新课标高中数学必修1-5公式大全
高考数学必背知识点及公式归纳总结大全
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
高中数学必修1、3、4、5知识点归纳及公式大全
必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。
会合三因素:确立性、互异性、无序性。
2、只需构成两个会合的元素是同样的,就称这两个会合相等。
3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。
记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。
高中人教版数学必修1,2,3,4,5的公式,结论
高中人教版数学必修1,2,3,4,5的公式,结论1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高一数学必修一所有公式归纳
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
人教版高一数学必修一至必修四公式
初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方:2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
高中数学新教材人教A版(2019)必修第一册知识点与公式大全
高中数学新教材人教(2019)版必修第一册知识点与公式大全第一章 集合与常用逻辑用语 1.1集合的概念及其表示1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集*结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n -3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂= (2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则4.充分条件、必要条件与充要条件的概念(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).(4)全称量词命题“()x p M x ,∈∀”的否定是存在量词命题“()x p M x ⌝∈∃,” (5)存在量词命题“()x p M x ,∈∃”的否定是全称量词命题“()x p M x ⌝∈∀,”第二章 一元二次函数、方程、不等式 1.一元二次不等式的概念及形式(1).概念:把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2).形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).2.三个“二次”之间的关系:3.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为分式不等式. 解法:等价转化法解分式不等式 f (x )g (x )>0⇔f (x )g (x )>0,f (x )g (x )<0⇔f (x )·g (x )<0. 4.基本不等式(或)均值不等式:ab ba ≥+2基本不等式的变形与拓展1.(1)若R b a ∈,,则ab b a 222≥+;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =取“=”); (3)若00a ,b >>,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”). 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12xx+≥,即12x x +≥或12x x +≤-(当且仅当b a =时取“=”).4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a bb a +≥或2a bb a+≤-(当且仅当b a =时取“=”). 5.一个重要的不等式链:2112a b a b+≤≤≤+.第三章函数的概念与性质3.1函数与映射的相关概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点. (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法. 解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征; 图象法:注意定义域对图象的影响. 3.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y=f(x)的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y=kx+b(k为常数且k≠0)的值域为R.(2)反比例函数kyx=(k为常数且k≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y=ax2+bx+c(a,b,c为常数且a≠0),当a>0时,二次函数的值域为24[,)4ac ba-+∞;当a<0时,二次函数的值域为24(,]4ac ba--∞.求二次函数的值域时,应掌握配方法:2 224()24b ac b y ax bx c a xa a-=++=++.3.3分段函数分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.3.4函数基本性质1函数的单调性(1)定义:设[]2121,,xxbaxx≠∈⋅那么:1212,()()x x f x f x<<⇔[]1212()()()0x x f x f x-->⇔0)()(2121>--xxxfxf[]b axf,)(在⇔上增函数;1212,()()x x f x f x<>⇔[]1212()()()0x x f x f x--<⇔0)()(2121<--xxxfxf[]baxf,)(在⇔上减函数.(2)判定方法:1ο定义法(证明题) 2ο图像法3ο复合法(3)定义法:用定义来证明函数单调性的一般性步骤:1ο设值:任取12,x x为该区间内的任意两个值,且12x x<2ο做差,变形,比较大小:做差12()()f x f x-,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增:增—减=增:减+减=减:减—增=增若函数)(xf在区间[]ba,为增函数,则—)(xf,)(1xf在[]ba,为减函数(7)单调性的应用:①求值域;②解不等式;③求参数范围;④比较大小.特别提醒:求单调区间时,一是勿忘定义域,二是在多个单调区间之间不一定能添加符号“”和“或”只能用“和”;三是单调区间应该用区间表示,不能用集合或不等式表示.2 函数的奇偶性(1)定义:若()f x定义域关于原点对称1ο若对于任取x的,均有()()f x f x-=则()f x为偶函数2ο若对于任取x的,均有()()f x f x-=-则()f x为奇函数((3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()f x-,寻找其与()f x之间的关系3ο下结论(若()()f x f x-=则()f x为偶函数,若()()f x f x-=-则()f x为奇函数函数)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。
高中必修1公式及知识要点大全(完整版)
高中必修1公式及知识要点大全(完整版) 高中数学《必修1》常用公式及结论一、集合1、含义与表示:集合中的元素具有确定性、互异性和无序性。
集合可以分为有限集、无限集和空集(记作φ)。
集合可以用列举法、描述法和图示法表示。
2、集合间的关系:如果对于任意的x∈A,都有x∈B,则称A是B的子集,记作A⊆B;如果A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B或A⊊B;如果XXX且B⊆A,则称A和B相等,记作A=B。
3.元素与集合的关系:元素属于集合用符号∈表示,不属于用符号∉表示。
4、集合的运算:1)交集:由集合A和集合B中的公共元素组成的集合叫做交集,记为A∩B。
2)并集:由属于集合A或属于集合B的元素组成的集合叫做并集,记为A∪B。
3)补集:在全集U中,由所有不属于集合A的元素组成的集合叫做补集,记为A的补集为C。
5、集合A={a1,a2,…,an}中有n个元素:A的子集个数共有2n个;真子集有2n-1个;非空子集有2n-1个;非空真子集有2n-2个。
6、常用数集:自然数集N、正整数集N*、整数集Z、有理数集Q、实数集R、复数集C。
7、集合的运算性质:1)包含关系:A∩B⊆A,A⊆A∪B;A∩B⊆B,B⊆A∪B。
A∪B=A⇔B⊆A。
2)吸收率:A∩B=A⇔A⊆B。
3)空集:A∪φ=A。
4)反身性:A∩A=A,A∩φ=φ,A∩U=A,A∪U=U(U是全集)。
A∪A=A,C(=AU)。
5)交换律:A∩B=B∩A。
6)结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
A∪B)∩C=(A∪B)∩(A∪C)。
7)分配率:(A∩B)∪C=(A∪C)∩(B∪C)。
8)德摩根律:C∪(A∪B)=C∪A∩C∪B;C∩(A∩B)=C∩A∪C∩B。
8、常用结论:1)空集是任意集合的子集,非空集合的真子集。
2)空集与{0}不相等,{0}不属于空集,但空集属于{A,φ}。
3){A}是只有一个元素的集合,与A不同。
高中必修数学知识点总结及公式大全
高中必修数学知识点总结及公式大全1.二次函数的标准形式为y=ax^2+bx+c。
The standard form of a quadratic function is y=ax^2+bx+c.2.一次函数的标准形式为y=kx+b。
The standard form of a linear function is y=kx+b.3.三角函数sin、cos、tan分别表示正弦、余弦、正切。
The trigonometric functions sin, cos, tan represent sine, cosine, tangent respectively.4.三角函数的周期性是它们的重要特征之一。
The periodicity of trigonometric functions is one oftheir important characteristics.5.平行四边形的面积公式为S=底×高。
The formula for the area of a parallelogram isS=base×height.6.直角三角形的勾股定理为a^2 + b^2 = c^2。
The Pythagorean theorem for a right-angled triangle isa^2 + b^2 = c^2.7.两点间距离公式为d=sqrt[(x2-x1)^2 + (y2-y1)^2]。
The distance formula between two points is d=sqrt[(x2-x1)^2 + (y2-y1)^2].8.二次方程的解法包括用公式法和配方法。
The methods for solving quadratic equations include using the formula and completing the square.9.函数奇偶性的判定方法是f(-x) = f(x)或f(-x) = -f(x)。
高中数学必修1-5知识点归纳及公式大全
按住Ctrl 键单击鼠标左打开配套名师教学视频动画播放 必修1数学知识点第一章、集合与函数概念§1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
高中数学必修1-5知识点归纳及公式大全
必修 1 数学知识点会合间的基本运算1 、 一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与B 的并集.记作: A B .2 、 一般地,由属于会合 A且属于会合 B 的全部元素构成的会合,称为A 与B 的交集 .记作: AB子集:对随意 x A ,都有 xB ,则称 A 是 B 的子集。
记作 A B 真子集:若 A 是 B 的子集,且在 B 中起码存在一个元素不属于 A ,则 A 是 B 的真子集,记作 AB 会合相等:若:AB, BA ,则A B自然数集: N 正整数集: N *整数集: Z 有理数集: Q 实数集: R奇偶性1 、 f x f x ,那么就称函数 fx 为偶函数 .偶函数图象对于 y 轴对称 .2 、 fxf x ,那么就称函数f x 为奇函数 .奇函数图象对于原点对称 .第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1、 一般地,假如 x na ,那么 x 叫做 a 的 n 次方根。
此中 n 1,n N .2、 当 n 为奇数时, n a na ;当 n 为偶数时, n a n a .n1⑴ a mma n am n N *m;⑵n0 ;0, ,,1aan n⑴ arasar sa 0, r , s Q ;⑵ a rsarsa 0, r , s Q ⑶ ab ra rb ra 0,b 0, r Q .§、指数函数及其性质1、 记着图象: ya x a 0, a1复合函数的单一性 : 同增异减三、二次函数 y = ax 2 +bx + c ( a0 )的性质1、极点坐标公式:b , 4ac b 2 , 对称轴:xb ,最大(小)值: 4ac b 22a 4a2a 4a2.二次函数的分析式的三种形式 (1)一般式 (3)两根式f ( x) ax 2 bx c(a 0) ; (2)极点式 f ( x) a( x h)2 k (a 0) ; f ( x) a( x x 1 )( x x 2 )(a 0) .§、对数与对数运算1、 a xN log a N x ;2、 a log a Na .3、 log a 1 0 ,log a a 1.4、当 a0, a 1, M0, N0 时:⑴log a MNlog a M log a N ;⑵ log a M log a M log a N ;⑶ log a M n nlog a M .N换底公式:log c b1log a b a 0, a 1, c 0, c 1, b 0 .;log a b a 0, a 1, b 0, b 1 .log c a log b a记着图象:y log a x a 0, a1§、幂函数1、几种幂函数的图象:1、幂的运算法例:( 1) a m a n = a m + n,( 2)a m a n a m n,(3)( a m)n= a m n(4)( ab )n= a n b nna n n n1( 5)a(6) a 0= 1 ( a ≠0)()an1() a m m a n()amb b n7a n89m a n必修 2 数学知识点⑴圆柱侧面积;S侧面 2 r l⑵圆锥侧面积:S侧面r l⑶圆台侧面积: S侧面r l R l⑷体积公式:V柱体S h; V锥体1S h ;V台体1S上S上S下S下 h 33⑸球的表面积和体积:S球 4 R2,V球4R3. 3第三章:直线与方程y2y1 1、倾斜角与斜率:k tanx2x12、直线方程:⑴点斜式:y y0k x x0⑵斜截式:y kx b⑶两点式:y y1x x1 y2y1x2x1⑷一般式:Ax By C0⑴ l 1 // l 2A1B2A2B1 ;B1C2B2 C1⑵ l1和 l 2订交A1B2A2B1;⑶ l1和 l 2重合A1 B2A2B1 ;B1C2B2 C1⑷ l 1l 2A1 A2B1B20 .5、两点间距离公式:P1 P2x2x12y2y12 6、点到直线距离公式:3、对于直线:d Ax0By0CA2B2l1 : y k1x b1 , l 2 : y k2 x b2有:⑴ l 1 // l 2k1k 2 ;b1b2⑵ l 1和 l 2订交k1k2⑶ l 1和 l 2重合k1k 2 ;b1b2⑷ l 1 l 2k1 k21.4、对于直线:l1 : A1x B1 y C10,有:l 2 : A2 x B2 y C20第四章:圆与方程1、圆的方程:⑴标准方程:x a 2y b 2r 2⑵一般方程: x 2y 2Dx Ey F0.2、两圆地点关系: d O1O2⑴外离: d R r ;⑵外切: d R r ;⑶订交: R r d R r ;⑷内切: d R r ;⑸内含: d R r .3、空间中两点间距离公式:P1 P2x2x12y2y12z2z12必修 4 数学知识点第一章、三角函数2、l.§、随意角r1、正角、负角、零角、象限角的观点.3、弧长公式:l n RR .2、与角终边同样的角的会合:1802k , k Z .n R 21 lR .4、扇形面积公式:S§、弧度制3602 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度§、随意角的三角函数1、设是一个随意角,它的终边与单位圆交于点P x, y,那么:2、设点A x0, y0为角终边上随意一点,那么:(设 r x02y02)siny 0, cosx 0 , tan y0 .rrx 03、 sin , cos , tan在四个象限的符号和三角函数线的画法.4、 引诱公式一:sin 2k sin ,§、同角三角函数的基本关系式cos 2k cos , (此中: k Z )、 平方关系: sin 22tan2ktan .1cos1.sin2 、 商数关系: tan.cos§、三角函数的引诱公式 1 、 引诱公式二:sin sin , coscos ,tantan .2 、引诱公式三:§、两角和与差的正弦、余弦、正切公式1 、 coscos cos sin sin2 、 sinsin cos cos sin3 、 sin sin coscos sin4 、 tan tan tan .1 tan tan5 、 tantan tan .1 tan tan§、二倍角的正弦、余弦、正切公式1 、 sin 22 sin cos,变形: sincos 12 sin 2 .2 、 cos2cos 2 sin 22 cos 211 2sin 2,变形 1: cos 21 cos2 ,2 变形 2: sin21 cos2 .2 3 、 tan 22 tan.1 tan2sin sin ,cos cos ,tantan .3、引诱公式四:sin sin ,cos cos ,tantan .4、引诱公式五:sincos ,2cossin .25、引诱公式六:sincos ,2cossin .2必修 5 数学知识点函数正弦函数余弦函数正切函数图象定义域R R{x| x ≠ +k π,k∈ Z}2值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数增区间 [- π +2kπ , 2k π]减区间 [2k π ,π+2k π ]增区间 [-+2kπ ,( k ∈Z )增区间+2kπ ]单一性22(-+k π , +k π) 3减区间 [+2kπ ]22 +2kπ ,( k∈ Z ) 22对称轴x =+ k π( k∈ Z )x = k π ( k ∈ Z )无2对称中( kπ ,0 ) ( k ∈ Z )(+ k π ,0 )( k ∈ Z )( k ,0 ) ( k ∈ Z )心22二、平面向量1、向量的模计算公式:( 1)向量法: | a | =a a2 a;( 2)坐标法:设a =( x,y),则 |a | =x 2y 2 2、单位向量的计算公式:( 1)与向量a =( x,y)同向的单位向量是x,y;x2x2y 2y 2( 2)与向量a =( x,y)反向的单位向量是x,y;x2y 2x 2y 23、平行向量规定:零向量与任一直量平行。
高中必修一二数学公式总结大全
高中必修一二数学公式总结大全一、数学公式的作用与价值数学公式作为数学知识的精华和核心,承载着丰富的数学内涵和深刻的数学思想,对于学习和理解整个数学体系起着至关重要的作用。
高中必修一二数学公式集中体现了高中数学课程的重点和难点,具有重要的理论和应用价值。
深入全面地了解和掌握高中必修一二数学公式,将对学生的数学学习和数学素养起到非常重要的促进作用。
二、高中必修一数学公式总结1. 一次函数方程:y=kx+b2. 二次函数方程:y=ax^2+bx+cx=-b±√(b^2-4ac)/2a3. 指数和对数:a^m*a^n=a^(m+n)(a^m)^n=a^(mn)a^0=1a^-m=1/a^mloga(mn)=logam+loganloga(m/n)=logam-loganloga(1/m)=-logamlogam/n=nlogam4. 三角函数:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ∓sinαsinβtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α三、高中必修二数学公式总结1. 二次函数:抛物线的一般方程y=ax^2+bx+c抛物线的顶点坐标为:(-b/2a,c-b^2/4a)2. 三角函数:三角函数的诱导公式tanx=sinx/cosx四、对高中必修一二数学公式的个人理解高中数学是数学学科的一个重要阶段,在这一阶段学生需要系统、全面地学习各种数学知识,数学公式作为数学知识的核心之一,对于学生打下坚实的数学基础至关重要。
高中必修一二数学公式凝聚了教育部数学教学大纲的精华,每个公式都有其独特的数学内涵和广阔的应用空间。
学生要想在高中数学学习中取得好成绩,必须充分理解和掌握这些数学公式,灵活应用于解决实际问题。
新课标高中数学必修1-5公式大全
数学必修1-5常用公式与结论必修1: 一、集合1、含义与表示:〔1〕集合中元素的特征:确定性,互异性,无序性〔2〕集合的分类;有限集,无限集〔3〕集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义: 奇函数 <=> f (–x)=–f (x) ,偶函数 <=> f (–x)= f (x)〔注意定义域〕2、性质:〔1〕奇函数的图象关于原点成中心对称图形; 〔2〕偶函数的图象关于y 轴成轴对称图形;〔3〕如果一个函数的图象关于原点对称,那么这个函数是奇函数; 〔4〕如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2①f ( x 1 )< f ( x 2 )<=> f ( x 1 )– f ( x 2 )< 0 <=> f ( x )是增函数 ②f ( x 1 )> f ( x 2 )<=> f ( x 1 )– f ( x 2 )> 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c 〔0a ≠〕的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大〔小〕值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数1、幂的运算法则:〔1〕a m •a n = a m + n ,〔2〕nm nmaa a -=÷,〔3〕( a m ) n = a m n 〔4〕( ab ) n = a n •b n〔5〕 n n nb a b a =⎪⎭⎫ ⎝⎛〔6〕a 0= 1 ( a ≠0)〔7〕n n a a 1=- 〔8〕m n m na a =〔9〕m n m naa 1=-2、根式的性质〔1〕na =.〔2〕当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:〔1〕定义域:R ;值域:( 0 , +∞) 〔2〕图象过定点〔0,1〕5.指数式与对数式的互化:log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:〔1〕a b = N <=> b = log a N 〔2〕log a 1 = 0〔3〕log a a = 1〔4〕log a a b = b 〔5〕a log a N= N 〔6〕log a (MN) = log a M + log a N 〔7〕log a (NM) = log a M -- log a N 〔8〕log a N b = b log a N 〔9〕换底公式:log a N =aNb b log log〔10〕推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >). 〔11〕log a N =aN log 1〔12〕常用对数:lg N = log 10N 〔13〕自然对数:ln A = log e A〔其中 e = 2.71828…〕2、对数函数y= log a x (a > 0且a ≠1)的性质:〔1〕定义域:( 0 , +∞);值域:R 〔2〕图象过定点〔1,0〕六、幂函数y = x a 的图象:〔1〕 根据 a例如:y = x221x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八.平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
高中数学必修一公式大全
高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。
在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。
在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。
一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。
高中数学必修五公式方法总结
高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。
高中数学必修1-5公式大全_
必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的 位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=8.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
高中必修数学公式总结大全
高中必修数学公式总结大全我跟你说啊,这高中必修数学公式,就像我老家那些密密麻麻的苞谷地,看着眼花缭乱,可都是好东西啊。
咱先说这函数的公式。
函数就像一个多变的人,有时候是一次函数,那表达式y = kx + b,k和b就像这人的性格特点。
k要是正数,这函数就像个朝气蓬勃往上走的小伙子,直线就斜着往上爬;k要是负数呢,就像个垂头丧气的老头,直线一个劲儿往下溜。
b啊,就像是这人的起始点,b是正的,那这人一开始就站得高些;b是负的,就像一开始就在坑洼里。
还有二次函数y = ax²+ bx + c,那二次函数的图象,我看就像个大拱桥,有时候开口朝上,有时候开口朝下。
这a就是决定这个拱桥开口方向的关键。
a大于0的时候,拱桥开口朝上,喜气洋洋的;a小于0呢,就像个倒扣的碗,有点垂头丧气的。
对称轴是x = -b/2a,这就像是这个拱桥的中轴线,两边对称着。
再说说三角函数。
sin、cos、tan这哥仨啊,就像三个调皮的孩子,在单位圆里蹦跶。
sin就像个安静的小姑娘,她的值在 -1到1之间晃悠。
你看那正弦曲线,波浪一样,就像小姑娘的裙摆随风摆动。
cos呢,就像个跟着sin的小跟班,但是又有自己的小脾气,曲线也是在 -1到1之间晃悠,不过和sin的节奏不太一样。
tan可就有点调皮了,它的定义域这儿有个坑,分母不能为0,就像这孩子有个不能触碰的禁区,一不小心就犯错。
数列也有一堆公式。
等差数列的通项公式an = a1+(n 1)d,a1就是数列的第一个数,就像队伍里的排头兵。
d就是公差,就像队伍里每个人之间的间隔,要是d是正数,这队伍就越排越长;d是负数,这队伍就越来越短。
等比数列通项公式an = a1×q⁽ⁿ⁻¹⁾,q就是公比,就像这个数列的生长因子,q大于1,这个数列就像吹气球一样膨胀;q在0到1之间,就像个慢慢漏气的气球,越来越小。
我有一次跟我邻居家孩子讲这些公式,那孩子一脸迷茫,跟我说:“叔,你这说的比我老师还绕呢。
高中数学必修1-5常用公式
高中数学必修1-5常用公式一、集合与逻辑1.集合的基本运算:A ∩B ={x|x ∈A,且x ∈B};A ∪B ={x|x ∈A,或x ∈B};∁U A ={x|x ∈U,且x ∉A}.2.集合的包含关系:A ⊆A; ∅⊆A;A ⊆B ⇔C U B ⊆C U A ⇔A ∩B =A ⇔A ∪B =B ⇔A ∩C U B =∅⇔C U A ∪B =R3.集合{a 1,a 2,⋯,a n }的子集有2n 个;真子集有2n −1个;非空子集有2n −1个;非空真子集有2n −2个.4.5.(2)若p ⇒q ,且q ⇒p ,则p 是q 的充要条件.(3)设A ={x|p(x)},B ={x|q(x)},①若A ⊆B ,则p 是q 的充分条件;②若B ⊆A ,则p 是q 的必要条件; ③若A =B ,则p 是q 的充要条件. 口诀:小集合推大集合. 二、函数的概念与性质1. 二次函数解析式的三种形式: (1)一般式f(x)=ax 2+bx +c(a ≠0); (2)顶点式f(x)=a(x −ℎ)2+k(a ≠0);(3)零点式f(x)=a(x −x 1)(x −x 2)(a ≠0).2. 函数的单调性:(1)定义:区间D ⊆函数f(x)的定义域, ∀x 1,x 2∈D ,当x 1<x 2时,都有 ①f (x 1)<f (x 2)⇔f (x 1)−f (x 2)<0⇔f(x)在区间D 上单调递增; ②f (x 1)>f (x 2)⇔f (x 1)−f (x 2)>0⇔f(x)在区间D 上单调递减.(2)复合函数y =f[g(x)]的单调性——同增异减:如果函数y =f(u)和u =g(x)在其对应的定义域上都是减函数或都是增函数,则复合函数y =f[g(x)]是增函数;如果函数y =f(u)和u =g(x)在其对应的定义域上单调性相异,则复合函数y =f[g(x)]是减函数.(3) 若函数f(x)和g(x)都是增函数,则①kf(x)(k >0)是增函数,kf(x)(k <0)是减函数;②在定义域公共区间上f(x)+g(x)也是增函数. (减函数同理)3. 函数的奇偶性:(1)f(x)是定义域D 上的偶函数⇔∀x ∈D,f (−x )=f(x) ⇔f (x )的图象关于y 轴对称; (2)f(x)是定义域D 上的奇函数⇔∀x ∈D,f (−x )=−f (x )⇔f (−x )+f (x )=0⇔f (x )的图象关于原点对称. 注意:判断函数f(x)的奇偶性,必须先判断f(x)的定义域是否关于原点对称.4. 函数图象的对称性:函数y =f(x)的图象关于直线x =a 对称⇔f(a +x)=f(a −x)⇔f(2a −x)=f(x).5. 两个函数图象的对称性:(1)函数y =f(x)与y =f(−x)的图象关于直线x =0 (即y 轴)对称. (2)函数y =f(x)与y =−f(x)的图象关于直线y =0 (即x 轴)对称. (3)函数y =f(x)与y =−f(−x)的图象关于原点中心对称.(4)函数y =f(x)与其反函数y =f −1(x)的图象关于直线y =x 对称,例如函数y =a x 与y =log a x . 6. 函数的周期性:若函数f(x)的定义域为D ,∀x ∈D,f(x +T)=f(x)(T 为非零常数),则称f(x)是周期函数. 7. 函数的零点:(1)方程f(x)=0有实数根⇔函数y =f(x)有零点⇔函数y =f(x)的图象与x 轴有公共点.(2)零点存在定理:若函数y =f(x)在区间[a,b ]上的图象是连续不断的曲线,且f (a )f (b )<0,则y =f(x)在区间(a,b )上至少有一个零点.三、指数函数、对数函数、幂函数1.根式的性质:(1)(√a n)n =a ;(2)当n 为奇数时,√a n n =a ;当n 为偶数时,√a n n =|a|={a,a ≥0,−a,a <0.2.分数指数幂:(1)a mn =√amn(a >0,m,n ∈N ∗,且n >1);(2)a −mn =1a mn(a >0,m,n ∈N ∗,且n >1).3.实数指数幂的运算性质:(1) a r ⋅a s =a r+s (a >0,r,s ∈R);(2) (a r )s =a rs (a >0,r,s ∈R);(3) (ab)r =a r b r (a >0,b >0,r ∈R). 4.指数式与对数式的互化: log a N =b ⇔a b =N(a >0,且a ≠1,N >0). 5.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么(1) log a (MN)=log a M +log a N ; (2) log a MN =log a M −log a N ; (3) log a M n =n log a M (n ∈R). 6.对数的换底公式:log a N =log m N log m a(a >0,且a ≠1,m >0,且m ≠1, N >0).推论:log a m b n =n mlog a b (a >0,且a >1,m,n >0,且m ≠1,n ≠1, N >0).7.x 8.9.如果初始量为N ,每单位时间的增长率为p ,则x 单位时间后的总量y =N(1+p)x .1 yxoox1y 1xyo1xyo10. 幂函数y=xα(其中x为自变量,α为常数):(1)必过点(1,1);(2)在区间(0,+∞)上,α>0时,y=xα单调递增;α<0时,y=xα单调递减.(3)常用幂函数图象:四、三角函数1. 任意角与弧度制:(1)角度与弧度的换算:180°=π rad,1°=π180 rad,1 rad=(180π)°;(2)与α终边相同角的集合:{β|β=α+2kπ,k∈Z};(3)弧度|α|=lr ,弧长l=|α|r,扇形面积S=12lr=12|α|r2.2. 任意角的三角函数:角α终边上任意点P(x,y)(非原点),设r=√x2+y2,则sinα=yr ,cosα=xr,tanα=yx.3. 同角三角函数的基本关系:sin2θ+cos2θ=1,tanθ=sinθcosθ.(知一求二)4. 诱导公式——奇变偶不变,符号看象限,例如:sin(π2−α)=cosα,sin(π−α)=sinα,sin(−α)=−sinα,cos(π−α)=−cosα,cos(−α)=cosα,tan(π−α)=−tanα.5. 和差角公式:sin(α±β)=sinαcosβ±cosαsinβ;cos(α±β)=cosαcosβ∓sinαsinβ;tan(α±β)=tanα±tanβ1∓tanαtanβ.6. 辅助角公式:a sin x+b cos x=√a2+b2sin(x+φ)(其中φ所在象限由点(a,b)的象限决定,tanφ=ba).7. 二倍角公式:sin2α=sinαcosα;cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α;tan2α=2tanα1−tan2α.8. 降幂公式:sinαcosα=12sin2α;sin2α=1−cos2α2;cos2α=1+cos2α2;(sinα±cosα)2=1±sin2α.9. 三角函数的图象与性质(1)函数y=A sin(ωx+φ),x∈R及函数y=A cos(ωx+φ) ,x∈R(A,ω,φ为常数,且A≠0)的周期T=2π|ω|;函数y=tan(ωx+φ),x≠kπ+π2,k∈Z(A,ω,φ为常数,且A≠0)的周期T=π|ω|.(2)类正弦函数y=A sin(ωx+φ)(A>0,ω>0)的图象变换(两种方法殊途同归)方法一:①先将正弦函数y=sin x的图象向左(φ>0)或向右(φ<0)平移|φ| 个单位,得到y=sin(x+φ)的图象;②再将图象所有点的横坐标伸长或缩短到原来的1ω倍,得到y=sin(ωx+φ)的图象;③最后将图象所有点的纵坐标伸长或缩短到原来的A倍,得到y=A sin(ωx+φ)的图象.方法二:①先将正弦函数y=sin x的图象所有点的横坐标伸长或缩短到原来的1ω倍,得到y=sinωx的图象;②再将图象向左(φ>0)或向右(φ<0)平移|φω| 个单位,得到y=sin(ωx+φ)的图象;③最后将图象所有点的纵坐标伸长或缩短到原来的A倍,得到y=A sin(ωx+φ)的图象.(3)类正弦函数y=A sin(ωx+φ)+b(A>0)的参数计算: A=y max−y min2, b=y max+y min2,ω=2πT,最后代入已知点求φ,一般代入最高点或最低点坐标,利用已知三角函数值以及给定的范围分析得到φ值(若代入平衡点坐标,则必须区分是上升平衡点还是下降平衡点).y=tan xπ(1)正弦定理:asin A =bsin B=csin C=2R(R为△ABC的外接圆半径).变式:a=2R sin A,sin A=a2R,a:b:c=sin A:sin B:sin C.(边角关系的互化)(2)余弦定理:a2=b2+c2−2bc cos A;b2=a2+c2−2ac cos B;c2=a2+b2−2ab cos C.变式:cos A =b 2+c 2−a 22bc;cos B =a 2+c 2−b 22ac ;cos C =a 2+b 2−c 22ab.(3)三角形面积公式:S =12ab sin C =12ac sin B =12bc sin A =12(a +b +c)r (r 为△ABC 的内切圆半径). (4)在△ABC 中,有A +B +C =π⇔C =π−(A +B)⇔C 2=π2−A+B 2⇔2C =2π−2(A +B),常用三角函数关系:sin C =sin (A +B ),cos C =−cos (A +B ),sin C2=cosA+B 2.五、平面向量1. 向量的加法:三角形法则(首尾相接连首尾,符号示例:AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ )或平行四边形法则(共起点). 2. 向量的减法:三角形法则(共起点,连终点,指被减,符号示例:OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =BA⃗⃗⃗⃗⃗ ). 3. 平行向量:(1)方向相同或相反的向量叫做平行向量,又叫共线向量,向量a ,b ⃗ 平行记作a //b⃗ . (2)向量共线定理:a //b ⃗ (a ≠0⃗ )⇔存在唯一实数λ,使b ⃗ =λa .(3)推论:①平面内A,B,C 三点共线⇔AB⃗⃗⃗⃗⃗ //AC ⃗⃗⃗⃗⃗ ⇔存在唯一实数λ,使AB ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ . ②若OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 不共线,OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则P,A,B 三点共线⇔x +y =1. 4.平面向量基本定理:如果e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ .不共线向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面内所有向量的一组基底.5. a 与b ⃗ 的数量积(或内积):(1) a ∙b ⃗ =|a ||b ⃗ |cos θ,其中θ为a 与b ⃗ 的夹角〈a ,b ⃗ 〉,θ∈[0,π]. (2)a ∙b ⃗ 的几何意义:数量积 a ∙b ⃗ 等于a 的长度|a |与b ⃗ 在a ⃗ 方向上的投影|b ⃗ |cos θ的乘积.6. 平面向量的坐标运算:(1) 向量的加减法:设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ±b ⃗ =(x 1±x 2,y 1±y 2). (2) 向量的数乘:设a =(x,y),λ∈R ,则λa =(λx,λy).(3) 两点求向量:设A(x 1,y 1),B(x 2,y 2),则AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(x 2−x 1,y 2−y 1).(4) 向量的数量积:设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =|a ||b⃗ |cos θ=x 1x 1+y 1y 2. (5) 平行: a //b ⃗ (a ≠0⃗ )⇔存在唯一实数λ,使b ⃗ =λa ⇔x 1y 2−x 2y 1=0. (6) 垂直:a ⊥b ⃗ ⇔a ∙b ⃗ =0⇔x 1x 1+y 1y 2=0. (7) 长度:设a =(x,y ),则|a |=√a 2=√x 2+y 2.平面两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB |=|AB ⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =√(x 2−x 1)2+(y 2−y 1)2. (8) 夹角:cos θ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1⋅√x 2+y 2.7. 三角形的重心:△ABC 三个顶点的坐标分别为A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),G 为△ABC 的重心⇔GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0⃗ ⇔G(x 1+x 2+x 33,y 1+y 2+y33).8. 物理应用:①力、速度、位移的合成与分解用向量的加减法,三力F 1⃗⃗⃗ ,F 2⃗⃗⃗⃗ ,F 3⃗⃗⃗⃗ 平衡⇔F 1⃗⃗⃗ +F 2⃗⃗⃗⃗ +F 3⃗⃗⃗⃗ =0⃗ ;②物体在力F 作用下产生位移s ,则力F 所做的功W =F ∙s =|F ||s |cos θ,其中θ为F ,s 的夹角. 六、解析几何1. 直线斜率公式:k =tan α=y 2−y 1x 2−x 1(α≠π2,直线两点坐标P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,).2. 直线的五种方程:(1)点斜式:y −y 0=k(x −x 0) (直线过点P(x 0,y 0),且斜率为k ).(2)斜截式:y =kx +b (直线斜率为k ,在y 轴上的截距为b ). (3)两点式:y−y 1y2−y 1=x−x 1x2−x 1(已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2).(4)截距式:x a +yb =1 (a,b 分别为直线的横、纵截距,且a ≠0,b ≠0)(5)一般式:Ax +By +C =0 (其中A,B 不同时为0). 3. 两条直线的平行和垂直(1)若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则①l 1||l 2⇔k 1=k 2,b 1≠b 2;②l 1⊥l 2⇔k 1k 2=−1.(2)若l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则①l1||l2⇔A1B2−A2B1=0且A1C2−A2C1≠0(即不能重合);②l1⊥l2⇔A1A2+B1B2=0;4. 两点距离公式:已知两点坐标A(x1,y1),B(x2,y2),则|AB|=√(x1−x2)2+(y1−y2)2.5. 点线距离公式:已知点P(x0,y0),直线l:Ax+By+C=0,则P到l的距离d=00√A2+B2.6. 圆的方程:(1)圆的标准方程:(x−a)2+(y−b)2=r2(其中圆心为(a,b),半径为r).(2)圆的一般方程:x2+y2+Dx+Ey+F=0(其中D2+E2−4F>0,圆心(−D2,−E2),半径r=√D2+E2−4F2).7. 点与圆的位置关系:若点P(x0,y0)到圆心(a,b)的距离d=√(a−x0)2+(b−y0)2,圆半径为r,则①d>r⇔点P在圆外;②d=r⇔点P在圆上;③d<r⇔点P在圆内.8. 直线与圆的位置关系:若直线l:Ax+By+C=0与圆(x−a)2+(y−b)2=r2,圆心到直线距离为d,则①d>r⇔相离⇔Δ<0;②d=r⇔相切⇔Δ=0;③d<r⇔相交⇔Δ>0.9. 两圆位置关系:若两圆圆心分别为O1,O2,半径分别为r1,r2,|O1O2|=d,则①d>r1+r2⇔外离⇔4条公切线;②d=r1+r2⇔外切⇔3条公切线;③|r1−r2|<d<r1+r2⇔相交⇔2条公切线;④d=|r1−r2|⇔内切⇔1条公切线;⑤0<d<|r1−r2|⇔内含⇔无公切线.10. 圆的切线方程求法:(1)过圆上一点P(x0,y0)求切线方程,先根据切点P与圆心的连线垂直于切线,求出切线斜率k,再用点斜式写出切线方程.(2)过圆外一点P(x0,y0)的切线方程可设为y−y0=k(x−x0),再利用相切条件求k,必有两条切线,注意不要漏掉平行于y轴的切线.(3)已知斜率为k的切线方程可设为y=kx+b,再利用相切条件求b,必有两条切线.七、立体几何1. 空间几何体的体积与表面积(1)圆柱:S=2πr(r+l),其中r为底面半径,l为母线长,侧面积为S侧=2πrl.(2)圆锥:S=πr(r+l),其中r为底面半径,l为母线长,侧面积为S侧=πrl.(3)圆台:S=π(r12+r22+r1l+r2l),其中r1,r2为上、下底面半径,l为母线长,侧面积为S侧=π(r1l+r2l).(4) V柱体=Sh(S是柱体的底面积,ℎ是柱体的高);V锥体=13Sh(S是锥体的底面积,ℎ是锥体的高);V台体=13(S′+√S′S+S)ℎ(S,S′分别是台体的上、下底面积,ℎ是台体的高).(5)球体:若球的半径是R,则其体积为V=43πR3,其表面积为S=4πR2.(6)解球的相关问题的常用方法:若球的半径为R,球的截面圆半径为r,球心到截面的距离为d,三者可以构造直角三角形,则R=√r2+d2.特别地,长方体的外接球直径等于长方体的体对角线长.2. 常用公理和定理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线平行.定理:①空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.③一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.④一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.⑤一个平面过另一个平面的垂线,则两个平面垂直.⑥一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行. ⑦两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行. ⑧垂直于同一个平面的两条直线平行.⑨两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 八、数列1.数列的通项a n 与前n 项的和S n 的关系:a n ={S 1, n =1S n −S n−1,n ≥2 (其中S n =a 1+a 2+⋯+a n ).2.等差数列:(1)定义:a n −a n−1=d (d 为常数,n ≥2).(2)通项公式:a n =a 1+(n −1)d =a m +(n −m)d =dn +a 1−d(n ∈N ∗). (3)前n 项和公式:S n =n(a 1+a n )2=na 1+n(n−1)2d =d 2n 2+(a 1−12d)n .(4)角码和定理:若{a n }为等差数列,且m +n =p +q(m,n,p,q ∈N ∗),则a m +a n =a p +a q ,特别地, 当m +n =2p 时,a m +a n =2a p . 3.等比数列:(1) 定义:a n a n−1=q (q 为常数且q ≠0,n ≥2).(2)通项公式:a n =a 1q n−1=a m q n−m =a 1q⋅q n (n ∈N ∗).(3)前n 项和公式:S n ={a 1(1−q n )1−q=a 1−a n q 1−q,q ≠1,na 1,q =1.(4)角码和定理:若{a n }为等比数列,且m +n =p +q(m,n,p,q ∈N ∗),则a m ∙a n =a p ∙a q ,特别地,当m +n =2p 时,a m ∙a n =a p 2. 4.若{a n }是等差数列,{b n }是等比数列,求数列{a n ∙b n }的前n 项和使用“错位相减法”. 5.“裂项相消法”常用公式:1n(n+k)=1k (1n−1n+k),√n+√n+k =1k(√n +k −√n).九、不等式1. 不等式常用性质:(1)a >b ⇔a −b >0 (作差比较法) . (2) 若a >0,b >0,则a >b ⇔ab >1(作商比较法) . (3)倒数性质:若ab >0 (即a,b 同号),则a >b ⇔1a<1b.2. 一元二次不等式ax 2+bx +c >0(或<0)(a ≠0),Δ=b 2−4ac >0时,如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间. 简言之:同号两根之外,异号两根之间. 穿根法:(x −x 1)(x −x 2)<0(x 1<x 2)⇔x 1<x <x 2;(x −x 1)(x −x 2)>0(x 1<x 2)⇔x <x 1,或x >x 2. 3. 重要不等式:若a,b ∈R ,则a 2+b 2≥2ab (当且仅当a =b 时取“=”号). 4. 基本不等式:若a >0,b >0,则a+b 2≥√ab (当且仅当a =b 时取“=”号).常用变式:ab ≤(a+b 2)2≤a 2+b 22(当且仅当a =b 时取“=”号).5. 和或积求最值:若x,y >0,(1)若积xy 是定值p ,则当且仅当x =y 时,和x +y 有最小值2√p (积定和最小);(2)若和x +y 是定值s ,则当且仅当x =y 时,积xy 有最大值14s 2 (和定积最大). 十、概率与统计1. 古典概率计算公式:P(A)=A 包含的基本事件个数m 基本事件的总数n.2. 概率加法公式:若事件 A,B 为互斥事件,则A 或B 发生的概率为 P (A ∪B )=P (A )+P(B).3. 若事件A,B 为对立事件,则P (A )=1−P (B ).4. 概率乘法公式:事件A,B 为相互独立事件⇔A ,B 同时发生的概率P(AB)= P(A)·P(B).5. 用样本估计总体:(1)将样本的频率作为总体的概率估计值. 一般地,样本容量越大,估计就越精确.(2)频率分布直方图的纵坐标为频率/组距,各小矩形的面积就是对应各组的频率,总和为1.6. 样本平均数:x=x1+x2+⋯+x nn =1n∑x ini=1;样本方差:s2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2];样本标准差:s=√1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].7.变量的相关性:回归直线ŷ=b̂x+â必过样本中心点(x̅,y̅).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm nmaa a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0= 1 ( a ≠0)(7)n n a a 1=- (8)m n m na a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
即 ()y f x =的图象与X 轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并有()()0f a f b ⋅<,那么()y f x =在区间(),a b 内有零点,即存在(),c a b ∈, 使得()0f c =,这个C 就是零点。
3.二分法求函数零点的步骤:(给定精确度ε)(1)确定区间[],a b ,验证()()0f a f b ⋅<;(2)求(),a b 的中点12a bx +=(3)计算1()f x ①若1()0f x =,则1x 就是零点;②若1()()0f a f x ⋅<,则零点()01,x a x ∈ ③若1()()0f x f b ⋅<,则零点()01,x x b ∈;(4)判断是否达到精确度ε,若a b ε-<,则零点为a 或b 或(),a b 内任一值。
否 则重复(2)到(4)必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为)4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l:A x + B y + C = 0的距离:2200BA CBy Ax d +++=点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
2、垂直于同一平面的两直线平行。
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
(二)、线面平行判定定理1、若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
2、若两个平面平行,则其中一个平面内的任何一条直线都与另一个平面平行。
(三)、面面平行判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
(四)、线线垂直判定定理:若一直线垂直于一平面,则这条直线垂直于这个平面内的所有直线。
(五)、线面垂直判定定理1、如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
2、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(六)、面面垂直判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
(七).证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. (八).证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. (九).证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直. (十).证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)利用三垂线定理或逆定理; (十一).证明直线与平面垂直的思考途径(1)转化为该直线与面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面; (十二).证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2三、空间几何体 (一)、正三棱锥的性质1、底面是正三角形,若设底面正三角形的边长为a ,则有作PO ⊥底面ABC 于O ,则O 为△ABC 的中心,PO 为棱锥的高,取AB 的中点D ,连结PD 、CD ,则PD 为三棱锥的斜高,CD 为△ABC 的AB 边上的高, 且点O 在CD 上。