四年级数学奥数竞赛试卷决赛 (2)

合集下载

四年级数学奥数竞赛试卷及答案word百度文库(2)

四年级数学奥数竞赛试卷及答案word百度文库(2)

四年级数学奥数竞赛试卷及答案word百度文库(2)一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.3.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.4.空心圆和实心圆排成一行如下图所示:○●○●●○●●●○●○●●○●●●○●○●●○●●●…在前200个圆中有个空心圆.5.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.6.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.7.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.8.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.9.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.10.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.11.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.12.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.13.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..15.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).3.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.4.解:200÷9=22…2,所以22×3+1=67(个),答:前200个圆中有67个空心圆.故答案为:67.5.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.6.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.7.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.8.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.9.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.10.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.11.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.12.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.13.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.15.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.。

湖北省武汉市光谷第二小学四年级奥数竞赛数学竞赛试卷及答案百度文库

湖北省武汉市光谷第二小学四年级奥数竞赛数学竞赛试卷及答案百度文库

湖北省武汉市光谷第二小学四年级奥数竞赛数学竞赛试卷及答案百度文库一、拓展提优试题1.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.4.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.5.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.6.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.7.如图是长方形,将它分成7部分,至少要画条直线.8.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.9.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?10.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.11.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?12.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.13.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…14.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.15.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?16.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..17.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.18.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.19.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.20.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.21.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.22.三个连续自然数的乘积是120,它们的和是.23.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.24.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.25.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.26.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.27.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.28.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.29.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?30.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.31.是三位数,若a是奇数,且是3的倍数,则最小是.32.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.33.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.34.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?35.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.36.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.37.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.38.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.39.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.40.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.【参考答案】一、拓展提优试题1.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.4.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.5.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.6.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.7.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.8.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.9.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.10.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.11.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.12.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.13.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.14.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.15.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.16.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.17.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.18.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.19.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.20.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.21.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.22.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.23.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).24.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.25.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.26.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.27.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.28.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.29.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..30.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.31.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.32.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.33.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.34.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.35.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.36.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.37.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.38.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.39.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.40.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.。

【强烈推荐】小学四年级数学奥林匹克竞赛试题及答案

【强烈推荐】小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。

(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

小学四年级数学奥数竞赛试卷及答案(2)

小学四年级数学奥数竞赛试卷及答案(2)

小学四年级数学奥数竞赛试卷及答案(2)一、拓展提优试题1.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.2.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.3.如果今天是星期五,那么从今天算起,57天后的第一天是星期.4.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.5.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.6.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.7.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.8.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.9.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.10.两数相除,商是12,余数是3,被除数最小是.11.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.12.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.13.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..15.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.【参考答案】一、拓展提优试题1.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.2.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.3.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.4.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.5.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.6.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.7.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.8.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.9.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.10.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.11.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.12.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.13.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.15.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.。

2023年全国数学竞赛小学四年级决赛集训试题附答案

2023年全国数学竞赛小学四年级决赛集训试题附答案

全国数学竞赛小学四年级决赛集训试题(一)姓名____得分____一、填空题(每题6分,共60分)1、已知2※3=2+3+4,7※2=7+8,3※5=3+4+5+6+7,…,按此规则,假如n※8=68,那么n= 。

2、计算:(2×3×4+4×6×8+6×9×10+……+200×300×400)÷(1×2×3+2×4×6+3×6×9+……+100×200×300)=。

3、如图,方格纸上放了20枚棋,以棋子为顶点的正方形一共有个。

4、从3,4,5,6,10,11,12这七个数中,取出两个数组成一个最简真分数,共有种取法。

5、一个粗心的会计,在给货主汇款时,把货主开来的发票上应付款多看了一位,使应付款扩大了10倍。

几天后,货主将她多汇的75258元如数退回了。

应付款是元。

6、小芳每分钟吹一次肥皂泡,每次恰好吹出100个。

肥皂泡吹出以后,通过1分钟有一半破了;通过2分钟尚有120没破;通过2.5分钟后所有都破了。

阿芳吹完第100次时,没有破的肥皂泡共有个。

7、某部队设计训练规定:用步枪射击,发给子弹10发,每击中靶心一次奖励2发;用手枪射击,发给子弹14发,每击中一次奖励3发。

王明步枪射击,李强用手枪射击,当他们把发的和奖励的子弹都打完时,两人的射击的次数相等。

王明击中靶心20次,李强击中靶心次。

8、水果店运来的西瓜个数是哈密瓜个数的4倍,假如天天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后还剩下70个西瓜,那么水果店运来的西瓜和哈密瓜一共个。

9、自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通信员立即返回出发点,到出发点后又返回去追上自行车队,再追上时,恰好离出发点18千米,自行车的速度为千米/小时。

宁波市实验小学四年级奥数竞赛数学竞赛试卷及答案

宁波市实验小学四年级奥数竞赛数学竞赛试卷及答案

宁波市实验小学四年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.6.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?7.如果,那么=.8.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.9.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.12.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.6.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.7.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.8.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.9.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.12.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。

淮安市长征小学四年级数学奥数竞赛试卷及答案百度文库

淮安市长征小学四年级数学奥数竞赛试卷及答案百度文库

淮安市长征小学四年级数学奥数竞赛试卷及答案百度文库一、拓展提优试题1.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.4.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.7.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.8.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.9.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?10.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.11.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?12.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.13.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?15.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.【参考答案】一、拓展提优试题1.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.4.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.6.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.7.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.8.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.9.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.10.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.11.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..12.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.13.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.14.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.15.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.。

精选---小学四年级数学奥林匹克竞赛试题及答案

精选---小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。

(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。

(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

北师大版最新小学四年级数学奥数竞赛试卷及答案(2)

北师大版最新小学四年级数学奥数竞赛试卷及答案(2)

北师大版最新小学四年级数学奥数竞赛试卷及答案(2)一、拓展提优试题1.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.2.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.3.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.6.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.7.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.9.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.10.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.11.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.12.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…13.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.14.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.【参考答案】一、拓展提优试题1.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.2.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.3.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.6.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.7.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.8.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.9.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.10.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.11.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.12.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.13.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.14.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.15.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.。

四年级下册数学竞赛试题-四升五奥数培优训练-还原问题(二)

四年级下册数学竞赛试题-四升五奥数培优训练-还原问题(二)

还原问题(二)【解题方法与策略】【例题讲解】【例1】甲、乙两桶油各有若干千克,如果甲桶倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油都恰好是24千克。

问:两桶油原来各有多少千克?【练习1】甲、乙二人各有图书若干本。

若甲拿出和乙同样多的图书数给乙,再向乙要回与自己所剩图书同样多的本数,这时两人的图书恰好各有48本。

甲、乙二人原有图书各多少本?【例2】甲、乙、丙三个笼子共养兔子90只,如果从甲笼子里面取出15放入乙笼子里面,从乙笼子里面取出20只放入丙笼子里面,从丙笼子里面取出17只放入甲笼子里面,这时3个笼子一样多。

问:甲、乙、丙笼子原各有多少只兔子?【练习2】甲、乙、丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张。

原来3人各有年历卡多少张?【例3】有一个三层书架共放240册书,先从上层取出与中层同样多册书放在中层,再从中层取出与下层同样多册书放在下层,最后再从下层取出与此时上层同样多册书放在上层,经过这样的变动后,上、中、下三层书的册数分别是40本、80本、120本,原来上、中、下三层各有多少册书?【练习3】小明、小林和小兰三人共有画片48张。

小明他把自己的画片分了一些给小林和小兰,小林、小兰有几张,小明就分给他们几张。

小林也按小明的方法把画片分给小明和小兰;最后小兰也按他们的方法把画片分给另外两个人。

这时三人的画片同样多。

他们三人原来各有多少张画片?【例4】有甲、乙、丙三个油桶,各盛油若干千克。

先将甲桶的油倒入乙、丙两桶,使乙、丙两桶的油各增加原有油的一倍;再将乙桶的油倒入甲、丙两桶,使它们现有的油各增加一倍;最后同样将丙桶的油倒入甲、乙、两桶,使甲、乙两桶的油各增加一倍。

这样各桶的油都是16千克,问:各桶原来盛油分别是多少千克?【练习4】某月底,甲、乙、丙三人领取了数额不同的奖金,甲把自己的一部分奖金给乙、丙二人,使乙、丙二人的奖金数额各增加一倍。

精选---小学四年级数学奥林匹克竞赛试题及答案

精选---小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。

(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

2024小学四年级奥林匹克数学竞赛决赛试卷二

2024小学四年级奥林匹克数学竞赛决赛试卷二

根,最后发现香蕉还差 16 根;如果每只猴子分 4 根,最后一只猴子可以分到 6 根 香蕉。

这群猴子一共有( )只。

2024小学四年级奥林匹克数学竞赛决赛试卷---------------------------------------------------------------------------------A.11B.16C.18D.22须知:1. 测评期间,不得使用计算工具或手机。

7. 她年龄的 倍。

小慧今年 岁,她爸爸今年 37 岁。

那么小慧( 9 )岁时,父亲的年龄正好是 2. 本卷共 120 分,选择题为单选,每小题 5 分,共 80 分;解答题每小题 10 分, 共 40 分。

5 A.5B.7C.8D.93.请将答案写在本卷上。

测评结束时,本卷及草稿纸会被收回。

4.若计算结果是分数,请化至最简。

8. 一家啤酒厂为爱护环境回收空瓶,特规定:用 4 个本品牌的空啤酒瓶可以换 1瓶啤酒,照这样计算,快递小哥郭师傅一共购买了 24 瓶这家啤酒厂的啤酒,他最 四年级后一共最多可以喝到( )瓶啤酒。

(满分 120 分 ,时间 90 分钟)A.31B.32C.33D.34一、选择题(每小题 5 分,共 80 分)1. 根据 2022 年上半年最新统计数据,中国人口总数大约是 141178 万人,如果四9.用四个数字 2、9、8、0 一共可以组成( A.12B.18C.24)个不同无重复数字的四位数。

舍五入到亿为单位,2022 年上半年中国人口总数大约是( )亿。

A.1B.1.4C.14D.141D.362. 下列面积单位中最大的一个是( )。

D. 1 平方千米10. 有一群猫,有黑、白、花三种颜色,已知黑猫和白猫一共 24 只,黑猫和花猫一共 22 只,白猫和花猫一共 28 只,其中黑猫有(A.9B.13C.15 )只。

A. 1 平方米B. 1 平方分米C. 1 公顷D.37 3. 在一年的时间中最多可以出现周日的次数是( A. 51B. 52C. 53D. 54)个。

四年级数学奥林匹克竞赛试题2

四年级数学奥林匹克竞赛试题2
四年级数学奥林匹克竞赛试题 2
11、 1、2、3、 从 4、5、 这些数中, 6 任取两个数, 使其和不能被 3 整除,则有 取 Nhomakorabea。种
一、填空题。 (每题 5 分,共 60 分) 。 1、计算:9×99×999= 2、奥斑马、小泉、欧欧三个人的数学平均分是 94,加上小美的成绩之后,他们的平均 分变成了 92,小美的数学分数是 。 3、黑白团队四人要从河的东岸到西岸。现在只有一条木船且无船工,木船一次最多只 能载两人;已知奥斑马渡河需要 7 分钟,小美需要 3 分钟,欧欧需要 2 分钟,小泉需要 5 分钟;那么,至少需要 分钟黑白团队都能安全的渡过河。 4、在 124 和 245 之间插入 10 个数以后,使它们成为一个等差数列。在这 10 个数中, 最小的数是 ,最大的数是 。 5、如图,找出规律,将方框补充完整。
12、将奇数 1、3、5、7……按下图依次排到龙博士、奥斑马、小泉、小美、欧欧这五列, 则 2011 排在 那一列。 (填写每列的名字)
龙博士 奥斑马 小美 1 17 ⋅⋅⋅ 3 15 19 31 ⋅⋅⋅ ⋅⋅⋅ 5 13 21 29 ⋅⋅⋅ ⋅⋅⋅ 欧欧 7 11 23 27 ⋅⋅⋅ ⋅⋅⋅ 小泉 9 25 ⋅⋅⋅
多 思 数 学 思 ?
3、欧欧带了若干元钱去买每千克 12 元的苹果,可以找回 20 元;他在途中不小心丢了 50 元钱,结果只好买同样多的每千克 8 元的苹果,同时找回 30 元。那么,欧欧买了多 少千克苹果?原来共有多少元钱?
9、小泉去文具店买铅笔和练习册。他身上的钱够买 20 支铅笔和 20 本练习册;或者买 10 支铅笔和 50 本练习册。现在他买了 13 支铅笔,最多还能买练习册 本。 10、黑白团队被一道密码门拦在城堡外面,只要输入正确的密码就能顺利的进入城堡。 门上刻有密码提示:a b=a×b+a-b, (5 2) x=49;那么密码 x 表示的数 是 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二届“中环杯”小学生思维能力训练活动
四年级决赛
一、填空题:
1.计算:43÷221×13+59÷17=()。

2.在2011×2011 的方格中,画一条直线,最多可穿过()个方格。

3.2012 个连续自然数按从小到大的顺序排列,取出其中第2 个数、第4 个数、第6 个数……第2012 个数,把剩下的数相加,得到的结果是1025114,则这2012 个连续自然数的和为()。

4.如图是一个由火柴棒搭成的图案的一部分。

如果在这个图案中用了2013 根火柴棒,那么它一
共有三角形()个。

5.要想保证至少有5 个人相同月份出生,但丌能保证有7 个人相同月份出生,那么总人数的范围应该是()人~()人之间。

6.以下图案表示一个花圃的设计方案的前几行,汉字表示每盆花的颜色。

第9 行第6 盆花的颜色
是()色。

(从左往右计数)
7.下面是三道加法算式,■、▲、●各代表三个丌同的数。

当三个等式都成立时,■=()、▲=()、●=()。

■+■+▲+●=27……①
■+▲+▲+●=25……②
■+■+●+●=24……③
8.某公司有100 名员工,现有一笔奖金要分发给每名员工。

但为了提高大家的工作积极性,将先评出若干名优秀员工,每名优秀员工的就奖金是普通员工的2 倍。

如果评出20 名优秀员工,那么每名优秀员工的奖金将是3300 元。

如果只评10 名优秀员工,那么每名优秀员工的奖金将是()元。

9. 箱子中有红、黄、绿三种颜色的球。

已知除了7 个球外其余球均为红色,除了12 个球外其余球均为黄色,除了13 个球外其余球均为绿色。

那么至少任意从箱子中取出()个球,能保证取出的球中三种颜色都有。

10. 将下面算式中的汉字换成适当的数字(相同的汉字代表相同的数字,丌同的汉字代表丌同的数字),使两个算式的运算结果相同。

那么蜜=(),蜂=(),甜=()。

二、动手动脑题:
1.如图,有9 只小猴子在同一个正方形卧室中。

现在,小猴子们都想单独住。

猴妈妈只要再砌两个正方形墙,就能让每只小猴都单独住了。

你知道怎么砌吗?请直接画在下图中。

2.甲、乙、丙、丁四个停车场分别停着10、7、5、4 辆轿车。

每次都从停放轿车最多的停车场往另外3 个停车场各开去一辆轿车。

这样进行了2012 次后,甲停车场停放轿车多少辆?
3.一个2×2 的方格被涂上白色和黑色(黑色用阴影表示),丌同的涂色方案表示丌同的数字。

下图中的四组分别表示三位数791,475,364,614,那么B 表示的三位数是多少?
4.小军骑自行车从甲地到乙地去,出发时心里盘算了一下:如果他每小时骑10 千米,下午1 点才能到;如果使劲地赶路,每小时骑15 千米,上午11 点就能赶到。

小军想中午12 点到乙地,每小时应骑多少千米?
5. 请你在卡纸上画4 个如下图所示的直角三角形(单位:厘米),将它们剪下并拼成一个中间有一
个小正方形空洞的大正方形。

(1)将拼成的图形粘贴在下面的答题区内。

(2)请计算中间小正方形的面积。

相关文档
最新文档