1.1回归分析的基本思想及其初步应用-教学设计-教案
教学设计2:1.1 回归分析的基本思想及其初步应用(二)
回归分析的基本思想及其初步【教学目标】:(1)知识与技能:了解回归模型的选择;进一步理解非线性模型通过变换转化为线性回归模型;体会不同模型拟合数据的效果。
(2)过程与方法:从实例出发,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,通过学习相关指数,用相关指数来刻画回归的效果,进而归纳出回归分析的一般步骤,并对具体问题进行回归分析,用于解决实际问题。
(3)情感态度与价值观:任何事物都是相对的,但又有一定的规律性,我们只要从实际出发,不断探求事物的内在联系,就会找出其中的规律性,形成解决实际问题的方法和能力。
【教学重点】:1、加深体会有些非线性模型通过变换可以转化为线性回归模型;2、了解在解决问题的过程中寻找更好的模型的方法。
【教学难点】:1、了解常用函数的图像特点,选择不同的模型建模;2、通过比较相关指数对不同的模型进行比较。
【课前准备】:课件【教学过程设计】:练习与测试1. 在两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( A )A .模型1的相关指数2R 为98.0B .模型2的相关指数2R 为80.0C .模型3的相关指数2R 为50.0D .模型4的相关指数2R 为25.02. 已知两个变量的回归模型为x y 22⋅=,则样本点的(1,4.4)的残差是_____________________【答案】0.43. 残差平方和用数学符号表示为___________________,它代表了随机误差的效应;解释变量的效应值称为回归平方和,可以用相关指数2R 来刻画回归的效果,其计算公式是___________________。
显然,2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好。
【答案】4. 在研究硝酸纳的可溶性程度时,对不同的温度观测它在水中的溶解度,得观测结果如下表所示: 则由此得到的回归直线的斜率是____________。
回归分析的基本思想及其初步应用-教学设计-教案
回归分析的基本思想及其基本应用(第二课时)邹晓利1. 教学目标1、能根据散点分布特点,建立不同的回归模型;了解有些非线性模型通过转化可以转化为线性回归模型2、了解回归模型的选择,体会不同模型拟合数据的效果2. 教学重点/难点教学重点:通过探究使学生体会有些非线性模型通过等量变换、对数变换可以转化为线性回归模型教学难点:如何启发学生“对变量作适当的变换”(等量变换、对数变换),变非线性为线性,建立线性回归模型3. 教学用具多媒体4. 教学过程一、复习引入【师】问题1:你能回忆一下建立回归模型的基本步骤?【师】提出问题,引导学生回忆建立回归模型的基本步骤(选变量、画散点图、选模型、估计参数、分析与预测)【生】回忆、叙述建立回归模型的基本步骤【板演/PPT】二、新知介绍(1)回归模型选择比较不同模型拟合效果【师】如图我们搜集了红铃虫的产卵数y和温度x之间的7组观测数据如下表:【板书/PPT】【师】试着建立y与x之间的回归方程【生】类比前面所学过的建立线性回归方程分步骤动手实施解:1)作散点图从散点图上也可以看出,样本点并没有很好的集中在一条直线附近,那么还可以通过什么样的回归模型进行预报呢?【生】思考、交流,选择回归模型,总结方案:方案一:建立指数函数模型方案二:建立二次函数模型y=c1x2+c2【师】那么,如何求出所建立的回归模型的系数呢【生】思考、交流,观察模型,探究变换的方法并发表自己的意见。
最后给出具体的方法。
【师】如果选用指数型模型,是否也可以转化为线性模型呢?如何转化?【生】思考、交流,教师启发学生“幂指数中的自变量如何转化为自变量的一次幂”【板书/PPT】建立数据转换表根据数据得线性回归方程转化为非线性回归模型【板书/PPT】【师】如果选用二次函数模型,是否也可以转化为线性模型呢?如何转化?令t=x2,建立与之间的线性回归方程所以y=0.367t-202.543因为t=x2,即y关于x的二次回归方程为y=0.367t2-202.543。
回归分析的基本思想及其初步应用 说课稿 教案 教学设计
教学目标知识与技能从相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.过程与方法在发现直接求回归直线方程存在缺陷的基础上,引导学生去发现解决问题的新思路——进行回归分析,进而介绍残差分析的方法和利用R2来表示解释变量对于预报变量变化的贡献率.情感、态度与价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,掌握处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识解决实际问题的能力.教学中适当地利用学生的合作与交流,使学生在学习的同时,体会与他人合作的重要性.重点难点教学重点:从残差分析、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;教学难点:了解评价回归效果的两个统计量:相关指数、残差和残差平方和.教学过程引入新课上表是上一节课我们从某大学选取8名女大学生其身高和体重数据组成的数据表,在上一节课中我们通过数据建立了回归直线方程,并根据方程预测了身高为172 cm的女大学生的体重.当时,我们提到根据回归直线方程求得的体重数据,仅是一个估计值,其与真实值之间存在着误差,为了综合分析身高和体重的关系,我们引入了线性回归模型y=bx+a+e 来表示两变量之间的关系,其中e为随机变量,又称随机误差.线性回归模型y=bx+a+e 增加了随机误差项e,因变量y的值由自变量x和随机误差e共同确定.假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上.但是,在图中,数据点并没有完全落在回归直线上.这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了,即自变量x只能解释部分y的变化.同学们考虑一下,随机变量e的均值是多少?方差又是多少?活动设计:学生思考回答问题.学情预测:学生回答E(e)=0,D(e)=σ2>0.教师提问:能否通过D(e)来刻画线性回归模型的拟合程度?学情预测:随机误差e的方差越小,通过回归直线预报真实值y的精度越高.随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差.设计意图:说明研究随机误差e的必要性,通过研究随机误差e可以分析预报值的可信度.提出问题:既然可以用随机变量e的方差来衡量随机误差的大小,即通过方差σ2来刻画预报变量(体重)的变化在多大程度上与随机误差有关,那么如何获得方差σ2呢?学生活动:学生独立思考,小组合作交流讨论.活动结果:可以采用抽样统计的思想,通过随机变量e的样本来估计σ2的大小.设计目的:复习抽样统计思想,以便通过随机变量e的样本来估计总体.探究新知提出问题:既然e 表示了除解释变量以外其他各种影响预报值的因素带来的误差,那么如何获得e 的样本来计算σ2呢?学生活动:分组合作讨论交流.学情预测:由函数模型y ^=b ^x +a ^和回归模型y =bx +a +e 可知e =y -y ^,这样根据图表中女大学生的身高求出预报值,再与真实值作差,即可求得e 的一个估计值.教师:由于在计算回归直线方程时,利用公式求得的b ^和a ^为斜率和截距的估计值,它们与真实值a 和b 之间存在误差,因此y ^是估计值,所以e ^=y -y ^也是一个估计值.由上可知,对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为 e i =y i -bx i -a ,i =1,2,…n ,称其估计值e ^i =y i -y ^i 为相应于点(x i ,y i )的残差.将所有残差的平方加起来,即∑i =1ne ^2i ,这个和称作残差平方和.类比样本方差估计总体方差的思想,可以用 σ^2=1n -2∑i =1n e ^ 2i =1n -2∑i =1n(y i-y ^ i )2(n>2) 作为σ2的估计量,通常,σ^ 2越小,预报精度越高.这样,当我们求得回归直线方程后,可以通过残差来判断模型拟合程度的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.设计目的:通过问题诱思,引入残差概念. 理解新知提出问题:对照女大学生的身高和体重的原始数据,结合求出的回归直线方程,求出相应的残差数据.学生活动:独立完成. 活动结果:样的散点图称作残差图).学生活动:分组合作,共同完成. 活动结果:残差图提出问题:观察上面的残差图,你认为哪几个样本点在采集时可能存在人为的错误?为什么?学生活动:分组讨论. 活动结果:第一个和第六个样本点在采集过程中可能存在错误,因为其他的样本点基本都集中在一个区域内,只有这两个样本点的残差比较大,相对其他样本点来说,分布得较为分散.提出问题:如何从残差图来判断模型的拟合程度? 学生活动:独立思考也可相互讨论.活动结果:因为σ^2越小,预报精度越高,即模型的拟合程度越高,而σ^2越小,e ^的取值越集中,故若残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,且带状区域的宽度越窄,说明拟合精度越高,回归直线的预报精度越高.教师:在统计学上,人们经常用相关指数R 2来刻画回归的效果,其计算公式是:R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2提出问题:分析上面计算相关指数R 2的公式,如何根据R 2来判断模型的拟合效果? 学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:因为对于确定的样本数据而言,∑i =1n(y i -y )2是一个定值,故R 2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.提出问题:在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率,R 2越接近1,表示回归的效果越好,即解释变量和预报变量的线性相关性越强,试计算关于女大学生身高与体重问题中的相关指数R 2.学生活动:学生独立计算获得数据. 活动结果:R 2≈0.64.根据R 2≈0.64就可得出“女大学生的身高解释了64%的体重变化”,或者说“女大学生的体重差异有64%是由身高引起的”.由此就不难理解为什么预报体重和真实值之间有差距了.设计目的:结合图象,让学生直观感受残差图在刻画回归模型拟合效果方面的应用,体会残差分析和相关指数的意义.提出问题:根据前面得到的回归方程,能否预测一名美国女大学生的体重?建立回归模型后能否一劳永逸,在若干年后还可以使用,或者适用于多年以前的女大学生体重预测?学生活动:讨论交流总结发言.活动结果:在使用回归方程进行预报时要注意: (1)回归方程只适用于我们所研究的样本的总体; (2)我们建立的回归方程一般都有时间性;(3)样本取值的范围会影响回归方程的适用范围;(4)不能期望回归方程得到的预报值就是预报变量的精确值.提出问题:结合我们刚学习的概念,现在能否将建立回归模型的步骤补充完整? 学生活动:讨论交流,合作完成.活动结果:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程). (4)按一定规则(如最小二乘法)估计回归方程中的参数.(5)得出结果后分析残差图是否有异常(如个别数据对应残差过大,或残差呈现不随机的规律性,等等).若存在异常,则检查数据是否有误,或模型是否合适等.设计意图:设计问题,让学生讨论分析,得出使用回归方程进行预报需注意的问题,并让学生完善建立回归模型的步骤.在这个过程中,教师不宜做太多引导,要放手给学生,让学生讨论,充分参与进来.运用新知例1一个车间为了规定工时定额,需确定加工零件所花费的时间,为此进行了10次试(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差; (2)你认为这个模型能较好地刻画零件数和加工时间的关系吗? 分析:首先根据散点图粗略判断变量是否具有线性相关性,判断是否可以用线性回归模型来拟合数据,然后通过残差e ^1,e ^2,…,e ^n 来判断模型拟合的效果,判断原始数据是否存在可疑数据.解:(1)根据表中数据作出散点图如下:散点图由散点图可知变量之间具有线性相关关系,可以通过求线性回归方程来拟合数据. 根据公式可求得加工时间对零件数的线性回归方程为y ^=0.668x +54.96.残差数据如下表:残差图由图可知,残差点分布较均匀,即用上述回归模型拟合数据效果很好,但需注意,由残差图也可以看出,第4个样本点和第5个样本点残差较大,需要确认在采集这两个样本点的过程中是否有人为的错误.点评:由散点图判断两个变量的线性相关关系,误差较大,利用残差图可以较好地评价模型的拟合程度,并能发现样本点中的可疑数据.【变练演编】例2求出y 对x 的回归方程,并说明拟合效果的好坏.思路分析:先根据散点图判断两个变量是否线性相关,若相关,求出回归直线方程,然后通过相关指数的大小来评价拟合效果的好坏.解:作出散点图:从作出的散点图可以看出,这些点在一条直线附近,可用线性回归模型来拟合数据.由数据可得x =18,y =45.4,由计算公式得b ^=-2.35,a ^=y -b ^x =87.7.故y 对x 的回归方程为y ^=-2.35x +87.7,列表:所以∑i =15(y i -y ^i )2=8.3,∑i =15(y i -y )2=229.2.相关指数R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2≈0.946.因为0.964很接近1,所以该模型的拟合效果很好.变式1:若要分析是否在上述样本的采集过程中存在可疑数据,应如何分析? 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:可以画出残差图来进行分析.变式2:既然利用残差图和相关指数都能够评价回归模型的拟合效果,能否总结一下两种方法各自的特点?活动成果:利用残差图可以直观展示拟合的效果,而且还可以发现样本数据中的可疑数据;而相关指数是把对拟合效果的评价转换为数值大小的判断,易于量化处理,并能在数量上表现解释变量对于预报变量变化的贡献率.设计意图:进一步熟悉判断拟合效果的方法以及各自的特点. 【达标检测】1.分析下列残差图,所选用的回归模型效果最好的是()ABC D 2.下列说法正确的是( )①回归直线方程适用于一切样本和总体;②回归直线方程一般都有时间性;③样本的取值范围会影响回归直线方程的适用范围;④根据回归直线方程得到的预测值是预测变量的精确值.A .①③④B .②③C .①②D .③④3.在研究气温和热茶销售杯数的关系时,若求得相关指数R 2≈__________,表明“气温解释了85%的热茶销售杯数变化”或者说“热茶销售杯数差异有85%是由气温引起的”.答案:1.D 2.B 3.0.85.课堂小结学生回顾本节课学习的内容,尝试总结,然后不充分的地方由学生相互补充,最后在老师的引导下,用精炼的语言进行概括:1.判断变量是否线性相关的方法以及各自的特点; 2.在运用回归模型时需注意的事项; 3.建立回归模型的基本步骤. 设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程. 补充练习 【基础练习】1.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( )A .①②B .②③C .①③D .①②③2.甲、乙、丙、丁四位同学各自对A ,B 两变量做回归分析,分别得到散点图与残差平方和∑i =1n(y i -y ^i )2如下表115106124103哪位同学的实验结果体现拟合A ,B 两变量关系的模型拟合精度高?( ) A .甲 B .乙 C .丙D .丁 3.关于x 与y 为了对x ,y 两个变量进行统计分析,现有以下两种线性模型:甲:y ^=6.6x +17.5,乙:y ^=7x +17.试比较哪一个模型拟合效果更好.答案或提示:1.D 2.D3.解析:设甲模型的相关指数为R 21,则R 21=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1551 000=0.845;设乙模型的相关指数为R 22,则可求得R 22=0.82,因为R 21>R 22,所以甲模型的拟合效果更好.【拓展练习】 4.假设某种农作物基本苗数x 与有效穗数y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗数. (3)计算各组残差;(4)求R 2,并说明随机误差对有效穗数的影响占百分之几? 解:(1)散点图如图:(2)由图可以看出,样本点呈条状分布,有比较好的线性相关关系,因此可用线性回归方程来建立两个变量之间的关系.设线性回归方程为y ^=b ^x +a ^,由数据可以求得:b ^≈0.291, a ^=y -b ^x =34.67.故所求的线性回归方程为y ^=0.291x +34.67. 当x =56.7时,y ^=0.291×56.7+34.67=51.169 7. 估计有效穗数为51.169 7.(3)各组数据的残差分别是e ^1≈0.37,e ^2≈0.72,e ^3≈-0.5,e ^4≈-2.22,e ^5≈1.61. (4)残差平方和:∑i =15(y i -y ^i )2=8.425 8,又∑i =15(y i -y )2=50.18,∴R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-8.425 850.18≈0.832.即解释变量(农作物基本苗数)对有效穗数的影响约占了83.2%,所以随机误差对有效穗数的影响约占1-83.2%=16.8%.。
教学设计3:1.1 回归分析的基本思想及其初步应用(一)
回归分析的基本思想及其初步应用【教学目标】:(1)知识与技能:了解求线形回归方程的两个计算公式的推导过程,、回归平方和;了解随机误差产生的原因;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。
(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。
(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。
【教学重点】:1.了解判断刻画模型拟合效果的方法——相关指数和残差分析;2.通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。
【教学难点】:1.了解随机误差产生的原因,用残差平方和衡量回归方程的预报精度;2.了解判断刻画模型拟合效果的方法——相关指数和残差分析。
【教学过程设计】:练习与测试1.下面4 个散点图中,不适合用线性回归模型拟合其中两个变量的是(A )A.B.C .D .2. 将非线性模型x e y 32=进行适当变形使之线性化。
【答案】2ln 32ln ln 3ln +=⇒+=x z e x y3. 已知回归方程35.0log 21.1ˆ2-=x y ,则样本点P (4,2.71)的残差为________________。
【答案】()56.015.271.235.04log 2.171.2ˆˆ2=-=--=-=y y e4. 已知线性相关的两变量x ,y 的三个样本点A (0,0),B (1,3),C (4,11),若用直线AB 作为其预测模型,则点C 的残差是________。
【答案】x y AB 3ˆ=,12ˆ=C y,1ˆ=C e 。
5. 若一组观测值(x 1,y 1)、(x 2,y 2)、…、(x n ,y n )之间满足y i =bx i +a +e i (i =1、2. …n)若e i 恒为0,则R 2为【答案】16. 已知线性相关的两变量x ,y 的三个样本点A (0,0),B (1,3),C (4,11),若用直线AB 作为其预测模型,则其相关指数=2R ________。
回归分析的基本思想及其初步应用 精品教案
回归分析的基本思想及其初步应用
【教学目标】
1.知识目标
认识随机误差;认识残差。
2.能力目标
(1)会使用电脑画散点图、求回归直线方程;
(2)能正确理解回归方程的预报结果。
3.情感目标
通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神。
培养学生运用所学知识,解决实际问题的能力。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
【教学重点】
回归分析的基本方法、随机误差e的认识、残差
【教学难点】
回归分析的基本方法
【教学方法】
启发式教学法。
回归分析的基本思想及其初步应用优秀教学设计
由上述计算可得到
并向学生指出: r 1,且 r 越接近于 1,相关程度越大; r 越接近于 0,相关程度
越小.
根据上述结论,引导学生提出如下问题:
当 r 与 1 接近到什么程度时表明 y 与 x 之间具有线性相关关系?
为解决上述问题,一般采取以下方法: 3.(板书)线性相关关系检验方法 (1)说明线性相关关系检验方法的思想及前提. (2)检验的具体方法. ①根据公式计算相关系数 r 的值;
②在附表中查出与显著性水平 0.05 和自由度 n 2 相应的相关系数临界值 r0.05 ;
③检验所得结果:若 r r0.05 ,则 y 与 x 之间线性相关关系不显著;若 r r0.05 ,则 y
与 x 之间存在线性相关关系.
(3)具体例子:计算本节水稻产量与施化肥量中有关数据进行相关性检验,并指出检
n
(xi x)( yi y)
r
i 1
n
n
(xi x)2 ( yi y)2
i 1
n1
n
xi yi nxy
或
r
ቤተ መጻሕፍቲ ባይዱi 1
n
(
xi2 nx 2 )( n
yi2
2
ny )
i 1
n1
叫做变量 y 与 x 之间的样本相关系数(简称相关系数),用它来衡量它们之间的线性相关程
度.
由学生计算本节前面水稻产量与施化肥量的相关系数,即
7
xi yi 7xy
r
i 1
(
7
xi2
2
7x
)(
7
(
yi2
7
2
y
1.1回归分析的基本思想及其初步应用
阿尔山市一中高二年级数学学科导学案主备人代丽艳课时 1 时间45分钟课题 1.1回归分析的基本思想及其初步应用学习目标1.知识与技能:回忆线性回归模型与函数模型的差异,理解用最小二乘法求回归模型的步骤,了解判断两变量间的线性相关关系的强度——相关系数。
了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和;了解偏差平方和分解的思想;了解判断刻画模型拟合效果的方法——相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。
了解回归模型的选择;进一步理解非线性模型通过变换转化为线性回归模型;体会不同模型拟合数据的效果。
2.过程与方法:从实例出发,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,通过学习相关指数,用相关指数来刻画回归的效果,进而归纳出回归分析的一般步骤,并对具体问题进行回归分析,用于解决实际问题。
3.情感态度价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。
重点1、了解线性回归模型与函数模型的差异;了解两变量间的线性相关关系的强度——相关系数。
2、了解判断刻画模型拟合效果的方法——相关指数和残差分析;通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型。
3、加深体会有些非线性模型通过变换可以转化为线性回归模型;了解在解决问题的过程中寻找更好的模型的方法。
难点1.了解线性回归模型与一次函数模型的差异;了解偏差平方和分解的思想。
2.解释残差变量的含义;了解偏差平方和分解的思想。
3.了解常用函数的图像特点,选择不同的模型建模;通过比较相关指数对不同的模型进行比较。
导学设计一、基础知识梳理1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。
求回归直线方程的一般步骤:作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→③写出回归直线方程,并利用回归直线方程进行预测说明.2.回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。
1回归分析的基本思想及其初步应用
3.1. 1回归分析的基本思想及其初步应用一、教学内容与内容解析学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
二、教学目标与目标解析1、通过本节的学习,了解回归分析的基本思想,会对两个变量进行回归分析,明确建立回归模型的基本步骤,并对具体问题进行回归分析,解决实际应用问题。
2、本节的学习,应该让学生通过实际问题去理解回归分析的必要性,明确回归分析的基本思想,从散点图中点的分布上我们发现直接求回归直线方程存在明显的不足,从中引导学生去发现解决问题的新思路—进行回归分析,进而介绍残差分析的方法和利用R的平方来表示解释变量对于预报变量变化的贡献率,从中选择较为合理的回归方程,最后是建立回归模型基本步骤。
3、通过本节课的学习,首先让显示了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,培养我们利用整体的观点和互相联系的观点,来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心。
加强与现实生活的联系,以科学的态度评价两个变量的相关系。
教学中适当地增加学生合作与交流的机会,多从实际生活中找出例子,使学生在学习的同时。
体会与他人合作的重要性,理解处理问题的方法与结论的联系,形成实事求是的严谨的治学态度和锲而不舍的求学精神。
培养学生运用所学知识,解决实际问题的能力。
回归分析,是一种从事物因果关系出发进行预测的方法.操作中,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式),预测今后事物发展的趋势.然而,所建立的回归方程与样本点的分布之间还存在有差异,这一差异就是我们本节课学习的主要内容:随机变量.教学重点:熟练掌握回归分析的步骤;各相关指数、建立回归模型的步骤;通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法。
回归分析的基本思想及其初步应用精品教案
回归剖析的基本思想及其初步应用【教课目的】1.知识目标认识随机偏差;认识残差。
2.能力目标(1)会使用电脑画散点图、求回归直线方程;(2)能正确理解回归方程的预告结果。
3.感情目标经过本节课的学习,增强数学与现实生活的联系,以科学的态度评论两个变量的有关性,理解办理问题的方法,形成谨慎的治学态度和持之以恒的修业精神。
培育学生运用所学知识,解决实质问题的能力。
教课中适合地利用学生合作与沟通,使学生在学习的同时,领会与别人合作的重要性。
【教课重点】回归剖析的基本方法、随机偏差e的认识、残差【教课难点】回归剖析的基本方法【教课方法】启迪式教课法【教课过程设计】教课过程双边活动设计说明教师活动学生活动创建情境:发问:身高和体重之间是察看思虑并从学生感兴趣的供给六名篮球明星什么关系?我们怎样来研回答篮球明星下手,的图片,让学生猜最高究这类关系。
层层深入,引入最重的人,进而引出本提出将要研究的问题课题。
课主题。
“今年级男生身高与体重之间的关系”。
复习回首:1、在学生小组议论的学生小组讨经过有效的复习一、将前面 1、2 问题改时候,教师合时参加论 1、2 两个让学生为后边新为:议论。
问题。
经过小知识的解说打下1、两个变量之间有哪2、教师演示用计算机组议论,使得优秀的基础。
几种关系?进行回归剖析的方学困生也能2、进行线性回归剖析法。
对从前的知的一般步骤是什么。
识有必需的二、学生回答完问题后,认识。
教师用计算机演示一遍操作。
问题体现:1、要修业生小组议论统1、小组议论回归剖析的先决例 1.统计 10 名高三女计方案。
并对学生提出并设计一条件是统计数据生的身高体重数据,汇的方案做出评论个统计 10 不可以有错误而且总后求出依据身高预告2、找学生代表登台操作。
名女生身切合统计规律,体重的回归方程,并随高体重数因此让学生设计机检查一名高三女生的据的方方案能让学生参身高,而后预告体重。
案。
与知识产生的全2、认真察看过程,切合课改登台操作理念。
回归分析的基本思想及其初步应用 说课稿 教案 教学设计
回归分析的基本思想及其初步应用整体设计教材分析1.教材的地位和作用高中新课程中增加了有关统计学初步的内容,先后出现在必修3和选修12(文科)、选修23(理科)中.《数学3(必修)》中的“统计”一章,给出了运用统计的方法解决问题的思路.“线性回归分析”是其介绍的一种分析、整理数据的方法.在这一部分中,学习了如何画散点图、利用最小二乘法的思想、利用计算器求回归直线方程、利用回归直线方程进行预报等内容.然而在大量的实际问题中,两个变量不一定都呈线性相关关系,它们可能呈指数关系或对数关系等非线性关系,本节就是在学习了如何建立线性回归模型的基础上,探索如何建立非线性关系的回归模型.通过本节的学习,使学生了解回归分析的必要性和回归分析的基本思想,明确回归分析的基本方法和基本步骤,学会以科学的态度评价两个变量的相互关系,培养学生运用所学内容解决实际问题的能力.2.课时划分《回归分析的基本思想及其初步应用》的教学分四个课时完成.第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果;第二课时:从相关系数、相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用.第一课时教学目标知识与技能通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.过程与方法让学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法的特点,认识统计方法的应用;通过使用转化后的数据,利用计算器求相关指数,使学生体会使用计算器处理数据的方法.情感、态度与价值观从实际问题中发现已有知识的不足,激发好奇心、求知欲;通过寻求有效的数据处理方法,开阔学生的思路,培养学生的探索精神和转化能力;通过案例的分析,使学生了解回归分析在生活实际中的应用,增强数学“取之生活,用于生活”的意识,提高学习兴趣.重点难点教学重点:理解回归分析的基本思想,掌握求回归直线方程的步骤以及对随机误差e 的认识.教学难点:掌握利用回归分析的基本思想处理实际问题的方法,理解随机误差的来源和对预报变量的影响.教学过程引入新课“名师出高徒”这句谚语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?活动设计:学生独立思考回答问题.学情预测:学生可能会说“有名气的老师不一定能教出厉害的学生”.教师提问:为什么?学情预测:两者之间有一定的关系,但不是必然关系,即名师也不一定出高徒,二者之间是相关关系.设计意图:复习两个变量之间的关系,为线性分析做好铺垫.提出问题:我们知道函数关系是一种确定性关系,而相关关系是一种非确定性关系.上面所提的“名师”与“高徒”之间的关系就是相关关系.那么,在一般情况下,人的身高与体重之间是什么关系?试设计一个方案,来分析某大学女大学生的身高与体重之间的关系,并以此为依据来预报身高172 cm 的女大学生的体重.学生活动:学生独立思考,小组合作交流讨论.活动结果:可以采用统计的方法解决这一问题,先采用随机抽样的方法,从在校女大学生中抽取样本,记录其身高和体重,然后通过所得数据建立线性回归模型,并根据所得模型来预报身高为172 cm 女生的体重.其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.设计目的:合理设计问题,使学生进一步掌握用统计方法解决问题的基本步骤:提出问题、收集数据、分析整理数据、进行预测或决策.探究新知的女大学生的体重.学生活动:分组合作探究,查阅课本中的计算公式. 活动结果:1.画散点图选取身高为自变量x ,体重为因变量y ,画出散点图形象展示两个变量之间的关系,并判断二者是否具有线性关系.由散点图可以发现,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归直线近似刻画它们之间的关系.2.建立回归方程由计算器可得a ^=-85.712,b ^=0.849. 于是得到回归方程为y ^=0.849x -85.712. 3.预报和决策当x =172时,y ^=0.849×172-85.712=60.316(kg). 即一名身高为172 cm 的女大学生的体重预报值为60.316 kg.设计目的:进一步熟悉线性回归分析的具体步骤.提高学生的数据处理能力,并让学生在应用中进一步掌握公式的应用.理解新知提出问题:散点图可以直观地判断两个变量是否具有线性相关性,那么还有什么方法可以描述线性相关性的强弱?学生活动:独立思考或相互讨论.活动结果:还可以通过必修3中的相关系数r来衡量两个变量之间的线性相关关系的强弱.提出问题:如何根据相关系数r描述线性相关性的强弱?相关系数的计算公式是什么?学生活动:独立思考或相互讨论,查阅课本.活动结果:其具体计算公式是r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑j=1n(y j-y)2当r>0时,表示两个变量正相关;当r<0时,表示两个变量负相关.r的绝对值越接近1,表明两个变量的线性相关性越强,r的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,当|r|>0.75时,认为两个变量有很强的线性相关关系.提出问题:在本例中,身高和体重的线性相关系数是多少?我们建立的线性回归方程是否有实际意义?学生活动:独立计算,求解相关系数.活动结果:利用计算器可求得r=0.798,这表明体重与身高有很强的线性相关关系,从而表明我们建立的回归模型是有意义的.设计目的:复习判断变量线性相关的方法,进一步熟悉线性相关系数的计算公式.提出问题:身高为172 cm的女大学生的体重一定是60.316 kg吗?学生活动:独立思考也可相互讨论.学情预测:不一定,但一般可以认为她的体重在60.316 kg左右.提出问题:为什么根据得到的一次函数求出的结论不一定是实际值?产生误差的原因是什么?学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一次函数y=bx+a来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).在数据表中身高为165 cm的3名女大学生的体重分别为48 kg、57 kg 和61 kg,如果能用一次函数来描述体重与身高的关系,那么身高为165 cm的3名女大学生的体重应相同.这就说明体重不仅受身高的影响还受其他因素的影响,如生理因素、饮食锻炼、测量工具等其他因素.为了更准确地刻画身高和体重的关系,可用下列线性回归模型来表示:y=bx+a+e.我们把自变量x称作解释变量,因变量y称作预报变量,e称为随机误差.提出问题:函数模型y=bx+a与线性回归模型y=bx+a+e有什么关系?学生活动:独立思考也可相互讨论,教师加以适当的引导提示.活动结果:线性回归模型:y=bx+a+e当理想化时,即所有人的遗传因素都一样、所有人的生活方式都一样、所有测量都没有误差等等,此时e=0,线性回归模型就变成函数模型了.因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.设计目的:突破本节课的难点,充分认识随机误差e 的来源和对预报变量的影响. 运用新知例1)有如下统计数据:若由此资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用为多少?分析:正确理解计算b ^,a ^的公式和准确的计算,是求线性回归方程的关键. 解:(1)由上表中的数据列成下表故x =4,y=5,∑i =15x 2i =90,∑i =15x i y i =112.3,于是b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=112.3-5×4×590-5×42=1.23,a ^=y -b ^x =5-1.23×4=0.08,∴回归直线方程为y ^=b ^x +a ^=1.23x+0.08.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元),估计当使用10年时的维修费用为12.38万元.点评:由于本节课题目计算量大,公式较多,所以在求解时易出现公式乱用,数据出错等问题,对这一点,同学们在解题时尤为需要注意.【变练演编】例2其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有线性相关关系;(2)如果y 与x 具有线性相关关系,求线性回归方程.思路分析:先根据数据计算相关系数,然后根据相关系数的大小,判断两个变量是否线性相关.解:(1)由已知表格中的数据,利用计算器进行计算得x =71,y=72.3,∑i =110x i y i =51 467,∑i =110x 2i =50 520,∑i =110y 2i =52 541,r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑j =1n(y j -y )2≈0.785 3>0.75,故两个变量有很强的线性相关关系.(2)y 与x 具有线性相关关系,可设线性回归方程为y ^=a ^+b ^x ,则b ^=∑i =110(x i -x )(y i -y )∑i =110(x i -x )2≈1.22,a ^=y -b ^x =72.3-1.22×71=-14.32, 所以y 关于x 的线性回归方程为y ^=1.22x -14.32.点评:本题通过计算相关系数,将两个变量相关性的判断转化为数据大小的比较.变式:在确定上题中y 与x 的线性相关关系中,是否还有别的方法?若有,请加以说明. 活动设计:学生分组讨论,回顾课本解答问题. 活动成果:还可以通过画散点图的方法来判断两个变量是否具有相关性.如选取x 的值作为自变量,y 的值作为因变量,画出散点图.由图可知两个变量有线性相关性,求其回归直线方程是有实际意义的. 设计意图:进一步熟悉判断变量线性相关的各种方法. 【达标检测】1.对于回归分析,下列说法错误的是( )A .在回归分析中,两个变量的关系若是非确定关系,那么其中一个变量不能由另一个变量唯一确定B .回归系数可以是正的,也可以是负的C .回归分析中,如果r 2=1或r =±1,说明变量x 与变量y 之间完全线性相关D .相关样本系数r ∈(-1,1)2.下列各组变量之间具有线性相关关系的是( )A .出租车费与行使的里程B .学习成绩与学生身高C .身高与体重D .铁的体积与质量3.若劳动生产率x(千元)与月工资y(元)之间的回归直线方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案:1.D 2.C 3.B 课堂小结(给学生1~2分钟的时间默写本节的主要基础知识、方法、例题、题目类型、解题规律等;然后用精炼的、准确的语言概括本节的知识脉络、思想方法、解题规律)1.知识收获:进一步学习回归分析的基本思想以及求回归直线方程的步骤,正确认识随机误差e 的产生原因、了解线性回归模型与函数的不同之处.2.方法收获:线性回归方程的求法、用样本估计总体的统计思想.3.思维收获:体会模型诊断的思想,提高利用回归方法解决实际问题的能力,培养探索和创新的精神.设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.。
《1.1回归分析的基本思想及其初步应用(二)》教学案3
《1.1回归分析的基本思想及其初步应用(二)》教学案3教学目标(1).知识与技能:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型(2).过程与方法:了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果.(3).情感,态度与价值观:充分利用图形的直观性,简捷巧妙的解题教学重难点教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学方法讲解法,引导法教学过程一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即µ21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和,即µ21()ni i SSR y y ==-∑.(2)学习要领:①注意i y 、µi y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即µµ222111()()()nnni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数µ22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2. 教学例题:例2 关于x 与Y 有如下数据: x 2 4 5 68 y3040605070为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型:$ 6.517.5y x =+,$717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.(答案:µ52211521()155110.8451000()ii i ii yy R yy ==-=-=-=-∑∑,221R =-µ521521()18010.821000()ii i ii yy yy ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)三,课堂练习1. 某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x(万元) 4 235销售额y(万元)49 26 39 54根据上表可得回归方程=x +中的为9.4,据此模型预报广告费用为6万元时销售额为( )A. 63.6万元B. 65.5万元C. 67.7万元D. 72.0万元2.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵轴上的截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反 D. a 与r 的符号相反3. 在一次抽样调查中测得样本的5个样本点数值如下表:四,总结分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.五:作业:1.下列有关线性回归的说法,不正确的是()A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个量的一组数据的图形叫做散点图C.线性回归方程最能代表具有线性相关关系的x,y之间的关系D.任何一组观测值都能得到具有代表意义的线性回归方程2. 在建立两个变量与的回归模型中,分别选择了4个不同的模型,它们的相关指数如下,其中拟合最好的模型是()A.模型1的相关指数为0.98B.模型2的相关指数为0.80C.模型3的相关指数为0.50D.模型4的相关指数为0.253. 为了研究某种细菌随时间x变化,繁殖个数y的变化,收集数据如下:时间x/天 1 2 3 4 5 6繁殖个数y 6 12 25 49 95 190(1)用时间作解释变量,繁殖个数作预报变量,作出这些数据的散点图;(2)求y与x之间的回归方程;(3)描述解释变量与预报变量之间的关系,计算残差、相关指数R2。
回归分析的基本思想及其初步应用 精品教案
回归分析的基本思想及其初步应用一、教学目标:1.明确两个变量具有相关关系的意义;2.知道回归分析的意义;3.知道回归直线、回归直线方程、线性回归分析的意义;4.掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;5.培养学生形成运用数据进行推断的能力;6.让学生体会从特殊到一般的辩证思想方法.二、教学重点:了解线性回归的基本思想和方法;教学难点:线性回归的基本思想方法和计算.三、教学用具:幻灯机或多媒体四、教学过程:1.引入新课S 先引入函数关系再引入相关关系间由正方形面积S与其边长x之间的函数关系2x (确定关系)引入一块农田的水稻产量与施肥量之间的关系(非确定关系),从而引入新授内容.2.(板书)相关关系与回归分析(1)相关关系进一步分析水稻产量与施肥量的关系,得出相关关系的概念.(板书)自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.相关关系与函数关系的异同点:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.引导学生列举现实生活中相关关系的例子.(2)回归分析(板书)对具有相关关系的两个变量进行统计分析的方法叫回归分析.通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性.(3)散点图(板书)表示具有相关关系的两个变量的一组数据的图形,叫做散点图. 散点图形象地反映了各对数据的密切程度. 3.回归直线方程(1)求回归直线方程的思想方法先引导学生观察散点图的特征,发现各点大致分布在一条直线的附近.并问学生,类似图中的直线可画几条?显见,可画出不止一条类似的直线.那么,其中的哪一条直线最能代表变量x 与y 之间的关系呢?引导学生分析,最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为a bx y +=∧,其中a 、b 是待定系数. 则 ),,2,1.(n i a bx y i i =+=∧.于是得到各个偏差 ),,2,1).((n i a bx y y y i i i i =+-=-∧.显见,偏差∧-i i y y 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和2222211)()()(a bx y a bx y a bx y Q n n --++--+--=表示n 个点与相应直线在整体上的接近程度.记 ∑=--=ni iia bx y Q 12)((向学生说明∑=ni 1的意义).上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值(课前布置学生看阅读材料).即⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====..)())((2121121x b y a x n x xy n y x x x y y x x b ni i ni i i n i i n i i i其中∑∑====ni i n i i y n y x n x 111,1.在此基础上,给出回归直线方程、回归直线、线性回归分析的概念.最后,向学生指出,对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.(2)回归直线方程的求法提问:列表计算的优点是什么?故可得到,2573075.43.399,75.430770003.399307871752≈⨯-=≈⨯-⨯⨯-=a b 从而得回归直线方程是.25775.4+=∧x y最后请一位学生画出回归直线,并求出35=x 时,y 的估计值.例 一个工厂在某年里每月产品的总成线y (万元)与该月产量x (万件)之间有如下(1)画出散点图;(2)求月总成本y 与月总产量x 之间的回归直线方程. 讲解上述例题时,(1)可由学生完成;对于(2),可引导学生列表,按∑∑∑===→→→→→→→12112121212i ii i i i ii i i i y x y xy x y x y x 的顺序计算,最后得到.974.0,215.1≈≈a b 即所求的回归直线方程为.974.0215.1+=∧x y若条件允许,可借助几何画板向学生演示本题,即画出散点图,并求出回归直线方程.讲解上述例题后,要求学生完成下面问题:(1)画出散点图;(2)试求腐蚀深度y 对时间t 的回归直线方程. 略解:(1)散点图.呈直线形.(2)经计算可得∑∑∑========11111121112.13910,5442,36750,45.19,36.46i i i i ii iy t y t y t.3.036.46113675045.1936.4611139101111221112111≈⨯-⨯⨯-=⨯-⨯-=∑∑==tt tyyt b i i i ii.542.536.463.045.19≈⨯-=-=t b y a故所求的回归直线方程为.542.53.0+=∧t y让学生做课后练习题. 4.课堂小结本节课要求准确理解相关关系的概念,并在此基础上,了解回归分析与散点图的含义,了解回归直线方程推导的思路,会利用a 、b 的公式求出回归直线方程,利用回归直线方程去估值.六、布置作业: 教科书第1题.。
课时2-1.1回归分析的基本思想及其初步应用-教学设计-教案
教学准备1. 教学目标1、通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用2、从相关指数和残差分析角度探讨回归模型的拟合效果3、了解评价回归效果的两个统计量:相关指数、残差和残差平方和,掌握建立回归模型的基本步骤2. 教学重点/难点教学重点:从残差分析、相关指数角度探讨回归模型拟合效果,以及建立回归模型的基本步骤教学难点:了解评价回归效果的两个统计量:相关指数、残差和残差平方和3. 教学用具多媒体4. 标签教学过程一、复习引入【师】在必修3中我们已经初步了解了关于数据分析的简单方法,请同学回忆:变量之间有哪几种关系?【板演/PPT】问题1:正方形的面积y与正方形的边长x之间的函数关系是什么关系?【师】引导学生回忆回答【生】y=x2-----确定关系【板演/PPT】问题2:某水田水稻产量y与施肥量x之间是否有一个确定性的关系?例如:在 7 块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x 15 20 25 30 35 40 45水稻产量y 330 345 365 405 445 450 455【师】引导学生回忆回答自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
【板演/PPT】(1)相关关系是一种不确定性关系;(2)对具有相关关系的两个变量进行统计分析的方法叫回归分析。
【师】请回忆回归分析的内容与步骤:【生】师生共同总结【板演/PPT】回归分析的基本过程:(1)画出两个变量的散点图;(2)判断是否线性相关(3)求回归直线方程(利用最小二乘法)(4)并用回归直线方程进行预报【师】最小二乘法公式:【生】师生共同回忆【板演/PPT】二、新知介绍[1]回归分析基本过程,引入残差概念【师】请同学们思考以下问题:(引导学生结合问题,回忆旧知解决问题)【板书/PPT】例1:从某大学中随机选取8名女大学生,其身高和体重数据如表所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学准备
1. 教学目标
1、能根据散点分布特点,建立不同的回归模型;了解有些非线性模型通过转化可以
转化为线性回归模型
2、了解回归模型的选择,体会不同模型拟合数据的效果
2. 教学重点/难点
教学重点:通过探究使学生体会有些非线性模型通过等量变换、对数变换可以转化为
线性回归模型
教学难点:如何启发学生“对变量作适当的变换”(等量变换、对数变换),变非线
性为线性,建立线性回归模型
3. 教学用具
多媒体
4. 标签
教学过程
一、复习引入
【师】问题1:你能回忆一下建立回归模型的基本步骤?
【师】提出问题,引导学生回忆建立回归模型的基本步骤(选变量、画散点图、选模型、估计参数、分析与预测)
【生】回忆、叙述建立回归模型的基本步骤
【板演/PPT】
【师】问题2.能刻画回归模型效果的类别有哪些?它们各有什么特点?
【生】回忆思考
【板演/PPT】
刻画回归效果的方式
(1)残差图法
作图时纵坐标为残差,横坐标可以选为的样本编号,或身高数据,或体重的估计值等,这样作出的图形称为残差图.在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高.
(2)残差平方和法
残差平方和,残差平方和越小,模型拟合效果越好.
(3)利用R2刻画回归效果
;R2表示解释变量对于预报变量变化的贡献率.R2越接近于1,表示回归的效果越好.
二、新知介绍
(1)回归模型选择比较不同模型拟合效果
【师】我国是世界产棉大国,种植棉花是我国很多地区农民的主要经济来源,棉花种植中经常会遇到一种虫害,就是红铃虫,为有效采取防止方法,有必要对红铃虫的产卵数和温度之间的关系进行研究,如图我们搜集了红铃虫的产卵数y和温度x之间的7组观测数据如下表:
【板书/PPT】
【师】试着建立y与x之间的回归方程
【生】类比前面所学过的建立线性回归方程分步骤动手实施
【师】教师巡视指导
【板书/PPT】
解:1)作散点图
2)通过计算器求得线性回归方程:
3)进行回归分析计算:
即这个线性回归模型中温度解释了74.64%产卵数的变化
【师】几何数据发现,我们所建立的回归模型相关指数约为74.64%,即解释变量仅能解释预报变量74.64%的变化,所占比例偏小,因此用此模型进行预报会存在较大误差。
从散点图上也可以看出,样本点并没有很好的集中在一条直线附近,那么还可以通过什么样的回归模型进行预报呢?
【生】思考、交流,选择回归模型
【生】学生总结方案:方案一:建立二次函数模型y=c1x2+c2
方案二:建立指数函数模型
【师】那么,如何求出所建立的回归模型的系数呢
【生】思考、交流,观察模型,探究变换的方法并发表自己的意见。
最后给出具体的方法。
【板书/PPT】
令t=x2,建立与之间的线性回归方程
所以y=0.367t-202.543
因为t=x2,即y关于x的二次回归方程为y=0.367t2-202.543。
【师】如果选用指数型模型,是否也可以转化为线性模型呢?如何转化?
【生】思考、交流,教师启发学生“幂指数中的自变量如何转化为自变量的一次幂”
【板书/PPT】
建立数据转换表
根据数据得线性回归方程
转化为非线性回归模型
计算相关指数R2≈0.985这个回归模型中温度解释了98.5%产卵数的变化
【师】引导学生进行不同模型的比较,体会“虽然任意两个变量的观测数据都可以用线性回归模型来拟合,但不能保证这种模型对数据得拟合效果最好,为更好地刻画两个变量之间的关系,要根据观测数据的特点来选择回归模型”
【板书/PPT】
可以利用直观(散点图和残差图)、相关指数来确定哪一个模型的拟合效果更好。
(2)运用新知,立体讲解
【师】根据刚才的例题,我们看看下面的例题
【板书/PPT】
例2某地区不同身高的未成年男性的体重平均值如下表:
试建立y与x之间的回归方程.
【师】引导学生学生动手计算
【生】学生交流计算
【板书/PPT】
解根据上表中数据画出散点图如图所示.
由图看出,样本点分布在某条指数函数曲线y=c1e 的周围,于是令z=ln y.
画出散点图如图所示.
由表中数据可得z与x之间的线性回归方程:
z=0.693+0.020x,则有y=e0.693+0.020x.
【板书/PPT】
例3 为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:
(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;
(2)描述解释变量x与预报变量y之间的关系;
(3)计算相关指数.
【师】给学生足够时间完成练习
【生】交流完成
【学生表达/PPT】
解①所作散点图如图所示.
②由散点图看出样本点分布在一条指数函数y=c1e 的周围,于是令z=ln y,则
由计算器得:=0.69x+1.115,则有=e0.69x+1.115.
③
即解释变量天数对预报变量繁殖细菌个数解释了99.98%.
随堂练习
【师】下面针对本节课所学,做几道练习题
【板书/PPT】
1.散点图在回归分析中的作用是 (D)
A.查找个体个数B.比较个体数据大小关系
C.探究个体分类D.粗略判断变量是否相关
2.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为( C )
A.1 B.-0.5 C.0 D.0.5
3.变量x与y之间的回归方程表示 (D)
A.x与y之间的函数关系
B.x与y之间的不确定性关系
C.x与y之间的真实关系形式
D.x与y之间的真实关系达到最大限度的吻合
4.非线性回归分析的解题思路是通过变量置换转化为线性回归.
课堂小结
引导学生总结本节课所学
1.建立回归模型及残差图分析的基本步骤;非线性模型向线性模型的转换方法。
2.不同模型拟合效果的比较方法可利用相关指数和残差分析比较
3.数形结合思想,转化的数学思想。
板书。