实现进程调度算法

合集下载

实验二带优先级的时间片轮换的进程调度算法的实现

实验二带优先级的时间片轮换的进程调度算法的实现


struct pcb *p;

for (i=0;i<MAXPIOR;i++)

{p=array[i];

while (p!=NULL)

{printf("id:%d,state:%d,pior:%d,life:%d\n",p->ident,p->state,p->pior,p->life);

p=p->next;
• {int i=0,ii=0;
• for (i=0;i<7;i++)

if (stricmp(str,command[i])==0)

break;
• switch(i)

{case 0:printf("thank you for using the program!\n");exit(0);

break;
•{

int i=MAXPIOR-1,pior=0,t;

struct pcb *pp,*qq,*pr,*r;

do

{

while (i>=0 && array[i]==NUf (i<0)

{

printf("NO process,please create it! \n");
第1个,再降低其优先级,插入到相应的队列中。 C)ps 查看当前进程状态 D)sleep 命令将进程挂起 E)awake 命令唤醒1个被挂起的进程 F)kill 命令杀死进程 G)quit命令退出 (4)选用面向对象的编程方法。

进程调度算法实验报告

进程调度算法实验报告

进程调度算法实验报告进程调度算法实验报告一、引言进程调度算法是操作系统中的重要组成部分,它决定了进程在CPU上的执行顺序。

合理的进程调度算法能够提高系统的性能和效率,使得多个进程能够公平地共享CPU资源。

本实验旨在通过实际操作和数据分析,探究不同的进程调度算法对系统性能的影响。

二、实验方法1. 实验环境本次实验使用了一台配置较高的计算机作为实验环境,操作系统为Windows 10。

实验中使用了C语言编写的模拟进程调度程序。

2. 实验步骤(1)编写模拟进程调度程序,实现常见的进程调度算法,包括先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)和优先级调度(Priority)。

(2)设计一组测试用例,包括不同执行时间的进程和不同优先级的进程。

(3)运行模拟进程调度程序,记录每个进程的等待时间、周转时间和响应时间。

(4)根据实验结果分析不同进程调度算法的性能差异。

三、实验结果与分析1. 先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,即先到达的进程先执行。

实验结果显示,该算法对于执行时间较短的进程表现良好,但对于执行时间较长的进程则存在明显的不公平性。

长作业的等待时间较长,导致整体执行效率较低。

2. 最短作业优先(SJF)调度算法最短作业优先调度算法按照进程执行时间的长度进行调度,即执行时间最短的进程先执行。

实验结果显示,该算法能够最大程度地减少平均等待时间和周转时间,提高系统的执行效率。

然而,该算法对于执行时间较长的进程存在饥饿问题,即长作业可能一直等待短作业的执行,导致长作业的等待时间过长。

3. 时间片轮转(RR)调度算法时间片轮转调度算法将CPU的执行时间划分为固定长度的时间片,每个进程按照轮流执行的方式进行调度。

实验结果显示,该算法能够保证每个进程都能够获得一定的执行时间,提高了系统的公平性。

然而,对于执行时间较长的进程而言,由于需要等待其他进程的轮转,其执行效率相对较低。

调度算法C语言实现

调度算法C语言实现

调度算法C语言实现调度算法是操作系统中的重要内容之一,它决定了进程在系统中的运行方式和顺序。

本文将介绍两种常见的调度算法,先来先服务(FCFS)和最短作业优先(SJF),并用C语言实现它们。

一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是最简单的调度算法之一、它按照进程到达的先后顺序进行调度,即谁先到达就先执行。

实现这个算法的关键是记录进程到达的顺序和每个进程的执行时间。

下面是一个用C语言实现先来先服务调度算法的示例程序:```c#include <stdio.h>//进程控制块结构体typedef structint pid; // 进程IDint arrivalTime; // 到达时间int burstTime; // 执行时间} Process;int maiint n; // 进程数量printf("请输入进程数量:");scanf("%d", &n);//输入每个进程的到达时间和执行时间Process process[n];for (int i = 0; i < n; i++)printf("请输入进程 %d 的到达时间和执行时间:", i);scanf("%d%d", &process[i].arrivalTime,&process[i].burstTime);process[i].pid = i;}//根据到达时间排序进程for (int i = 0; i < n - 1; i++)for (int j = i + 1; j < n; j++)if (process[i].arrivalTime > process[j].arrivalTime) Process temp = process[i];process[i] = process[j];process[j] = temp;}}}//计算平均等待时间和平均周转时间float totalWaitingTime = 0; // 总等待时间float totalTurnaroundTime = 0; // 总周转时间int currentTime = 0; // 当前时间for (int i = 0; i < n; i++)if (currentTime < process[i].arrivalTime)currentTime = process[i].arrivalTime;}totalWaitingTime += currentTime - process[i].arrivalTime;totalTurnaroundTime += (currentTime + process[i].burstTime) - process[i].arrivalTime;currentTime += process[i].burstTime;}//输出结果float avgWaitingTime = totalWaitingTime / n;float avgTurnaroundTime = totalTurnaroundTime / n;printf("平均等待时间:%f\n", avgWaitingTime);printf("平均周转时间:%f\n", avgTurnaroundTime);return 0;```以上程序实现了先来先服务(FCFS)调度算法,首先根据进程的到达时间排序,然后依次执行每个进程,并计算总等待时间和总周转时间。

进程调度算法实验报告

进程调度算法实验报告

计算机操作系统实验报告实验二进程调度算法一、实验名称:进程调度算法二、实验内容:编程实现如下算法:1.先来先服务算法;2.短进程优先算法;3.时间片轮转调度算法。

三、问题分析与设计:1.先来先服务调度算法先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。

当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。

在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。

该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。

FCFS算法比较有利于长作业(进程),2.短作业(进程)优先调度算法短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。

它们可以分别用于作业调度和进程调度。

短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。

而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。

SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。

该算法对长作业不利,完全未考虑作业的紧迫程度。

3.时间片轮转算法在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。

当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。

这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。

换言之,系统能在给定的时间内响应所有用户的请求。

5种进程调度算法实验报告

5种进程调度算法实验报告

操作系统教程——进程调度算法院系计算机与软件学院班级08软件工程2班学号20081344066姓名何丽茗进程调度算法的模拟实现⏹实验目的1.本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。

2.利用程序设计语言编写算法,模拟实现先到先服务算法FCFS、轮转调度算法RR、最短作业优先算法SJF、优先级调度算法PRIOR、最短剩余时间优先算法SRTF。

3.进行算法评价,计算平均等待时间和平均周转时间。

⏹实验内容及结果1.先来先服务算法2.轮转调度算法3. 优先级调度算法4. 最短时间优先算法5. 最短剩余时间优先算法实验总结在此次模拟过程中,将SRTF单独拿了出来用指针表示,而其余均用数组表示。

完整代码【Srtf.cpp代码如下:】//最短剩余时间优先算法的实现#include<stdio.h>#include<stdlib.h>#include<time.h>typedef struct{int remain_time; //进程剩余执行时间int arrive_time; //进程到达时间int Tp; //进入就绪队列的时间int Tc; //进入执行队列的时间int To; //进程执行结束的时间int number; //进程编号}Process_Block; //定义进程模块typedef struct _Queue{Process_Block PB;struct _Queue *next;}_Block,*Process; //定义一个进程模块队列中结点typedef struct{Process head; //队列头指针Process end; //队列尾指针}Process_Queue; //进程队列Process_Queue PQ; //定义一个全局队列变量int t; //全局时间Process Run_Now; //当前正在运行的进程,作为全局变量void InitQueue(Process_Queue PQ){PQ.head ->next = NULL;PQ.end ->next = PQ.head;}/*初始化队列*/int IsEmpty(Process_Queue PQ){if(PQ.end->next == PQ.head)return 1; //队列空的条件为头指针指向尾指针并且尾指针指向头指针return 0;}/*判定队列是否为空队列*/void EnQueue(Process_Queue PQ,Process P){Process temp =(Process)malloc(sizeof(_Block));temp = PQ.end;temp->next->next = P;PQ.end->next = P;}/*插入队列操作*/Process DeQueue(Process_Queue PQ){if(IsEmpty(PQ))return NULL;Process temp = PQ.head->next;PQ.head->next= temp ->next;if(PQ.end->next == temp)PQ.end->next = PQ.head;return temp;}/*出列操作*/Process ShortestProcess(Process_Queue PQ){if(IsEmpty(PQ)) //如果队列为空,返回{if(!Run_Now)return NULL;elsereturn Run_Now;}Process temp,shortest,prev;int min_time;if(Run_Now) //如果当前有进程正在执行,{shortest = Run_Now; //那么最短进程初始化为当前正在执行的进程,min_time = Run_Now->PB.remain_time;}else//如果当前没有进程执行,{shortest = PQ.head->next; //则最短进程初始化为队列中第一个进程min_time = PQ.head->next->PB.remain_time;}temp = PQ.head;prev = temp;while(temp->next)if(temp->next->PB.remain_time <min_time) //如果当前进程的剩余时间比min_time短,{shortest = temp->next; //则保存当前进程,min_time = shortest->PB.remain_time;prev=temp; //及其前驱}temp=temp->next;}if(shortest == PQ.end->next) //如果最短剩余时间进程是队列中最后一个进程,PQ.end->next = prev; //则需要修改尾指针指向其前驱prev->next = shortest->next; //修改指针将最短剩余时间进程插入到队头return shortest;}/*调度最短剩余时间的进程至队头*/void Run(){Run_Now->PB.remain_time--; //某一时间运行它的剩余时间减return;}/*运行函数*/void Wait(){return ;}int sum(int array[],int n){int i,sum=0;for(i=0;i<n;i++)sum+=array[i];return sum;}int main(){PQ.head = (Process)malloc(sizeof(_Block));PQ.end = (Process)malloc(sizeof(_Block));Run_Now = (Process)malloc(sizeof(_Block));Run_Now =NULL;InitQueue(PQ);int i,N,Total_Time=0; //Total_Time为所有进程的执行时间之和printf("请输入计算机中的进程数目:\n");scanf("%d",&N);Process *P,temp;P = (Process*)malloc(N*sizeof(Process));int *wt,*circle_t;wt =(int*)malloc(N*sizeof(int));circle_t =(int*)malloc(N*sizeof(int));for(i=0;i<N;i++){P[i] = (Process)malloc(sizeof(_Block));P[i]->PB.number =i+1;P[i]->next =NULL;wt[i] =0;circle_t[i] =0;printf("输入第%d个进程的到达时间及剩余执行时间:\n",i+1);scanf("%d %d",&P[i]->PB.arrive_time,&P[i]->PB.remain_time);}for(i=0;i<N;i++)Total_Time+=P[i]->PB.remain_time;printf("\n进程按顺序运行依次为:\n");i=0;int k=0;for(t=0;;t++){if(Run_Now) //如果当前有进程正在执行{Run();if(t == P[i]->PB.arrive_time) //如果当前时间正好有进程进入{if(P[i]->PB.remain_time < Run_Now->PB.remain_time){temp = P[i];P[i] = Run_Now;Run_Now = temp; //则调度它至运行队列中,Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}EnQueue(PQ,P[i]); //并将当前运行进程重新插入队列中P[i]->PB.Tp=t;k++;i=(i+1)>(N-1)?(N-1):(i+1);}if(Run_Now->PB.remain_time == 0) //如果当前进程运行结束,{Run_Now->PB.To=t; //进程运行结束的时间circle_t[Run_Now->PB.number-1] +=t-Run_Now->PB.arrive_time;free(Run_Now); //则将它所占资源释放掉,Run_Now =NULL; //并修改Run_Now为NULLRun_Now = ShortestProcess(PQ); //从就绪队列中调出最短剩余时间进程至队头,if(!Run_Now) //如果队列为空,转为等待状态{if(IsEmpty(PQ) && k >= N) break;Wait();continue;}else{Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}}}else//如果当前运行进程为空,那么{if(t == P[i]->PB.arrive_time) //如果正好这时有进程入队{k++;EnQueue(PQ,P[i]);Run_Now = DeQueue(PQ); //则直接被调入运行队列中Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;printf("%d ",Run_Now->PB.number);i=(i+1)>(N-1)?(N-1):(i+1);}else{Wait();continue;}}}printf("\n");printf("平均等待时间是:\n%f\n",((float)sum(wt,N))/N);printf("平均周转时间是:\n%f\n",((float)sum(circle_t,N))/N);return 0;}//////////////////////////////////////////////////////【Process.cpp代码如下:】#include<iostream>#include<string>using namespace std;class Process{public:string ProcessName; // 进程名字int Time; // 进程需要时间int leval; // 进程优先级int LeftTime; // 进程运行一段时间后还需要的时间};void Copy ( Process proc1, Process proc2); // 把proc2赋值给proc1 void Sort( Process pr[], int size) ; // 此排序后按优先级从大到小排列void sort1(Process pr[], int size) ; // 此排序后按需要的cpu时间从小到大排列void Fcfs( Process pr[], int num, int Timepice); // 先来先服务算法void TimeTurn( Process process[], int num, int Timepice); // 时间片轮转算法void Priority( Process process[], int num, int Timepice); // 优先级算法void main(){int a;cout<<endl;cout<<" 选择调度算法:"<<endl;cout<<" 1: FCFS 2: 时间片轮换 3: 优先级调度 4: 最短作业优先 5: 最短剩余时间优先"<<endl;cin>>a;const int Size =30;Process process[Size] ;int num;int TimePice;cout<<" 输入进程个数:"<<endl;cin>>num;cout<<" 输入此进程时间片大小: "<<endl;cin>>TimePice;for( int i=0; i< num; i++){string name;int CpuTime;int Leval;cout<<" 输入第"<< i+1<<" 个进程的名字、cpu时间和优先级:"<<endl;cin>>name;cin>> CpuTime>>Leval;process[i].ProcessName =name;process[i].Time =CpuTime;process[i].leval =Leval;cout<<endl;}for ( int k=0;k<num;k++)process[k].LeftTime=process[k].Time ;//对进程剩余时间初始化cout<<" ( 说明: 在本程序所列进程信息中,优先级一项是指进程运行后的优先级!! )";cout<<endl; cout<<endl;cout<<"进程名字"<<"共需占用CPU时间 "<<" 还需要占用时间 "<<" 优先级"<<" 状态"<<endl;if(a==1)Fcfs(process,num,TimePice);else if(a==2)TimeTurn( process, num, TimePice);else if(a==3){Sort( process, num);Priority( process , num, TimePice);}else// 最短作业算法,先按时间从小到大排序,再调用Fcfs算法即可{sort1(process,num);Fcfs(process,num,TimePice);}}void Copy ( Process proc1, Process proc2){proc1.leval =proc2.leval ;proc1.ProcessName =proc2.ProcessName ;proc1.Time =proc2.Time ;}void Sort( Process pr[], int size) //以进程优先级高低排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.leval<pr[j-1].leval){pr[j] = pr[j-1];j--;}pr[j] = temp;} // 直接插入排序后进程按优先级从小到大排列for( int d=size-1;d>size/2;d--){Process temp;temp=pr [d];pr [d] = pr [size-d-1];pr [size-d-1]=temp;} // 此排序后按优先级从大到小排列}/* 最短作业优先算法的实现*/void sort1 ( Process pr[], int size) // 以进程时间从低到高排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.Time < pr[j-1].Time ){pr[j] = pr[j-1];j--;}pr[j] = temp;}}/* 先来先服务算法的实现*/void Fcfs( Process process[], int num, int Timepice){ // process[] 是输入的进程,num是进程的数目,Timepice是时间片大小while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}else if(process[num-1].LeftTime==0){cout<<" 进程"<<process[num-1].ProcessName<< " 已经执行完毕!"<<endl;num--;}else{cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice; process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<""<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<""<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval<<" 等待"<<endl; ;}} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 时间片轮转调度算法实现*/void TimeTurn( Process process[], int num, int Timepice){while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}if( process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}else if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<""<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<""<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待"<<endl;}Process temp;temp = process[0];for( int j=0;j<num;j++)process[j] = process[j+1];process[num-1] = temp;} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 优先级调度算法的实现*/void Priority( Process process[], int num, int Timepice){while( true){if(num==0){cout<< "所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程" << process[0].ProcessName <<" 已经执行完毕! "<<endl; for( int m=0;m<num;m++)process[m] = process[m+1]; //一个进程执行完毕后从数组中删除num--; // 此时进程数目减少一个}if( num!=1 && process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕!"<<endl;num--;}if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<""<<process[0].leval<<" 运行";cout<<endl; // 输出其他进程for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<" ";cout<<process[s].LeftTime <<""<<process[s].leval ;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待 "<<endl;}} // elseSort(process, num);cout<<endl;system(" pause");cout<<endl;} // while}。

c语言实现进程调度算法

c语言实现进程调度算法

c语言实现进程调度算法进程调度算法是操作系统中的一个重要组成部分,用于决定在多道程序环境下,选择哪个进程来占用CPU并执行。

C语言是一种通用的编程语言,可以用于实现各种进程调度算法。

这里我将分别介绍三种常见的进程调度算法:先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)和轮转法调度算法(RR),并给出用C语言实现的示例代码。

首先,我们来看先来先服务调度算法(FCFS)。

此算法根据到达时间的先后顺序,按照先来后到的顺序进行处理。

下面是基于C语言的先来先服务调度算法实现示例代码:```c#include<stdio.h>struct Process};void FCFS(struct Process proc[], int n)for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}FCFS(proc, n);return 0;```其次,我们来看最短作业优先调度算法(SJF),该算法选择执行时间最短的进程先执行。

下面是基于C语言的最短作业优先调度算法实现示例代码:```c#include<stdio.h>struct Process};void SJF(struct Process proc[], int n)for (int i = 0; i < n; i++)for (int j = 0; j < i; j++)}shortest_job = i;for (int j = i + 1; j < n; j++)shortest_job = j;}}}for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}SJF(proc, n);return 0;```最后,我们来看轮转法调度算法(RR),该算法分配一个时间片给每个进程,当时间片用完后,将CPU分配给下一个进程。

操作系统五种进程调度算法的代码

操作系统五种进程调度算法的代码

操作系统五种进程调度算法的代码一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是操作系统处理进程调度时比较常用的算法,它的基本思想是按照进程的提交时间的先后顺序依次调度进程,新提交的进程会在当前运行进程之后排队,下面通过C语言代码来实现先来先服务(FCFS)调度算法:#include <stdio.h>#include <stdlib.h>//定义进程的数据结构struct Processint pid; // 进程标识符int at; // 到达时间int bt; // 执行时间};//进程调度函数void fcfs_schedule(struct Process *processes, int n)int i, j;//根据进程的到达时间排序for(i = 0; i < n; i++)for(j = i+1; j < n; j++)if(processes[i].at > processes[j].at) struct Process temp = processes[i]; processes[i] = processes[j];processes[j] = temp;//获取各个进程执行完毕的时间int ct[n];ct[0] = processes[0].at + processes[0].bt; for(i = 1; i < n; i++)if(ct[i-1] > processes[i].at)ct[i] = ct[i-1] + processes[i].bt;elsect[i] = processes[i].at + processes[i].bt; //计算各个进程的周转时间和带权周转时间int tat[n], wt[n], wt_r[n];for(i = 0; i < n; i++)tat[i] = ct[i] - processes[i].at;wt[i] = tat[i] - processes[i].bt;wt_r[i] = wt[i] / processes[i].bt;printf("P%d:\tAT=%d\tBT=%d\tCT=%d\tTAT=%d\tWT=%d\tWT_R=%f\n", processes[i].pid, processes[i].at, processes[i].bt, ct[i], tat[i], wt[i], wt_r[i]);//主函数int mainstruct Process processes[] ={1,0,3},{2,3,5},{3,4,6},{4,5,2},{5,6,4}};fcfs_schedule(processes, 5);return 0;输出:。

时间片轮转进程调度模拟算法的实现

时间片轮转进程调度模拟算法的实现

时间片轮转进程调度模拟算法的实现时间片轮转进程调度算法是一种常用的进程调度算法,适用于多任务操作系统。

它采用固定长度的时间片(也称为时间量),将CPU的占用时间划分为多个时间片。

每个进程在每个时间片内被允许执行的时间是固定的,当一个进程的时间片用完时,调度器会切换到下一个进程。

实现时间片轮转进程调度算法,可以使用队列来管理进程的调度。

具体实现如下:1.定义进程和时间片的结构体:进程结构体包含进程的ID、到达时间、服务时间和剩余时间;时间片结构体包含时间片的长度和当前时间。

2.创建就绪队列和完成队列:就绪队列用于管理等待执行的进程,完成队列用于管理已经完成执行的进程。

3.输入待执行进程的信息,包括进程的ID、到达时间和服务时间。

4.将进程按照到达时间的先后顺序加入就绪队列。

5.设置当前时间为0,循环执行以下步骤直到就绪队列为空:-从就绪队列中取出第一个进程。

-如果进程剩余时间小于等于时间片长度,则执行进程的剩余时间,并将进程移动到完成队列。

-如果进程剩余时间大于时间片长度,则执行一个时间片的时间,并将进程重新加入就绪队列。

6.计算各个进程的等待时间和周转时间。

等待时间等于完成时间减去到达时间减去服务时间,周转时间等于等待时间加上服务时间。

7.计算平均等待时间和平均周转时间,分别为所有进程的等待时间和周转时间的总和除以进程数。

8.输出结果,包括进程的ID、到达时间、服务时间、完成时间、等待时间和周转时间。

以下是一个C++实现示例:```cpp#include <iostream>#include <queue>using namespace std;//进程结构体struct Processint id;int arrivalTime;int serviceTime;int remainingTime;};//时间片结构体struct TimeSlotint length;int currentTime;};int maiint n; // 进程数量queue<Process> readyQueue; // 就绪队列queue<Process> finishQueue; // 完成队列//输入进程数量和时间片长度cout << "Enter the number of processes: "; cin >> n;//输入进程信息for (int i = 0; i < n; i++)Process process;cout << "Process ID: ";cin >> process.id;cin >> process.arrivalTime;cin >> process.serviceTime;process.remainingTime = process.serviceTime; readyQueue.push(process);}int currentTime = 0;while (!readyQueue.empty()Process currentProcess = readyQueue.front(;readyQueue.pop(;currentProcess.remainingTime = 0;finishQueue.push(currentProcess);currentTime += currentProcess.remainingTime;} elsereadyQueue.push(currentProcess);}}//计算等待时间和周转时间int totalWaitingTime = 0;int totalTurnaroundTIme = 0;int numProcesses = finishQueue.size(;cout << "Process ID\tArrival Time\tService Time\tFinish Time\tWaiting Time\tTurnaround Time" << endl;while (!finishQueue.empty()Process process = finishQueue.front(;finishQueue.pop(;int waitingTime = currentTime - process.arrivalTime - process.serviceTime;int turnaroundTime = waitingTime + process.serviceTime;cout << process.id << "\t\t" << process.arrivalTime <<"\t\t" << process.serviceTime << "\t\t" << currentTime << "\t\t" << waitingTime << "\t\t" << turnaroundTime << endl;totalWaitingTime += waitingTime;totalTurnaroundTIme += turnaroundTime;}//计算平均等待时间和平均周转时间float avgWaitingTime = (float)totalWaitingTime / numProcesses;float avgTurnaroundTIme = (float)totalTurnaroundTIme / numProcesses;cout << "Average Waiting Time: " << avgWaitingTime << endl;cout << "Average Turnaround Time: " << avgTurnaroundTIme << endl;return 0;```这个示例演示了时间片轮转进程调度算法的实现过程,包括进程的输入、时间片的设置、进程的调度、等待时间和周转时间的计算,以及最后的结果输出。

5种进程调度算法

5种进程调度算法

5种进程调度算法进程调度算法是操作系统中的重要组成部分,用于确定哪个进程将获得CPU的使用权。

根据不同的算法,进程可以以不同的顺序运行,并根据优先级、运行时间、等待时间等因素进行调度。

本文将介绍和分析五种常见的进程调度算法,包括先来先服务(FCFS)、最短作业优先(SJF)、高响应比优先(HRRN)、轮转调度(RR)和多级反馈队列调度(MFQ)。

1.先来先服务(FCFS)先来先服务是最简单的进程调度算法,按照进程到达的顺序分配CPU片段。

当一个进程执行完成或者遇到I/O请求时,CPU被分配给下一个进程。

该算法简单直观,但可能导致长作业等待时间增加,且无法满足实时性要求。

2.最短作业优先(SJF)最短作业优先调度算法根据预计的执行时间为进程分配CPU时间。

在所有就绪队列中,选择执行时间最短的进程。

该算法可以最大程度地减少平均等待时间,但需要准确预测进程的执行时间,而实际中很难精确估计。

3.高响应比优先(HRRN)高响应比优先是一个动态优先级调度算法,根据进程等待时间的长度为进程分配CPU时间。

等待时间越长,优先级越高。

因此,较长等待的进程将获得更多的处理时间,以保证公平性。

该算法在处理短作业时效果较好,但容易导致无限等待。

4.轮转调度(RR)轮转调度算法按照轮询的方式为每个进程分配固定的时间片,通常为几十毫秒。

当时间片用尽时,进程将被暂停,下一个进程得到时间片。

该方法保证了公平性,但对于长时间的进程,可能会浪费大量的CPU时间在进程切换上。

5.多级反馈队列调度(MFQ)多级反馈队列调度算法将进程划分为多个队列,根据进程特性和优先级的不同,为每个队列分配不同的时间片或优先级。

当进程进入就绪队列时,首先进入最高优先级的队列,若运行时间超过时间片,则移入下一级队列。

该算法综合了前几种算法的优点,可以同时满足长短作业的需求。

通过对这五种进程调度算法的介绍和分析,我们可以看到每种算法都有其优点和缺点。

选择适合的进程调度算法取决于系统的需求和特定场景的要求。

基于优先级调度进程算法的实现

基于优先级调度进程算法的实现

基于优先级调度进程算法的实现优先级调度进程算法是操作系统中常用的调度算法之一,其核心思想是根据进程的优先级来确定调度顺序。

优先级较高的进程会先被调度执行,从而提高系统的响应速度和任务处理效率。

以下是基于优先级调度进程算法的示例代码(使用C语言实现):```c#include<stdio.h>#include<stdlib.h>#define MAX_PROCESS 10typedef struct Processint pid; // 进程IDint priority; // 进程优先级} Process;//按照进程优先级降序排列void sort(Process *p, int n)for (int i = 0; i < n - 1; i++)for (int j = 0; j < n - i - 1; j++)if (p[j].priority < p[j + 1].priority)Process temp = p[j];p[j]=p[j+1];p[j + 1] = temp;}}}for (int i = 1; i < n; i++)}for (int i = 0; i < n; i++)}void display(Process *p, int n)printf("进程ID\t优先级\t执行时间\t等待时间\t周转时间\n"); for (int i = 0; i < n; i++)}int maiint n;Process p[MAX_PROCESS];printf("请输入进程数量:");scanf("%d", &n);printf("请输入进程的优先级和执行时间:\n");for (int i = 0; i < n; i++)p[i].pid = i + 1;printf("进程%d的优先级:", i + 1);scanf("%d", &p[i].priority);printf("进程%d的执行时间:", i + 1);}sort(p, n); // 按照优先级排序display(p, n); // 显示结果return 0;```以上代码实现了基本的优先级调度进程算法,包括输入进程数量、优先级和执行时间,并按照进程的优先级进行排序。

采用短进程优先算法模拟实现进程调度

采用短进程优先算法模拟实现进程调度

采用短进程优先算法模拟实现进程调度短进程优先(SJF)是一种基于优先级的调度算法,其中短的进程优先
被调度。

在这种算法中,短暂的进程拥有优先级,因此优先调度。

SJF的工作原理是:在进程结束之前,它会检查新到达的进程,把它
们按照任务的执行时间排序,并把时间最短的进程调度到CPU中去执行。

这种算法的目的是让整个调度过程更有效率,减少CPU的空闲时间,由于
短进程可以被快速地完成,CPU在等待长进程完成的时间就可以更有效地
被利用。

短进程优先算法可以使用多种方法来实现,最常用的是基于优先级的
算法,即让较短的进程具有较高的优先级,让长进程具有较低的优先级。

在这种方法中,到达进程被排序,然后CPU根据优先级调度拥有最高优先
级的进程。

有的时候短进程优先算法也可以使用时间片轮转(Round Robin)的方法,即把每个进程分配一个时间片,时间片的大小取决于任务的执行时间。

在这种方法中,每个时间片之间调度一个进程,直到每个进程的时间片都
被使用完,然后重新调度下一个时间片。

SJF调度算法的优点是可以有效地减少CPU的空闲时间,可以提高整
个系统的性能,而且它可以运行时间较短的程序。

操作系统实验报告-进程调度法的实现

操作系统实验报告-进程调度法的实现

操作系统实验报告进程调度算法的实现1.实验目的进程是操作系统最重要的概念之一,本实验通过对进程调度模拟程序的运行,学习运用时间片轮转法进行进程调度,加深对进程的基本调度状态以及进程调度算法的理解。

2.算法思想进程调度算法:采用多级反馈队列调度算法。

其基本思想是:当一个新进程进入内在后,首先将它放入第一个队列的末尾,按FCFS原则排队等待高度。

当轮到该进程执行时,如能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚为完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行,以此类推。

4.算法。

5.程序代码程序的主要代码如下:#include<iostream.h>#include<stdlib.h>#include<time.h>#include<stdio.h>#include<string.h>const int MAXCOMMANDLEN =50;///////////////////////////////////////////////////////////////////////////////////////// PROCESS///////////////////////////////////////////////////////////////////////////////////////class Process{friend class CPU; //友元类protected:static int init_ID; //静态初始IDint ID; //进程IDchar runText[MAXCOMMANDLEN]; //进程指令数组int IP; //进程指令指针,保存进程指令执行到的具体位置bool ISuseSource; //进程是否使用资源(是或者否)bool ISblocked; //进程是否被阻塞(是或者否)int unitTime; //进程被cpu执行单位时间, 默认 1int blockTime; //进程被阻塞时间public:static void RandID(); //静态随机生成进程ID的函数Process(); //进程类的构造函数int getID(); //得到进程IDint getIP(); //获取进程指令指针IPvoid setIP(int); //设置IPvoid Runed(); //进程被执行int getUnittime(); //得到进程的单位执行时间2int getBlcoktime(); //得到进程被阻塞的时间void setBlocktime(int); //设置进程被阻塞的时间void setUnittime(int); //设置进程的单位执行时间char getResult(int); //得到进程被执行的结果char* getRuntext(); //得到进程执行的指令void setBlockstate(bool); //设置进程阻塞状态bool getBlockstate(); //得到进程阻塞状态bool getISusesource(); //得到资源的使用状态void setISusesource(bool); //设置资源的使用状态};int Process::init_ID; //初始化静态变量void Process::RandID() //随机产生一个进程ID{srand((unsigned)time(NULL)); //调用srand随机生成函数init_ID=rand();}Process::Process() //进程的构造函数{ID=init_ID++; //进程ID的初值为静态初始ID的值int commandLen; //命令行长度IP=0;cout<<"Please input the text which process runed by CPU [#command#] :>\\ ";cin>>runText; //输入命令if( (commandLen=strlen(runText) ) > MAXCOMMANDLEN )exit(0); //输入长度超出最大长度时退出,特殊情况处理3runText[commandLen]='#'; //初始指令结束标志 '#' runText[commandLen+1]='\0'; //字符串结束标志ISuseSource=false; //设置资源的使用状态为未使用ISblocked=false; //进程的初始状态-》未被阻塞unitTime=1; //进程被执行的单位时间为1 blockTime=0; //阻塞时间为0}void Process::Runed() //进程被CPU执行{cout<<getResult(IP++); //输出得到的进程执行结果}int Process::getID() //得到进程ID {return ID;}int Process::getIP() //得到进行IP {return IP;}void Process::setIP(int ip) //设置进程IP {IP=ip;}bool Process::getISusesource() //得到资源的使用状态{return ISuseSource;4}void Process::setISusesource(bool s) //设置资源的使用状态{ISuseSource=s;}char* Process::getRuntext() //得到进程执行的指令{return runText;}int Process::getUnittime() //得到进程的单位执行时间{return unitTime;}int Process::getBlcoktime() //得到进程阻塞状态{return blockTime;}void Process::setBlocktime(int BT) //设置进程阻塞时间{blockTime=BT;}void Process::setUnittime(int UT) //设置进程的单位执行时间{unitTime=UT;}5void Process::setBlockstate(bool state) //设置进程阻塞状态{ISblocked=state;}bool Process::getBlockstate() //得到进程阻塞状态{return ISblocked;}char Process::getResult(int k) //得到程序的运行结果{return runText[k];}///////////////////////////////////////////////////////////////////////////////////////// SOURCE///////////////////////////////////////////////////////////////////////////////////////class Source //资源类{protected:int ID; //资源 IDbool state; //资源是否被占用状态int pro_ID; //使用资源的进程id Process *pro; //使用资源的进程指针int time; //进程使用资源的时间6public:Source(int); //资源类构造函数bool getState(); //得到资源被使用状态void setState(bool); //设置资源被使用状态void setTime(int); //设置进程使用资源的时间void setPro(Process *); //设置使用该资源的进程int getID(); //得到资源idint getPorID(); //得到使用资源的进程id void setProID(int); //设置使用资源的进程id void runned(); //资源被cpu调用};Source::Source(int id) //资源类构造函数{ID=id; //资源ID初值为idpro=NULL; //指针赋为空值state=true; //状态为被使用状态}void Source::setProID(int id) //设置使用资源的进程id{pro_ID=id;}void Source::setTime(int t) //设置进程使用资源的时间{time=t;}void Source::setState(bool s) //设置资源使用状态{7state=s;}bool Source::getState() //得到资源使用状态{return state;}void Source::setPro(Process *p) //设置使用该资源的进程{pro=p;}void Source::runned() //资源被CPU调用{if(time>0) //时间充足继续运行输出资源信息并使时间减一{cout<<"( Source :"<<ID<<")";time--;}if(time<=0) //时间用完{pro->setISusesource(false); //资源的使用状态为未使用int ip=pro->getIP(); //得到进程的IPpro->setIP(++ip); //设置到下一个ipSource::setState(true); //设置资源的使用状态为正在使用cout<<endl<<"The process "<<pro->getID()<<" relase the source!"<<endl;pro=NULL; //输出资源被释放指针值赋值为空值}8}//////////////////////////////////////////////////////////// ///////////////////////////// CPU////////////////////////////////////////////////////////////// /////////////////////////typedef struct Block //阻塞队列结构{Process *p_BlockProcess; //被阻塞的进程队列int index; //被阻塞的进程在就绪队列中的位置}Block;class CPU{protected:Process *p_Process; //进程队列Process **pp_Process; //进程就绪队列Block *blockQueue ; //进程阻塞队列Source *p_Source; //资源指针int numOfprocess; //进程数量int numOfblock; //被阻塞的进程数int PC; //程序计数器int allTime; //cpu运行的总时间public :CPU(int); //cpu构造函数void Run(); //cpu运行进程bool _IC(Process&); //虚拟IC,进行进程指令翻译void useSource(Process&); //进程申请资源9void blockProcess(Process&); //阻塞进程void releaseBlockPro(); //释放阻塞进程int getAlltime(); //得到进程运行的总时间void displayPro(); //显示进程的基本信息,id,指令,运行时间等void blockTimeADD(); //阻塞时间加1 };CPU::CPU(int num){p_Source=new Source(379857);//创建一个id号为379857的资源numOfprocess=num; //进程数numOfblock=0; //阻塞数allTime=0; //cpu运行的总时间初始化为0p_Process=new Process[numOfprocess];//进程队列申请空间pp_Process=new Process*[numOfprocess];//进程就绪队列申请空间blockQueue=new Block[numOfprocess]; //阻塞队列申请空间for(int i=0;i<numOfprocess;i++){pp_Process[i]=&p_Process[i]; //用二维数组存放进程指针数组头指针blockQueue->p_BlockProcess=NULL; //阻塞队列的阻塞进程赋值为空blockQueue->index=-1; //阻塞队列的索引值置为1 }}int CPU::getAlltime() //得到进程运行的总时间{return allTime;}10void CPU::displayPro() //显示进程的基本信息{for(int i=0;i<numOfprocess;i++)//循环输出被执行的进程的信息{cout<<"\tProcess ID : "<<p_Process[i].getID()<<endl;cout<<" text of runned :"<<p_Process[i].getRuntext()<<endl;}}void CPU::Run() //cpu运行进程{int numPro=numOfprocess; //记录未被运行的进程个数do{for(int num=0;num < numOfprocess;num++){if(!pp_Process[num]) //就绪队列不空继续执行continue;for(int t=0;t<p_Process[num].getUnittime();t++){PC=p_Process[num].getIP();//得到进程Ipif(_IC(p_Process[num]))//判断进程的状态TURE进入{if(t==0) //时间为0运行完输出进程信息cout<<"the process ["<<p_Process[num].getID()<<"] runed : ";if(!p_Process[num].getISusesource())//如果该进程未被运行过,则调用run运行{p_Process[num].Runed();//}else{p_Source->runned(); //if( p_Source->getState() && numOfblock>0 ){releaseBlockPro();////如果进程运行过,现在但未运行,说明为阻塞。

Java实现进程调度算法(二)RR(时间片轮转)

Java实现进程调度算法(二)RR(时间片轮转)

Java实现进程调度算法(⼆)RR(时间⽚轮转)⼀、概述 因为这次os作业对⽤户在控制台的输⼊输出有要求,所以我花了挺多的代码来完善控制台的显⽰。

也因为我这次要实现多个类似算法,所以将⼀些共性单独提取出来作为⼀个类。

如果只想要和算法有关的核⼼代码,看RR类的calc()即可。

实现思路:每运⾏⼀个进程,则将所有进程的remainServiceTime减去⼀个时间⽚的长度。

⼆、运⾏结果 1. 测试数据: 2. 运⾏结果:三、流程图四、实现代码 1. RR类(主类)只有calc()中涉及了算法,init()和printResult()只有简单的输⼊输出操作。

1package xqy.algorithm;23import java.util.*;45import xqy.Util.Tools;6import xqy.been.Process;78/**9 * @author xqy10 * @date 2018年12⽉19⽇19:14:4911*/12public class RR {13private int processNumber;14private ArrayList<Process> processList;15private int timeSlice;1617public RR() {18 init();19 calc();20 Tools.printResult(processList);21 }2223private void init() {24 Scanner sc = new Scanner(System.in);2526 System.out.print("<RR> Please enter the slice time:");27 timeSlice = sc.nextInt();28 System.out.print("<RR> please enter the process num:");29 processNumber = sc.nextInt();3031 processList = new ArrayList<Process>();32for (int i = 0; i < processNumber; i++) {33 processList.add(new Process());34 }3536 System.out.println("<RR> Please enter each process arrival time:");37for (int i = 0; i < processNumber; i++) {38 System.out.print(" Process" + (i + 1) + ":");39 processList.get(i).setArrivalTime(sc.nextInt());40 }4142 System.out.println("<RR> Please enter each process service time:");43for (int i = 0; i < processNumber; i++) {44 System.out.print(" Process" + (i + 1) + ":");45int servicesTime = sc.nextInt();4647 processList.get(i).setServicesTime(servicesTime);48 processList.get(i).setRemainServiceTime(servicesTime);49 }50 }5152private void calc() {53int timeNow = 0;54int processRemain = processNumber;55boolean noProcessRunInThisTurn;56 Process opProcess;5758while (processRemain != 0) {59 noProcessRunInThisTurn = true;6061for (int i = 0; i < processNumber; i++) {62 opProcess = processList.get(i);6364if ((opProcess.getRemainServiceTime() > 0)65 && (timeNow >= opProcess.getArrivalTime())) {66// First time67if (opProcess.getServicesTime() == opProcess68 .getRemainServiceTime()) {69int waitTime = timeNow - opProcess.getArrivalTime();7071 opProcess.setStartTime(timeNow);72 opProcess.setWaitTime(waitTime);73 }7475// Calculating remain service time76int remainServiceTime = opProcess.getRemainServiceTime()77 - timeSlice;78 opProcess.setRemainServiceTime(remainServiceTime);7980// Last time81if (remainServiceTime <= 0) {82int completionTime = timeNow + timeSlice; // The process ends when the current slice is completed. 83int turnAroundTime = completionTime84 - opProcess.getArrivalTime();85double turnAroundTimeWithWeight = 1.0 * turnAroundTime86 / opProcess.getServicesTime();8788 opProcess.setCompletionTime(completionTime);89 opProcess.setTurnAroundTime(turnAroundTime);90 opProcess91 .setTurnAroundTimeWithWeight(turnAroundTimeWithWeight);92 processRemain--;93 }9495 timeNow += timeSlice;96 noProcessRunInThisTurn = false;9798 System.out.println(" #STEP# Process" + (i + 1)99 + " remain service time:"100 + opProcess.getRemainServiceTime()101 + " , timeBefore:" + (timeNow - 1) + ", timeNow:"102 + timeNow103 + ((remainServiceTime <= 0) ? " Finish" : ""));104 } else {105// do noting, because this process has been completed or hasn`t arrived.106 }107 }108109// Means no process could run, because they have arrived.110if ((processRemain > 0) && noProcessRunInThisTurn) {111 timeNow += timeSlice;112 }113 }114 }115 } 2. Process类模拟了进程,对属性进⾏了封装。

操作系统中的进程调度算法

操作系统中的进程调度算法

操作系统中的进程调度算法随着现代计算机技术的不断发展,操作系统成为管理计算机系统的核心组件。

操作系统不仅可以控制计算机硬件和软件资源的分配,还可以提高计算机的效率和管理性能。

而进程调度就是操作系统中最重要的功能之一,其目的是实现多个进程之间的均衡,响应用户请求,最大程度的利用计算机资源。

进程调度算法是指操作系统中用来决定哪个进程可以被执行和运行多长时间的算法。

不同的操作系统有不同的进程调度算法,通常根据不同策略来选择进程。

下面将介绍几种经典的进程调度算法。

1. 先来先服务(FCFS)算法FCFS算法是最简单的进程调度算法之一。

它的核心思想是按照进程到达的顺序排队,当一个进程结束执行后,下一个进程将会自动成为就绪队列中的第一个进程。

这种算法的优点在于简单易实现,但是很容易出现长作业长等待的问题,也就是说长时间在等待队列中的进程可能会影响到系统效率。

2. 最短作业优先(SJF)算法SJF算法通过对进程执行时间的估计来决定下一个要执行的进程。

也就是说,当一个新进程加入系统时,选择预计需要最短执行时间的进程进行调度。

这种算法在情况比较稳定时,可以保证平均等待时间最少。

但是当有大量的短作业成批到达时,长作业就可能会一直等待。

3. 优先级算法优先级算法是按照每个进程的优先级确定执行顺序的算法。

通常情况下,优先级由进程的重要性、紧急程度等因素来决定。

优先级越高的进程会先得到执行机会。

这种算法可以保证重要的进程得到优先执行,但是它也存在一个问题:优先级调度可能会导致低优先级的进程一直等待执行,这就是由于饥饿现象的出现。

4. 时间片轮转算法时间片轮转算法是一种按照时间分配资源的算法。

每个进程都被分配一个时间片,在该时间片结束时,操作系统会强制暂停进程的执行,将CPU时间分配给下一个进程执行。

这种算法可以保证每个进程都有机会得到尽可能的执行时间,而且能够避免长时间的等待。

5. 高响应比优先(HRRN)算法HRRN算法是一种综合了SJF和优先级算法的综合调度算法。

进程调度算法实验报告

进程调度算法实验报告

实验报告实验一:进程调度算法一、实验目的1.利用高级语言实现三种不同及进程调度算法:短作业优先算法、时间片轮转调度算法和优先级调度算法。

2.通过实验理解有关进程控制块,进程队列等的概念。

二、实验原理各调度算法思想:1.先来先服务算法(FCFS):按照进程进入就绪队列的先后次序来分配CPU,一旦一个进程占有CPU,就一直运行下去,知道该进程完成工作,才释放CPU。

2.时间片轮转算法:系统将所有就绪进程按到达时间的先后次序排成一个队列,进程调度程序总是选择队列中的第一个进程执行,且仅能执行一个时间片,在使用完一个时间片后,即使进程并未完成其运行,也必须将CPU交给下一个进程;如果一个时间片未使用完就完成了该进程,则剩下的时间分配给下一个进程。

3.优先权调度算法;在创建进程时就确定优先权,确定之后在整个程序运行期间不再改变,根据优先级排列,系统会把CPU分配给优先权最高的进程。

三、实验步骤、数据记录及处理1、算法流程抽象数据类型的定义:PCB块结构体类型struct PCB{int name;int arrivetime; //到达时间int servicetime; //服务时间//int starttime[max]; //开始时间int finishtime; //完成/结束时间int turntime; //周转时间int average_turntime; //带权周转时间int sign; //标志进程是否完成int remain_time; //剩余时间int priority; //优先级}pcb[max];主程序的流程以及各程序模块之间的层次(调用)关系:主程序中从键盘得到进程的数量,创建PCB,调用layout()函数显示选择界面。

Layout()函数中选择相应的算法并调用相关函数如:FCFS()、time_segment();、Priority(),这三个函数分别实现先来先服务算法,时间片轮转算法和优先级算法,最后分别打印。

进程调度算法设计与实现

进程调度算法设计与实现

进程调度算法设计与实现进程调度算法是操作系统中的重要组成部分,负责决定在多个进程同时运行时,如何合理地分配时间片和资源。

下面是一个简单的进程调度算法的设计与实现过程。

算法设计:1. 需要确定调度算法的目标和原则。

常见的调度目标包括提高系统吞吐量、提高响应速度、公平分配资源等。

根据实际需求确定目标和原则。

2. 确定进程调度的触发时机。

进程调度可以由多种事件触发,例如进程创建、进程结束、时间片用完、阻塞等。

根据具体需求确定触发时机。

3. 设计调度算法。

常见的调度算法有先来先服务(FIFO)、最短作业优先(SJF)、时间片轮转(RR)、多级反馈队列等。

选择适合的调度算法,并根据具体需求进行调整和优化。

算法实现:1. 需要设计数据结构来表示进程和调度队列。

进程可以用PCB(Process Control Block)来表示,调度队列可以使用队列或链表来表示。

2. 实现进程创建和调度。

当一个新的进程创建时,将其加入调度队列中。

根据调度触发时机,在合适的时机选择下一个要执行的进程。

3. 实现时间片轮转算法。

时间片轮转算法是一种常见的调度算法,可以简单实现如下:- 设置一个固定的时间片大小。

- 每次调度时,选择队列头部的进程执行,并将其放到队列尾部。

- 当进程用完时间片后,将其放到队列尾部继续执行。

4. 实现其他调度算法。

根据选择的调度算法,实现相应的算法逻辑。

例如,FIFO算法可以简单地选择队列头部的进程执行;SJF算法可以根据进程的剩余执行时间选择优先级最高的进程执行。

5. 根据实际需求进行优化。

通过调整时间片大小、队列优先级、进程优先级等参数,可以优化调度算法的性能和效果。

以上是进程调度算法设计与实现的一般过程,具体实现时可以根据实际需求进行调整和优化。

五种进程调度的算法实现(一)

五种进程调度的算法实现(一)

五种进程调度的算法实现(⼀)实验要求1、基于Event-Driven(事件驱动)实现模拟进程调度,包括最短⼯作优先(SJF);最短剩余时间优先(SRTF);最⾼响应⽐优先(HRRF);优先级调度(Priority);轮转调度(RR)。

其中,SJF、SRTF为⾮抢占式调度,其余为抢占式调度。

2、要求⽤C语⾔实现这五种调度算法。

(⽅便起见,引⼊了C++头⽂件使⽤cout进⾏输出)基础知识⼀、进程1.1 进程的含义⼴义地说,进程是⼀个具有独⽴功能的程序关于某个数据集合的⼀次运⾏活动。

进程是⼀种抽象的概念,是对程序的抽象。

程序是⼀连串的代码或指令,是静态的东西,就像⼀本书放在那⾥。

那什么时候,程序会“动”起来呢?当然是我们执⾏了它。

⽐如⽤⿏标双击Word的快捷⽅式,那么过⼀会⼉,Word程序就会呈现在你眼前。

究其过程,不是“你”执⾏了程序,⽽是你让计算机执⾏了程序。

那计算机是怎么执⾏程序的呢?众所周知,这就要涉及到它的内部,甚⾄是它的⼤脑——中央处理器(CPU)了。

CPU是⼲什么的呢?CPU就是⽤来执⾏特定指令的。

上⾯说道程序就如同⼀本书,那么CPU的⾓⾊就相当于读者,书上的⽂字相当于指令,CPU“读”了“书”之后,有所感悟,就去做相当的事情,完成相当的任务。

打个⽐⽅,要以书来⽐喻指令,那么⽤菜谱来说就再贴切不过了。

以菜谱为例,⽐如现在要做⼀道菜,按照菜谱上的10个步骤来。

这⾥,做菜的时候,⾸先要准备⾷材、调料等,这都不是指令是什么回事?其实,计算机中的程序⽂件(可执⾏⽂件)除了包含代码之外,还包含数据,例如应⽤程序的图标等。

接下来,“你”——CPU,就要按照步骤做菜了。

做菜途中要等,就得等。

⼀系列步骤下来,最终,⼀道上好的菜摆在你眼前,⾊⾹味俱全。

这印证着定义中“具有独⽴功能”的含义,做⼀道特⾊的菜,就是独⽴完成⼀种任务。

1.2 进程的状态最简单的概括(三态模型)是:进程的状态分为——等待态、就绪态、运⾏态。

c语言编写的进程调度算法

c语言编写的进程调度算法

c语言编写的进程调度算法C语言编写的进程调度算法进程调度是操作系统的核心功能之一,它负责按照一定的策略和算法,合理地分配CPU资源给正在运行或即将运行的进程,从而提高操作系统的性能和资源利用率。

在操作系统中,存在多种不同的进程调度算法,本文将以C语言编写进程调度算法为主题,一步一步回答。

第一步:定义进程结构体首先,我们需要定义一个进程的数据结构体,以便在调度算法中使用。

进程结构体包括进程ID、进程优先级、进程状态等信息。

以下是一个简单的进程结构体示例:ctypedef struct {int pid; 进程IDint priority; 进程优先级int state; 进程状态} Process;第二步:初始化进程队列进程队列是存储所有待调度进程的数据结构,可以使用链表或数组来实现。

在初始化进程队列之前,需要先创建一个空的进程队列。

以下是一个简单的初始化进程队列函数:c#define MAX_PROCESSES 100 最大进程数Process processQueue[MAX_PROCESSES]; 进程队列int processCount = 0; 当前进程数void initProcessQueue() {processCount = 0;}第三步:添加进程到队列在调度算法中,需要将新创建或运行的进程添加到进程队列中,这样才能对其进行调度。

以下是一个简单的添加进程到队列的函数:void addProcess(int pid, int priority, int state) {if (processCount >= MAX_PROCESSES) {printf("进程队列已满,无法添加进程!\n");return;}Process newProcess;newProcess.pid = pid;newProcess.priority = priority;newProcess.state = state;processQueue[processCount] = newProcess;processCount++;}第四步:实现进程调度算法进程调度算法决定了操作系统如何决定哪个进程应该被调度并获得CPU 资源。

进程调度实验报告

进程调度实验报告

进程调度实验报告进程调度实验报告一、实验目的本实验旨在通过模拟进程调度算法,加深对操作系统进程调度的理解,掌握进程调度算法的实现方法。

二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法本实验实现了三种进程调度算法:先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。

其中,FCFS算法按照进程到达的先后顺序进行调度,SJF算法按照进程执行时间的长短进行调度,RR算法则按照时间片轮转的方式进行调度。

2. 模拟进程调度过程本实验模拟了多个进程的调度过程,包括进程的创建、调度、执行和结束。

在模拟过程中,每个进程都有自己的进程ID、到达时间、执行时间和优先级等属性。

通过模拟进程调度过程,可以更好地理解进程调度算法的实现原理。

3. 统计调度结果本实验统计了每种进程调度算法的平均等待时间、平均周转时间和平均带权周转时间。

通过统计调度结果,可以比较不同进程调度算法的优劣,为实际应用提供参考。

四、实验结果1. 进程调度算法的实现本实验实现了三种进程调度算法,分别是FCFS、SJF和RR。

其中,FCFS算法的实现比较简单,只需要按照进程到达的先后顺序进行调度即可。

SJF算法则需要根据进程的执行时间进行排序,然后按照排序后的顺序进行调度。

RR算法则需要设置时间片大小,每个进程执行一个时间片后,将其放入就绪队列的末尾,然后轮到下一个进程执行。

2. 模拟进程调度过程本实验模拟了多个进程的调度过程,包括进程的创建、调度、执行和结束。

在模拟过程中,每个进程都有自己的进程ID、到达时间、执行时间和优先级等属性。

通过模拟进程调度过程,可以更好地理解进程调度算法的实现原理。

3. 统计调度结果本实验统计了每种进程调度算法的平均等待时间、平均周转时间和平均带权周转时间。

通过统计调度结果,可以比较不同进程调度算法的优劣,为实际应用提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实现进程调度算法
[实验目的]
通过该实验加深和提高对进程调度知识的掌握。

[实验内容及要求]
用C语言实现下列要求,并写出实验报告,报告内容包括:题目、
目的、内容和要求、程序清单、运行情况(输入、输出)、总结。

现有一批给定的进程P1、P2、P3、P4、P5,它们到达时间和要求
运行时间如下:
(1)分别输出采用短进程优先调度算法SPF、先来先服务FCFS调度算法时,各进程的周转时间、带权周转时间及平均周转时间和平均带权周转时间,比较两种算法哪个性能好。

(2)输出两种调度算法的进程完成顺序。

源程序为:
#include<stdio.h>
#include<stdlib.h>
struct process
{
char pname;
float arrivetime;
float servetime;
float finishtime;
float roundtime;
float droundtime;
float waittime;
float yxq;
};
struct process pro[100];
void fcfs(struct process pro[],int n);
void sjf(struct process pro[],int n);
struct process *sortarrivetime(struct process pro[],int n); void print(struct process pro[],int n);
void main()
{
int n,i;
printf("请输入有几个进程:");
scanf("%d",&n);
for(i=0;i<n;i++)
{
fflush(stdin);
printf("请输入第%d个进程名称: ",i+1);
scanf("%c",&pro[i].pname);
printf(" 到达时间: ");
scanf("%f",&pro[i].arrivetime);
printf(" 运行时间: ");
scanf("%f",&pro[i].servetime);
}
fcfs(pro,n);
sjf(pro,n);
}
struct process *sortarrivetime(struct process pro[],int n) {
int i,j;
struct process itemp;
int flag;
for(i=1;i<n;i++)
{
flag=0;
for(j=0;j<n-i;j++)
{
if(pro[j].arrivetime>pro[j+1].arrivetime)
{
itemp=pro[j];
pro[j]=pro[j+1];
pro[j+1]=itemp;
flag=1;
}
}
if(flag==0)
break;
}
return pro;
}
void print(struct process pro[],int n)
{
int i;
float Sumroundtime=0,Sumdroundtime=0;
float averoundtime,avedroundtime;
for(i=0;i<n;i++)
{
Sumroundtime+=pro[i].roundtime;
Sumdroundtime+=pro[i].droundtime;
}
averoundtime=Sumroundtime/n;
avedroundtime=Sumdroundtime/n;
printf("进程名\t到达时间\t服务时间\t完成时间\t周转时间\t带全周转");
for(i=0;i<n;i++)
{
printf("%c\t%.2f\t\t%.2f\t\t%.2f\t\t%.2f\t\t%.2f\n",pro[i].pname,pro[i].arrivetime, pro[i].servetime,pro[i].finishtime,pro[i].roundtime,pro[i].droundtime);
}
printf("平均值\t\t\t\t\t\t\t%.2f\t\t%.2f\n",averoundtime,avedroundtime);
}
void fcfs(struct process pro[],int n)
{
int i;
pro=sortarrivetime(pro,n);
pro[0].finishtime=pro[0].arrivetime+pro[0].servetime;
pro[0].roundtime=pro[0].finishtime-pro[0].arrivetime;
pro[0].droundtime=pro[0].roundtime/pro[0].servetime;
for(i=1;i<n;i++)
{
if(pro[i].arrivetime<=pro[i-1].finishtime)
{
pro[i].finishtime=pro[i-1].finishtime+pro[i].servetime;
pro[i].roundtime=pro[i].finishtime-pro[i].arrivetime;
pro[i].droundtime=pro[i].roundtime/pro[i].servetime;
}
else
{
pro[i].finishtime=pro[i].arrivetime+pro[i].servetime;
pro[i].roundtime=pro[i].finishtime-pro[i].arrivetime;
pro[i].droundtime=pro[i].roundtime/pro[i].servetime;
}
}
printf("\n\n先来先服务:\n\n");
print(pro,n);
}
void sjf(struct process pro[],int n)
{
int i;
pro=sortarrivetime(pro,n);
pro[0].finishtime=pro[0].arrivetime+pro[0].servetime;
for(i=1;i<n;i++)
{
if(pro[i].arrivetime>pro[i-1].finishtime)
{
pro[i].finishtime=pro[i].arrivetime+pro[i].servetime;
}
else
{
int k=0;
for(int m=i;m<n;m++)
{
if(pro[k].arrivetime<=pro[i-1].finishtime)
k++;
}
struct process min,temp;
min.servetime=pro[i].servetime;
int x=i;
for(int l=i+1;l<i+k;l++)
{
if(min.servetime>pro[l].servetime)
{
min.servetime=pro[l].servetime;
x=l;
}
}
temp=pro[i];
pro[i]=pro[x];
pro[x]=temp;
pro[i].finishtime=pro[i-1].finishtime+pro[i].servetime;
}
}
for(i=0;i<n;i++)
{
pro[i].roundtime=pro[i].finishtime-pro[i].arrivetime;
pro[i].droundtime=pro[i].roundtime/pro[i].servetime;
}
printf("\n\n\n短作业优先:\n\n");
print(pro,n);
}
运行结果:。

相关文档
最新文档