matplotlib绘图基础汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matplotlib绘图基础

matplotlib介绍

matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文

档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。而Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。

可以在Ipython中输入类似"plt.plot??"的命令查看pyplot模块的函数是如何对各种绘图对象进行包装的。

面向对象方式绘图

matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D、文字Text、刻度等在内存中都有一个对象与之对应。

为了方便快速绘图matplotlib通过pyplot模块提供了一套和MATLAB类似的绘图API,将众多绘图对象所构成的复杂结构隐藏在这套API内部。我们只需要调用pyplot模块所提供的函数就可以

实现快速绘图以及设置图表的各种细节。pyplot模块虽然用法简单,但不适合在较大的应用程序中使用。

获取当前图和轴线

为了将面向对象的绘图库包装成只使用函数的调用接口,pyplot模块的内部保存了当前图表以及当前子图等信息。当前的图表和子图可以使用plt.gcf()和plt.gca()获得,分别表示"Get Current Figure"和"Get Current Axes"。在pyplot模块中,许多函数都是对当前的Figure或Axes对象进行处理,比如说:plt.plot()实际上会通过plt.gca()获得当前的Axes对象ax,然后再调用ax.plot()方法实现真正的绘图。

如,用下面的代码先获得axes对象再用ax来操作

ax = plt.gca()

ax = plt.axes()

地如设置xy轴的tickers就要用ax.yaxis来操作

ax.yaxis.set_minor_locator(yminorLocator)

安装numpy和matplotlib

pip install numpy

pip install matplotlib

matplotlib安装出错

ImportError: libBLT.2.4.so.8.6: cannot open shared object file: No such file or directory, please install the python3-tk package

[import matplotlib.pyplot as plt fails with error about python-tk]

检测是否安装成功:

>>> import numpy

>>> numpy.__version__

>>> import matplotlib

>>> matplotlib.__version__

不同绘图语言比较

工科生说Matlab完爆其他

数学系的说Mathematica高贵冷艳

统计系的说R语言作图领域天下无敌

计算机系的说Python低调奢华有内涵

[如何在论文中画出漂亮的插图]

matplotlib.pyplot模块- 快速绘图

matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表。

1.调用figure创建一个绘图对象,并且使它成为当前的绘图对象。(可选)

plt.figure(figsize=(8,4))

也可以不创建绘图对象直接调用接下来的plot函数直接绘图,matplotlib会为我们自动创建一个绘图对象!!

如果需要同时绘制多幅图表的话,可以是给figure传递一个整数参数指定图标的序号,如果所指定序号的绘图对象已经存在的话,将不创建新的对象,而只是让它成为当前绘图对象。

figsize参数:指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素。

但是用show()出来的工具栏中的保存按钮保存下来的png图像的大小是800*400像素。这是因为保存图表用的函数savefig使用不同的DPI配置,savefig函数也有一个dpi参数,如果不设置的话,将使用matplotlib配置文件中的配置,此配置可以通过如下语句进行查看:>>>matplotlib.rcParams["savefig.dpi"]100

2.通过调用plot函数在当前的绘图对象中进行绘图

plt.plot(years, price, 'b*')#,label="$cos(x^2)$")

plt.plot(years, price, 'r')

Note:

1. 第一句将x,y数组传递给plot

2.通过第三个参数"b--"指定曲线的颜色和线型,这个参数称为格式化参数,它能够通过一些易记的符号快速指定曲线的样式。其中b表示蓝色,"--"表示线型为虚线。

3. 用关键字参数指定各种属性:label : 给所绘制的曲线一个名字,此名字在图示/图例(legend)中显示。只要在字符串前后添加"$"符号,matplotlib就会使用其内嵌的latex引擎绘制的数学公式。color : 指定曲线的颜色linewidth : 指定曲线的宽度

具体参见【附录- matplotlib中的作图参数】

3.设置绘图对象的各个属性

plt.xlabel("years(+2000)")

plt.ylabel("housing average price(*2000 yuan)")

plt.ylim(0, 15)

plt.title('line_regression & gradient decrease')

plt.legend()

xlabel : 设置X轴的文字

ylabel : 设置Y轴的文字

title : 设置图表的标题

ylim : 设置Y轴的范围

legend : 显示图示

4.最后调用plt.show()显示出我们创建的所有绘图对象。

Matplotlib 里的常用类的包含关系为Figure -> Axes -> (Line2D, Text, etc.)一个Figure对象可以包含多个子图(Axes),在matplotlib中用Axes对象表示一个绘图区域,可以理解为子图。

清空plt绘制的内容

plt.cla()

plt.close(0)# 关闭图0

plt.close('all') 关闭所有图

图形保存和输出设置

可以调用plt.savefig()将当前的Figure对象保存成图像文件,图像格式由图像文件的扩展名决定。下面的程序将当前的图表保存为“test.png”,并且通过dpi参数指定图像的分辨率为120,因此输出图像的宽度为“8X120 = 960”个像素。

plt.savefig("test.png",dpi=120)

也可以通过show()出来的图形界面手动保存和设置

matplotlib中绘制完成图形之后通过show()展示出来,我们还可以通过图形界面中的工具栏对其进行设置和保存

matplotlib修改图片大小:图形界面下方工具栏可以设置图形上下左右的边距

如果想在跑程序外部查看图片,可以这样:

plt.savefig('/tmp/1.png')

subprocess.run('xdg-open /tmp/1.png', shell=True

有个问题就是绘制的图中横纵坐标下面的+3.156e1代表什么意思?也不是坐标值的单位,那是什么呢。。。

5. 绘制多子图

可以使用subplot()快速绘制包含多个子图的图表,它的调用形式如下:

subplot(numRows, numCols, plotNum)

matplotlib.pyplot.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)

相关文档
最新文档