S ABC S ADC二(3 23) 2 4 9 •23.证明:(1)v 点D 是边AB 的中点,点M 是AE 的中点,• MD//BE , MD -BE , ME -2 2AE ;• MDN END 180 ;又 GDNAEB , • AEBEND 180 ;• DN//AE•四边形MDNE 是平行四边形;•/ AE BE , • MD ME ; • 四边形MDNE 是菱形•22•解:(1)ACB ;M 是AE 的中点, 占 八、、•/ AD//BC ,••• DAC(2)联结 DM 、CD ••/ ACB 90,点D 是边AB 的中点,• CD 又DM•/ AE AM ; AEB 180 2 B , CDB 180 2 B ;AEB CDB ; 又 GDN AEB , • GDNCD GDN CD N CDBCDN .即 GDC NDB ; CGD BND ;24•解:(1)①•••抛物线y ax 24(a0)与x轴交于0,得a,…y2x 4 ; •••可得 A( 2,0),设点 D(x, y), 由题意,得 2y 解得y2 (负值舍去);•••点D(x,2)在抛物线y x 2 4上,可得x 2 (负值舍去);MCD ;DG DN MAD B; CDM ;• B ;• MCDAD BD ,CM DM ,• ADM BE ,• EAB1过点D 作DM 〃AB 交抛物线yx 2 4与点M • 此时点M 满足题意。
【2017年整理】上海市徐汇区初三数学二模及答案

2013-2014学年第二学期徐汇区学习能力诊断卷(二模)九年级数学学科 2014.4(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求作答在答题纸规定位置,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1. 下列运算正确的是( ▲ )(A )236a a a ⋅=; (B )623a a a ÷=; (C )236()a a =; (D )624a a a -=. 2. 一次函数21y x =+的图像不经过的象限是( ▲ )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 3. 如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E . 若∠1=25°,则BAF ∠的度数为( ▲ ) (A )15°; (B )50°; (C )25°; (D )12.5°4. 在ABC △中,∠A 、∠B 都是锐角,且1sin cos 2A B ==,那么ABC △的形状是( ▲ ). (A )钝角三角形; (B )直角三角形; (C )锐角三角形; (D )无法确定. 5. “大衣哥”朱之文是从“我是大明星” 这个舞台走出来的民间艺人。
受此影响,卖豆腐的老张也来参加节目的海选,当天共有15位选手参加决逐争取8个晋级名额。
已知他们的分数互不相同,老张要判断自己是否能够晋级,只要知道下列15名选手成绩统计量中的( ▲ ) (A ) 众数; (B ) 方差; (C ) 中位数; (D )平均数. 6. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,联结BC ,若∠A=36°,则∠C 等于( ▲ )(A )36°; (B )54°; (C )60°; (D )27°.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.函数y =的定义域是 ▲ .8. 分解因式:2ab ab -= ▲ .A9. 如果反比例函数的图像经过点(1,-2),那么这个函数的解析式是 ▲ .10. 2014年政府报告中安排财政赤字约为13500亿元,13500亿用科学记数法表示为 ▲ 亿. 11. 不等式组320622x x ->⎧⎨-≥⎩的解集是 ▲ .12. 若关于x 的方程2430ax x -+=有两个相等的实数根,则常数a 的值是 ▲ . 13. 掷一个材质均匀的骰子,向上一面的点数是3的倍数的概率是 ▲ .14. 如图,在ABC △中,D 是BC 的中点,设AB a = ,AC b = ,则 BD =▲ . 15. 解放军某部承担一段长1500米的清除公路冰雪任务.为尽快清除冰雪,该部官兵每小时比原计划多清除20米,结果提前24小时完成任务,若设原计划每小时清除公路冰雪x 米,则可列出方程16. 如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若5BD =,4BO =,则 AO 的长为 ▲ .17. 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为223y x x =--,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 ▲ .18.如图,已知ABC △中,90B ∠=︒,3BC =,4AB =,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将ADE △沿DE 翻折得到'A DE △,若'A EC △是直角三角形,则AD 长为 ▲ . 三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算: 0201411(2(1)2()2----++-.20. (本题满分10分)先化简,再求值:21111x x x x ⎛⎫⎛⎫+÷- ⎪ ⎪-+⎝⎭⎝⎭,其中x =.21.(本题满分10分)如图,在△ABC 中,AB =AC =10,sin C =35,点D 是BC 上一点,且DC =AC .(1) 求BD 的长; (2) 求tan ∠BAD .22. (本题满分10分)春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1) 抽查了 ▲ 个班级,并将该条形统计图补充完整;(2) 扇形图中患流感人数为4名所在扇形的圆心角的度数为 ▲ ; (3) 若该校有45个班级,请估计该校此次患流感的人数. 23. (本题满分12分)已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC . (1) 求证:AO OF OC OE ⋅=⋅;(2) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形.24. (本题满分12分)如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G . (1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m的代数式表示PM 的长;2班2名1名123456各种患流感人数情况的班级数 占抽查班级总数的百分比分布图班级个数抽查班级患流感人数条形统计图抽查班级患流感人数条形图(3)在(2)的条件下,联结PC,若△PCF和△AEM相似,求m的值.25. (本题满分14分)如图,已知∠MON两边分别为OM、ON,sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.图1 备用图BA 2013-2014学年第二学期徐汇区初三年级数学学科学习能力诊断卷参考答案和评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.D ; 3.C ; 4.B ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分) 7. 1x ≥-; 8.()1ab b -; 9.2y x =-; 10.41.3510⨯; 11.223x -<≤; 12.43a =;13.13;14.1122a b →→-; 15.150015002420x x -=+; 16.6; 17.3 18.78或258.三、(本大题共7题,满分78分)19.解:原式=21122+-+ …………………………………………………(7分)=2………………………………………………………(3分)20.原式=2211(1)11x x x xx x -++-÷-+……………………………………………………(2分) =22211x x x x+∙- ………………………………………………………(2分) =221(1)(1)x x x x x+∙+-=11x - ……………………………………………(3分) 将x =11x-,11x ==- ……………………………………(3分) 21.解:(1)过点A 作AH ⊥BC ,垂足为H ,则BH=CH =12BC ………………………(2分) 在Rt △ACD 中,sin C =35AH AC =, ∵AC =10,∴AH=6, ………………………………(2分)∴8HC BH ==== ………………………………(1分)∴BD =BC -CD =6.……………………………………………………………………(1分) (2)过点D 作DE ⊥AB ,垂足为E , …………………………………………… (1分)Rt △BED 中,sin B =ED BD 35=,BD = 6,∴185DE =……………………………(1分)∴245BE =,∴265AE = …………………………………(1分) ∴tan ∠BAD =ED AE 913=………………………………………………………(1分) 22. 解:(1)20个班级;条形统计图中,缺少的部分对应纵轴值为2;…………… (4分)(2)︒=⨯︒72204360; ………………………………………………………(2分) (3)45(122233445564)18020⨯+⨯+⨯+⨯+⨯+⨯⨯=.…………… (1分)23.(1)证明:∵点E 是BC 的中点,∴BC =2EC= 2BE .又∵BC =2AD ,∴EC=AD . ………………………………(1分) //AD EC ,∴四边形AECD 为平行四边形.……………………(1分) ∴//AE CD , ………………………………………………………(1分)∴AO OEOC OF=即AO OF OC OE ∙=∙.………………………………(1分) (2)证明:∵E 、F 分别是BC 、CD 的中点,∴//EF BD 且12EF BD =.………………………………………………(1分)又//AE CD ,∴四边形EFDG 为平行四边形.………………… ……(1分) ∵AD 平行且等于BE ,∴ 四边形ABED 是平行四边形.………… ……(1分) 又∵∠ABE =90°,∴ 四边形ABED 是矩形.…………………………………(1分) ∴ BD=AE 且12EG AE =12BD =…………………………………………(2分) ∴EG EF =,∴四边形EFDG 是菱形……………………………………(2分)24. 解:(1)直线44y x =+与x 轴、y 轴交于B (-1,0)、C (0,4),……………(1分)∵抛物线22y ax ax c =-+(a ≠ 0)经过点B (-1,0)、C (0,4),∴204a a c c ++=⎧⎨=⎩,解得434a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为248433y x x =-++.……(1分)∵抛物线22y ax ax c =-+的对称轴为直线1x =,∴A (3,0).……………………(1分)(2)设直线AC 的解析式为y=kx+b (k ≠ 0).∵A (3,0)、点C (0,4).∴304k b b +=⎧⎨=⎩,解得434k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 的解析式为443y x =-+.…………(1分) ∵点M 在AC 上,点P 在抛物线248433y x x =-++上,且点M 的横坐标为m , ∴M (m ,443m -+)、P (m ,248433m m -++),∴ PM=PE -ME =2443m m -+.……………………………………………………(2分)(3)由题意PG= PE -EF= 24833m m -+, CG=m ………………………………(1分)∵//ME CO ,∴所以∆AOC ∽∆AEM .∵∆PCF 和∆AEM 相似,∴∆PCF 和∆AOC 相似 ……………………………(1分)①若∆PFC ∽∆AOC ,则PCF ACO ∠=∠,有3tan tan 4PG PCG ACO CG ∠==∠=,即2483334m m m ⎛⎫-+÷= ⎪⎝⎭;解得2316m =.(2分) ②若∆PFC ∽∆ACO ,则PCF AOC ∠=∠, 有3tan tan 4CG CPG ACO PG ∠==∠=,即2484333m m m ⎛⎫-+÷= ⎪⎝⎭,解得1m =.………………………………………(2分) 综上所述,当∆PCF 和∆AEM 相似时,2316m =或1m =25.(1)解:作AF OB ⊥,垂足为点F . 在Rt AOF ∆中,3sin 5AF O OA∠== 5OE = ,∴3AF =, ∴4OF ==O D x = ,∴5AB AD x ==- ∴BF === ,A B A CA FB C=⊥ , ∴2y BF ==(0x <<(2)解:由题意得点A ′在AF联结A ′D ,作A H OA '⊥,垂足为点H , 在Rt A HA '∆中424cos 655A H A A FAO ''=⨯∠=⨯=(1分)若⊙A ′与直线O A 相切,则有x -=5524 (1`分) ∴51=x ………(1`分) (3)解:57-=-=x AD HA HD 在Rt A HD '∆中,A D '=== ①若⊙'A 与⊙D 外切,则A D DO A B ''=+,有(5)x x +-=145x =. ………………………(2`分)②若⊙'A 与⊙D 内切,则A D DO A B ''=-,有(5)x x --=8615x ∴=(舍). ………………………(2分)综上所述,当x = 145时两圆相外切。
2015-2017上海中考初三一模二模压轴18.24.25

2017 年上海市初三二模数学汇编之18 题(十六区全)1. (2017 徐汇二模)如图,在口ABC 中,∠ACB = α (90< α < 180) ,将口ABC 绕点A 逆时针旋转2β 后得口AED ,其中点E 、D 分别和点B 、C 对应,联结CD ,如果CD ⊥ ED ,请写出一个关于α 与β 的等量关系式:.CDE2. (2017 黄埔二模)如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、C 落到对角线AC 上点M 、N 处.已知MN = 2 ,NC = 1 ,则矩形ABCD 的面积是.B E CNM FA D3. (2017 静安二模)如图,口A 和口B 的半径分别为5 和1,AB = 3 ,点O在直线AB 上. 口O 与口A 、口B 都内切,那么口O 半径是 .A B4. (2017 闵行二模)如图,在Rt口ABC 中,∠C = 90︒, AC = 8, BC = 6, 点D、E 分别在边AB、AC 上,将口A DE 沿直线DE 翻折,点A 的对应点在边AB 上,联结A 'C .如果A 'C = A ' A ,那么BD = .B35. (2017 普陀二模)将口ABC 绕点B 按逆时针方向旋转得到口EBD ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,口BDC 口口ABC ,AC = 5 ,那么口DBF 的面积等于.A6. (2017 杨浦二模)如图,在Rt口ABC 中,∠C = 90︒, C A = CB = 4. 将口ABC 翻折,是得点B 与点AC 的中点M 重合,如果折痕与边AB 的交点为E ,那么BE 的长为 .B7. (2017 嘉定二模)如图,在口ABC 中,∠ACB = 90︒, AB = 10, cos A =5,将口ABC 绕着点C旋转,点A 、B 的对应点分别记为A' 、B ' ,A' B ' 与边AB 相交于点E ,如果A ' B ' ⊥ AC 那么线段B ' E 的长为.8. (2017 长宁、金山、青浦二模)如图,在Rt口ABC 中,AB = AC, D、E 是斜边BC 上两点,∠DAE = 45︒ ,将口ADC 绕点A 顺时针旋转90︒ 后,得到口AFB .设BD = a, EC =b .那么AB = .49. (2017 崇明二模)如图,已知口ABC 中,BC = 3, AC = 4, BD 平分∠ABC ,将口ABC 绕着点A 旋转后,点B 、C 的对应点分别记为B1、C1,如果点B1 落在射线BD 上.那么CC1 的长度为 .B10. (2017 虹口二模)如图,在Rt口ABC 中,∠C = 90︒, AB = 10, sin B =5, 点D 在斜边AB 上,把口ACD 沿直线CD 翻折,使得点A 落在同一平面内的A' 处,当A' D 平行Rt口ABC 的直角边时,AD 的长为.11. (2017 松江二模)如图,已知在矩形ABCD 中,AB = 4, AD=8 ,将口ABC 沿对角线AC 翻折,点B 落在点E处,联结DE ,则DE 的长为 .DC12. (2017 宝山二模)如图,E、F 分别在正方形ABCD 的边AB 、AD 上的点,且AE = AF ,联结EF ,将口AEF 绕点A 逆时针旋转45︒ ,使E 落在E1,F 落在F1,联结BE1 并延长交DF1 于点G ,如果AB = AE = 1,则DG = .13. (2017 奉贤二模)如图,在矩形ABCD 中,点E 是边AD 上的一点,过点E 作EF ⊥ BC .垂足为点F ,将口B EF 绕点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好AD使边DC 的值是.AB14. (2017 浦东二模)如图,矩形ABCD 中,AB = 4, AD = 7 ,点E、F 分别在边AD、BC 上,且点B、F 关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么AE = .DC上海数学2016 初三一模考汇总cm18.如图,等边△ABC 中,D 是BC 边上的一点,且BD : DC = 1: 3 ,把∆ ABC 折叠,使点A 落在BC 边上的点D 处.那么AM的值为▲ .ANAMNB D C第18 题图ZCM8cm23.如图1,△ABC 中,∠ACB = 90︒ ,CD ⊥ AB ,垂足为D.(1)求证:△ACD ∽△CBD ;(2)如图2,延长DC 至点G,联结BG,过点A 作AF ⊥ BG ,垂足为F,AF 交CD 于点E.求证:CD2 = DE ⋅ DG .CAD BGC FEAD Bcm24.如图,在直角坐标系中,一条抛物线与x 轴交于A、B 两点,与y 轴交于C 点,其中B (3, 0) ,C (0, 4) ,点A 在x 轴的负半轴上,OC 4OA .(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P 是x 轴正半轴上一个动点,过点P 作PM ∥BC 交射线AC 于点M,联结CP,若△CPM 的面积为2,则请求出点P 的坐标.cm25 如图,已知矩形ABCD 中,AB = 6 ,BC = 8 ,E 是BC 边上一点(不与B、C 重合),过点E 作EF ⊥ AE 交AC、CD 于点M、F,过点B 作BG ⊥ AC ,垂足为G,BG 交AE 于点H.(1)求证:△ABH ∽△ECM ;EH(2)设BE = x ,= y ,求y 关于x 的函数解析式,并写出定义域;EM(3)当△BHE 为等腰三角形时,求BE 的长.A DGH FMB E CA DGB Chk18.如图,在矩形ABCD 中,AB=6,AD=10,点E 是边BC 的中点,联结AE,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC,则cos ∠ECF = ▲.hk23.如图,点E 是四边形ABCD 的对角线BD 上的一点,∠BAE=∠CBD=∠DAC.(1)求证:DE ⋅ AB = BC ⋅ AE ;(2)求证:∠AED +∠ADC=180°.hk24.在平面直角坐标系xOy 中,抛物线y = ax2 + bx + 3 与x 轴分别交于点A(2,0)、点B(点B 在点A 的右侧),与y 轴交于点C,tan ∠CBA = 1. 2(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD 的面积;(3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.第24 题图hk25.如图,在□ABCD中,E 为边BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G,过点G 作AE 的平行线,交射线DC 于点H.设AD=EF= x . AB AF(1)当x = 1 时,求AG : AB 的值;(2)设S△GDHS△EBA= y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)当DH = 3HC 时,求x 的值.sj18.已知在△ABC 中,∠C=90°,BC=3,AC=4,点D 是AB 边上一点,将△ABC 沿着直线CD 翻折,点A 落在直线AB 上的点A′处,则sin∠A'CD = ▲.23.已知如图,在△ABC 中,BD 平分∠ABC 交AC 于点D,点E 在AB 上,且BD2 = BE ⋅ BC 。
2017年上海市各区数学二模压轴题——图文解析

2017 年上海市浦东新区中考模拟第 24、25 题 / 34 2017 年上海市普陀区中考模拟第 24、25 题 / 38 2017 年上海市松江区中考模拟第 24、25 题 / 42 2017 年上海市徐汇区中考模拟第 24、25 题 / 47 2017 年上海市杨浦区中考模拟第 24、25 题 / 52 2017 年上海市长宁区青浦区金山区中考模拟第 24、25 题 / 55 2017 年上海市宝山区中考模拟第 18 题 / 59 2017 年上海市崇明区中考模拟第 18 题 / 60 2017 年上海市奉贤区中考模拟第 18 题 / 61 2017 年上海市虹口区中考模拟第 18 题 / 62 2017 年上海市黄浦区中考模拟第 18 题 / 63 2017 年上海市嘉定区中考模拟第 18 题 / 64 2017 年上海市静安区中考模拟第 18 题 / 65 2017 年上海市闵行区中考模拟第 18 题 / 66 2017 年上海市浦东新区中考模拟第 18 题 / 67 2017 年上海市普陀区中考模拟第 18 题 / 68 2017 年上海市松江区中考模拟第 18 题 / 69 2017 年上海市徐汇区中考模拟第 18 题 / 70 2017 年上海市杨浦区中考模拟第 18 题 / 71 2017 年上海市长宁区青浦区金山区中考模拟第 18 题 / 72 2015 年上海市中考第 24、25 题 / 73 2016 年上海市中考第 24、25 题 / 77
心从点 C 出发,沿着 CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点 P 从点 B 出发, 沿着 BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为 t 秒(0<t≤5) ,以 P 为 圆心、PB 为半径的⊙P 与 AB、BC 的另一个交点分别为 E、D,联结 ED、EQ. (1)判断并证明 ED 与 BC 的位置关系,并求当 点 Q 与点 D 重合时 t 的值; (2)当⊙P 和 AC 相交时,设 CQ 为 x,⊙P 被 AC 解得的弦长为 y,求 y 关于 x 的函数解析式,并求 当⊙Q 过点 B 时⊙P 被 AC 截得的弦长; (3)若⊙P 与⊙Q 相交,写出 t 的取值范围. 图1
{3套试卷汇总}2017-2018上海市徐汇区某名校九年级质量调研数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+>,解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.2.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 【答案】D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】∵点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12,把△ABO 缩小, ∴点A 的对应点A′的坐标是:(-2,1)或(2,-1).故选D .【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k .3.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C.x2-4y D.x2-6x+9【答案】D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.5.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.6.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.7.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【解析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A.25 B.253C.10033D.25253+【答案】B【解析】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE BECE=,3CE x∴=,在直角△ABE中,AE=3x,AC=50米,则3350 x x-=,解得253x=即小岛B到公路l的距离为253,故选B.9.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m【答案】D【解析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC , ∴, 即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 10.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解【答案】C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+, ∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .二、填空题(本题包括8个小题)11.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.【答案】1【解析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体. 故答案为1.12.如图,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC=∠ABF ;④AD 2=FQ•AC ,其中正确的结论的个数是______.【答案】①②③④ .【解析】由正方形的性质得出∠FAD =90°,AD =AF =EF ,证出∠CAD =∠AFG ,由AAS 证明△FGA ≌△ACD ,得出AC =FG ,①正确;证明四边形CBFG 是矩形,得出S △FAB =12FB•FG =12S 四边形CBFG ,②正确; 由等腰直角三角形的性质和矩形的性质得出∠ABC =∠ABF =45°,③正确;证出△ACD ∽△FEQ ,得出对应边成比例,得出④正确.【详解】解:∵四边形ADEF 为正方形,∴∠FAD =90°,AD =AF =EF ,∴∠CAD +∠FAG =90°,∵FG ⊥CA ,∴∠GAF +∠AFG =90°,∴∠CAD =∠AFG ,在△FGA 和△ACD 中,G C AFG CAD AF AD ===∠∠⎧⎪∠∠⎨⎪⎩,∴△FGA ≌△ACD (AAS ),∴AC =FG ,①正确;∵BC =AC ,∴FG =BC ,∵∠ACB =90°,FG ⊥CA ,∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF =90°,S △FAB =12FB•FG =12S 四边形CBFG ,②正确; ∵CA =CB ,∠C =∠CBF =90°,∴∠ABC =∠ABF =45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.13.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.【答案】1【解析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.【详解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案为:1.14.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.15.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.16.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.17.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.【答案】75°【解析】试题解析:∵直线l1∥l2,∴130.A ∠=∠=,AB AC =75.ACB B ∴∠=∠=2180175.ACB ∴∠=-∠-∠=故答案为75.18.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.【答案】-1.【解析】设正方形的对角线OA 长为1m ,根据正方形的性质则可得出B 、C 坐标,代入二次函数y=ax 1+c 中,即可求出a 和c ,从而求积.【详解】设正方形的对角线OA 长为1m ,则B (﹣m ,m ),C (m ,m ),A (0,1m );把A ,C 的坐标代入解析式可得:c=1m①,am 1+c=m②,①代入②得:am 1+1m=m ,解得:a=-1m , 则ac=-1m⨯1m=-1. 考点:二次函数综合题.三、解答题(本题包括8个小题)19.如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB 的 ;联结AD ,AD =7,sin ∠DAC =,BC =9,求AC 的长.【答案】(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.20.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) 14;(2)112.【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.【答案】证明见解析.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA=BE ,AD=EC=ED ,又∵BE=CE ,∴BA=BE=ED= AD∴四边形ABED 为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.【答案】(1)一次函数为112y x =-+,反比例函数为12y x=-;(2)△AHO 的周长为12 【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy 为定值,列出方程,求出k 的值,便可求出反比例函数的解析式;根据k 的值求出B 两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH 的长,根据勾股定理,可得AO 的长,根据三角形的周长,可得答案.详解:(1)∵tan ∠AOH=AH OH =43 ∴AH=43OH=4 ∴A (-4,3),代入k y x =,得 k=-4×3=-12∴反比例函数为12y x =-∴122m -=-∴m=6∴B (6,-2)∴4362a b a b -+=⎧⎨+=-⎩∴a =12-,b=1 ∴一次函数为112y x =-+ (2)2222345OA AH OH =+=+=△AHO 的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.求∠APB 的度数;已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.【答案】(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】(1)根据直角的性质和三角形的内角和求解;(2)过点P 作PH ⊥AB 于点H ,根据解直角三角形,求出点P 到AB 的距离,然后比较即可.【详解】解:(1)在△APB 中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P 作PH ⊥AB 于点H在Rt △APH 中,∠PAH=30°,3PH在Rt △BPH 中,∠PBH=30°,3∴23PH=50 解得325,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形24.如图,一次函数y =kx+b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.【答案】 (1)y=2x-,y=−x−1;(2)x<−2或0<x<1 【解析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.25.解分式方程:21133x x x-+=--. 【答案】2x =.【解析】试题分析:方程最简公分母为(3)x -,方程两边同乘(3)x -将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘(3)x -,得:213x x --=-,整理解得:2x =,经检验:2x =是原方程的解.考点:解分式方程.26.如图1在正方形ABCD 的外侧作两个等边三角形ADE 和DCF ,连接AF ,BE .请判断:AF 与BE 的数量关系是,位置关系 ;如图2,若将条件“两个等边三角形ADE 和DCF”变为“两个等腰三角形ADE 和DCF ,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE 和DCF 为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.【答案】(1)AF=BE ,AF ⊥BE ;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE ≌△DAF ,然后可得BE=AF ,∠ABE=∠DAF ,进而通过直角可证得BE ⊥AF ;(2)类似(1)的证法,证明△ABE ≌△DAF ,然后可得AF=BE ,AF ⊥BE ,因此结论还成立;(3)类似(1)(2)证法,先证△AED ≌△DFC ,然后再证△ABE ≌△DAF ,因此可得证结论.试题解析:解:(1)AF=BE ,AF ⊥BE .(2)结论成立.证明:∵四边形ABCD 是正方形,∴BA="AD" =DC ,∠BAD =∠ADC = 90°.在△EAD 和△FDC 中,,{,,EA FD ED FC AD DC ===∴△EAD ≌△FDC .∴∠EAD=∠FDC .∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32 OBCD=B.32αβ=C.1232SS=D.1232CC=【答案】D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβ=,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.2.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.3.如图所示的几何体的主视图是( )A .B .C .D .【答案】A【解析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C. 点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.5.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 的长为( )A.2 B.23C.3D.43【答案】B【解析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×3=23.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.6.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.7.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.考点:科学记数法—表示较小的数.8.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【答案】D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y 随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小. 9.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+【答案】A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.10.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A .1B .3C .4D .5【答案】D【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02ba-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>, ∴0c >,∴0abc >,故①正确; ②抛物线与x 轴只有一个交点, ∴0∆=,∴240b ac -=,故②正确; ③令1x =-,∴20y a b c =-++=, ∵12ba-=-, ∴2b a =,∴220a a c -++=, ∴2a c =+, ∵22c +>, ∴2a >,故③正确; ④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确; 故选D . 【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想. 二、填空题(本题包括8个小题)11.太阳半径约为696000千米,数字696000用科学记数法表示为 千米. 【答案】56.9610⨯ .【解析】试题分析:696000=6.96×1,故答案为6.96×1. 考点:科学记数法—表示较大的数. 12.若a+b=5,ab=3,则a 2+b 2=_____. 【答案】1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解. 解:∵a+b=5, ∴a 2+2ab+b 2=25, ∵ab=3, ∴a 2+b 2=1. 故答案为1.考点:完全平方公式.13.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________. 【答案】-10【解析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可.【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4, ∴−2+4=−m ,−2×4=n , 解得:m=−2,n=−8, ∴m+n=−10, 故答案为:-10 【点睛】此题考查根与系数的关系,掌握运算法则是解题关键14.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°, ∵AD ⊥AB ,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.15.因式分解:a2b+2ab+b=.【答案】b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b216.如图,点A,B在反比例函数kyx(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.【答案】【解析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴CD=k=22229376()2AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.17.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF=__.【答案】15°【解析】根据平行四边形的性质和圆的半径相等得到△AOB 为等边三角形,根据等腰三角形的三线合一得到∠BOF =∠AOF =30°,根据圆周角定理计算即可. 【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC=AB ,又OA=OB=OC , ∴OA=OB=AB ,∴△AOB 为等边三角形.∵OF ⊥OC,OC ∥AB ,∴OF ⊥AB ,∴∠BOF=∠AOF=30°. 由圆周角定理得1152BAF BOF ∠=∠= , 故答案为15°.18.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2。
最新上海各区二模18题(含解析)

2017年上海市初三二模数学汇编之18题(十六区全)1. (2017徐汇二模)如图,在ABC 中,(90180)ACB αα∠=<<,将ABC 绕点A 逆时针旋转2β后得AED ,其中点E 、D 分别和点B 、C 对应,联结CD ,如果⊥CD ED ,请写出一个关于α与β的等量关系式 :________________.【考点】图形的旋转、等腰三角形 【解析】根据题意:ACB ADE α∠=∠=,90CDE ∠=︒,90ADC α∴∠=-︒,2,BAE DAC AC BC β∠=∠==, 90ACD ADC β∴∠=∠=︒-,180αβ∴+=︒.2. (2017黄埔二模)如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、C 落到对角线AC 上点M 、N 处.已知2MN =,1NC =,则矩形ABCD 的面积是 .【考点】图形的翻折、勾股定理【解析】设AB x =,由题意可得:2,3.AN AD x AC x ==+=+在Rt ADC 中,222AD DC AC +=,即222(2)(3)x x x ++=+.解得:1x =((319ABCDSAD DC ∴=⨯==+3. (2017静安二模)如图,A 和B 的半径分别为5和1,3AB =,点O 在直线AB上.O 与A 、B 都内切,那么O 半径是 .【考点】圆与圆的位置关系【解析】根据题意:,A O O B OA R R OB R R =-=-,|||62|3O AB OA OB R ∴=-=-=32RO ∴=,924. (2017闵行二模)如图,在Rt ABC 中,90,8,6,C AC BC ∠=︒==点D E 、分别在边AB AC 、上,将ADE 沿直线DE 翻折,点A 的对应点在边AB 上,联结'A C .如果''A C A A =,那么BD = .【考点】勾股定理、图形的翻折图(1)图(2)【解析】根据题意: 115'''5,''222A A AB AC AB AD DB A B ======= 15''2BD BA A D ∴=+=5. (2017普陀二模)将ABC 绕点B 按逆时针方向旋转得到EBD ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,BDC ABC ,已知BC =5AC =,那么DBF 的面积等于 .【考点】图形的旋转、相似、八字形【解析】22235BDC ABC BC CD CA CD AD AC CD ∴=⋅∴==∴=-=333=588BDF BDF BDF BDEABCBDESSS AD DF DF ADFBEF EB EF SDE SS∴=∴==∴==6. (2017杨浦二模)如图,在Rt ABC 中,90, 4.CCA CB ∠=︒==将ABC翻折,是得点B 与点AC 的中点M 重合,如果折痕与边AB 的交点为E ,那么BE 的长为 .【考点】图形的翻折、勾股定理、等腰直角三角B BA33154588216BDFABCSS ∴==⨯=HBA【解析】过点M 作MH AB ⊥,设BE x =,根据题意得:,AB ME BE x AH MH HE x ======,在Rt MHE 中,222222+)MH HE ME x x x +=∴=∴=( 7. (2017嘉定二模)如图,在ABC 中,390,10,cos 5ACB AB A ∠=︒==,将ABC 绕着点C 旋转,点A 、B 的对应点分别记为'A 、'B ,''A B 与边AB 相交于点E ,如果''A B AC ⊥那么线段'B E 的长为 .【考点】图形的旋转、母子三角形、锐角三角比 【解析】根据题意:3'''cos '1065A C A B A =⋅=⨯=,318''cos '655A F A C A =⋅=⨯= 32''''5B F A B A F ∴=-=,246,55CF A AF AC CF ==∴=-= 42424''3155AEFABC EF AF B E B F EF ∴==∴=-= 8. (2017长宁、金山、青浦二模)如图,在Rt ABC 中,,AB AC D E =、是斜边BC上两点,45DAE ∠=︒,将ADC 绕点A 顺时针旋转90︒后,得到AFB .设,=BD a EC b =.那么AB= .BB【考点】图形的翻折、勾股定理【解析】将ABD沿AD翻折得到ADF,联结EF.根据题意得:,ABD AFD AEF AEC≅≅,,DF BDa EF EC b∴====.45B C DFA AFE∠=∠=∠=∠=︒90DFE∴∠=︒DE∴=+2BC BD DE EC a b AB+∴=+=++=9.(2017崇明二模)如图,已知ABC中,3,4,BC AC BD==平分ABC∠,将ABC绕着点A旋转后,点B、C的对应点分别记为11B C、,如果点1B落在射线BD上.那么1CC的长度为 .【考点】图形的旋转、八字形、旋转相似【解析】1111111,//ABB CBB ABB AB B CBB AB B AB BC∠=∠∠=∠∴∠=∠∴1111111AB B D BBAD ABBB ABB ACCBC DC DB AC CC∴==∴=∴=,即154CC= 1CC∴=10.(2017虹口二模)如图,在Rt ABC中,490,10,sin,5C AB B∠=︒==点D在斜边AB上,把ACD沿直线CD翻折,使得点A落在同一平面内的'A处,当'A D平行Rt ABC的直角边时,AD的长为 .A'【考点】图形的翻折、八字形【解析】图(2)根据题意12,1332AC AB ∠=∠∠=∠∴∠=∠∴⊥2416''''//'4455AC BC A D A ECE A E A D BC A D AD AB BC CE⋅∴==∴=∴=∴=∴= 图(3)根据题意1238AD AC ∠=∠=∠∴==.综上:4AD =或8.11. (2017松江二模)如图,已知在矩形ABCD 中,4,=8AB AD =,将ABC 沿对角线AC 翻折,点B 落在点E 处,联结DE ,则DE 的长为 .【考点】图形的翻折、八字形、勾股定理【解析】根据题意:123AF CF ∠=∠=∠∴=,设AF x =,在Rt AFC 中2222216(8)5AE EF AF x x x +=∴+-=∴=,//EF DF AF CF ED AC ==∴35DE EF DE AC FC ∴==∴=12. (2017宝山二模)如图,E F 、分别在正方形ABCD 的边AB 、AD 上的点,且AE AF =,联结EF ,将AEF 绕点A 逆时针旋转45︒,使E 落在1E ,F 落在1F ,联结1BE 并延长交1DF 于点G,如果1AB AE ==,则DG = .E【考点】图形的旋转、勾股定理、全等、八字型、A 字型 【解析】根据题意:11ABE AF D ABF ADGAQB DQG AQB DQG ≅∴∠=∠∠=∠∴34DG DQ DG AB BQ ∴===13. (2017奉贤二模)如图,在矩形ABCD 中,点E 是边AD 上的一点,过点E 作EF BC ⊥.垂足为点F ,将BEF 绕点E 逆时针旋转,使点B 落在边BC 上的点N处,点F 落在边DC 上的点M 处,如果点M 恰好使边DC 的中点,那么ADAB的值是 .【考点】图形的旋转、一线三等角【解析】根据题意:,EBF EFN ENM NMCDEM ENM ≅≅设CM x =,则2,DM CM CD AB EN x ED CN x ED ⋅===∴=∴==233AD MN x BN MN x AB ∴=∴==∴=14. (2017 浦东二模)如图,矩形ABCD 中,MF4,7AB AD ==,点E F 、分别在边AD BC 、上,且点B F 、关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么AE = .【考点】图形的翻折、勾股定理【解析】根据题意:设AE x = ,则7DE x =-,2,72BF x FC x ==-,,7,142DEG HEG HFG CFG DE HE x CF HF x ≅≅∴==-==-143,BE FE x ∴==-在Rt ABE 中,222AB AE BE +=,即2216(143x x +=-)解得:12153,()2x x ==舍去,故 3.AE = 小学一年级语文第一学期课文中学到的字。