东南大学MSP实验报告第三,四次解析

合集下载

电子电路实验报告

电子电路实验报告

.东南大学电工电子实验中心实验报告课程名称:电子电路实践第三、四次实验实验名称:单级低频电压放大器院(系):专业:姓名:学号:实验室:105 实验组别:无同组人员:无实验时间:2012年4月15日2012年4月22日评定成绩:审阅老师:实验目的:1、掌握单级放大电路的工程估算、安装和调试2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概念以及测量方法3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、函数发生器的使用技能训练三、预习思考1、器件资料:上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管将其扁平的一面正对自己,管脚朝下,则从左至右三个管脚依次为e,b,c;封装图如下:2、 偏置电路:教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT (半导体三极管)的电流I C 以实现稳定直流工作点的作用的,如果R 1 、R 2取得过大能否再起到稳定直流工作点的作用,为什么?答:共发射极偏置电路。

利用12,R R 构成的分压器给三极管基极b 提供电位B U ,又1BQ I I ,基极电位B U 可近似地由下式求得:212B CC R U V R R ≈⋅+当环境温度升高时,)(CQ EQ I I 增加,电阻E R 上的压降增大,由于基极电位B U 固定,加到发射结上的电压减小,BQ I 减小,从而使CQ I 减小,通过这样的自动调节过程使CQ I 恒定,即实现了稳定直流工作点的作用。

如果12,R R 取得过大,则1I 减小,不能满足12,R R 支路中的电流1BQ I I 的条件,此时,BQ V 在温度变化时无法保持不变,也就不能起到稳定直流工作点的作用。

3、 电压增益:(I) 对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。

东大单片机实验报告三

东大单片机实验报告三

东南大学生物科学与医学工程学院单片机系统设计与应用实验报告第三次实验实验名称:数据传送实验专业:生物医学工程姓名:学号:同组人员:学号:实验室: 医用电子技术实验中心(综合楼716)实验时间:评定成绩:审阅教师:目录一、实验题目 (3)二、实验目的 (3)三、实验器材 (3)四、实验内容 (3)1.实验方案 (3)1.1方案流程图 (3)1.2源程序 (5)2.实验结果及分析 (12)2.1方案一结果 (12)2.2方案二结果 (12)2.3课上更改程序结果 (13)3. 程序调试 (14)五、心得体会 (14)六、参考文献 (14)一、实验题目1.将指定内存中的数按正负数分别存放于内存和外部RAM中,并对负数进行求补后再放入内存指定单元。

二、实验目的1.进一步掌握程序的编辑、汇编及调试方法;2.掌握单片机内部RAM和外部RAM的数据操作;3.了解单片机系统地址分配概念。

三、实验器材1、G6W仿真器一台2、MCS—51实验板一台3、PC机一台4、电源一台四、实验内容1.以数据表格形式在ROM中建立一个含有正数和负数的表格,数据长度为16个字节,要求放置八个正数、八个负数,正、负数应离散随机放置,不允许三个以上同类型数据连续放置,数据的具体内容自行确定;2.编制程序,将数据表格中的数据读出并按正、负数归类,正数送入首地址为40H的内部RAM中;负数送入首地址为0B000H的外部RAM中;3.将首地址为0B000H的外部RAM中的数据取出并求其绝对值,然后送入内部RAM 的48H~4FH单元。

1.实验方案1.1方案流程图1.2源程序本次试验,我先后写了两个程序,基本原理相似。

⑴先初始化,将各地址存入寄存器中,便于操作。

⑵查表取数,判断数的正负,将正负数分别存放在指定地址。

注意地址指针的入栈保护。

⑶判断数是否取完,取完后对存放在外RAM中的负数取出求补放入指定内存。

方案一ORG 0000HAJMP MAINORG 0030HMAIN:MOV SP,#70H ;设置堆栈指针MOV A,#10H ;保存个数MOV DPTR,#0E00H ;表地址MOV R0,#0B0H ;负数存放地址MOV 12H,#00HMOV R1,#40H ;正数存放地址START:PUSH A ;入栈保护PUSH DPHPUSH DPLMOV A,#00H ;寄存器A初始化MOVC A,@A+DPTR ;取表中数至寄存器A判断正负MOV 11H,A ;11H暂存数RLC A ;取标志位JC FUZHENG:MOV A,11HMOV @R1,A ;送至正数地址单元INC R1 ;正数地址加1POP DPLPOP DPHPOP AINC DPL ;指向表中下一个数DEC A ;个数减一JNZ START ;不为0继续操作JMP DO1 ;否则到DO1FU:MOV A,11HMOV DPH,R0 ;DPTR改为指向负数地址MOV DPL,12HMOVX @DPTR,A ;负数送外RAM中的负数地址中INC 12H ;指向下一个地址POP DPLPOP DPHPOP AINC DPL ;指向下一个地址DEC A ;个数减一JNZ STARTDO1:MOV A,#08H ;负数个数MOV DPTR,#0B000H ;指向负数所在首地址DO:PUSH AMOVX A,@DPTR ;取负数CPL A ;取反加1INC AMOV @R1,A ;送入48H地址INC R1INC DPTRPOP ADEC A ;个数减一JNZ DO ;没做完则重复SJMP $ORG 0E00H ;表TABLE:DB 17H,10H,81H,25HDB 0B2H,0A4H,30H,08HDB 0D6H,54H,01H,8FHDB 0C0H,27H,0CDH,0B1H方案二ORG 0000HAJMP MAINORG 0030HMAIN:MOV R0,#0F0H ;R0存放表的高位地址MOV R2,#00H ; R2存放表的低位地址MOV R1,#40H ; R1存放正数地址MOV R3,#10H ;R3存放数的个数MOV DPTR,#0B000H;外部RAM地址PUSH DPHPUSH DPLSTART:MOV DPH,R0 ;取表地址MOV DPL,R2CLR AMOVC A,@A+DPTR ;取数MOV R4,A ;数暂存于R4RLC A ;循环左移得标志位JC FU ;判断正负,若为负数则到FU ZHENG:MOV A,R4MOV @R1,A ;正数放入正数地址单元INC R1 ;地址加一INC R2DJNZ R3,START ;数没有取完则转STARTJMP END1 ;否则转END1FU:MOV A,R4POP DPLPOP DPHMOVX @DPTR,A ;取数INC DPTR ;地址加一PUSH DPHPUSH DPLINC R2DJNZ R3,START ;判断是否取完END1:MOV DPTR,#0B000H ;指向外部RAMMOV R5,#08H ;负数个数DO:MOVX A,@DPTR ;取数CPL A ;求补INC AMOV @R1,AINC R1INC DPTRDJNZ R5,DOORG 0F000H ;表DB 18H, 30H, 0A0H, 50HDB 87H, 0B2H, 1CH, 0D6HDB 28H, 8FH, 0C3H, 10HDB 1CH, 0CDH, 68H, 0D6H课上根据老师的要求,改变了外RAM地址,正数地址以及负数地址,程序如下。

东南大学信息工程数字电路与系统第3次实验报告

东南大学信息工程数字电路与系统第3次实验报告

数字逻辑电路实验第3次实验报告实验题目1位全加器设计实验日期2017.11.15一、实验题目1、完成1位全加器的设计,用逻辑门实现,完成输入输出真值表验证。

2、完成1位全加器的设计,用中规模逻辑器件(74138)实现,完成输入输出真值表验证。

二、实验原理实验1:用逻辑门实现一位全加器,其中的逻辑门包含与门,异或门,非门。

实验2:用中规模逻辑器件(74138)实现,完成输入输出真值表验证三、设计过程实验1:假设A代表被加数,B代表加数,C代表低位向本位的进位,S代表相加得到的和,C0代表相加向更高位的进位。

S=C0=由于没有或门,所以将C0化为C0=异或门采用84HC68,与非门采用74HC00Multisim仿真如下,开关A代表A,开关B代表B,开关C代表C,LED 灯S亮代表S输出为1,灭代表输出0,LED灯C0亮代表C0输出1,灭代表输出0。

A=0,B=0,C=0,S=0,C0=0A=1,B=0,C=0,S=1,C0=0A=0,B=1,C=0,S=1,C0=0A=1,B=1,C=0,S=0,C0=1A=0,B=0,C=1,S=1,C0=0A=1,B=0,C=1,S=0,C0=1A=1,B=1,C=0,S=0,C0=1A=1,B=1,C=1,S=1,C0=1面包板实现如下实验二:假设A代表被加数,B代表加数,C代表低位向本位的进位,S代表相加得到的和,C0代表相加向更高位的进位。

S=C0=根据真值表画出卡洛图74138为数据选择器,输出为最小项的非,将表达式化为S=C=Multisim仿真如下:开关A代表A,开关B代表B,开关C代表C,LED 灯S亮代表S输出为1,灭代表输出0,LED灯C0亮代表C0输出1,灭代表输出0。

A=0,B=0,C=0,S=0,C0=0A=0,B=0,C=1,S=1,C0=0A=0,B=1,C=0,S=1,C0=0A=0,B=1,C=1,S=0,C0=1A=1,B=0,C=0,S=1,C0=0A=1,B=0,C=1,S=0,C0=1A=1,B=1,C=0,S=0,C0=1A=1,B=1,C=1,S=1,C0=1面包板实现电路如下,开关从右往左依次为A,B,C,绿色的二极管为S,红色的二极管为C0四、测试方法及测试结果实验1:面包板的开关从右往左依次是A,B,C,绿色二极管为S,红色二极管为C0,测试结果如下图A=0,B=0,C=0,S=0,C0=0A=0,B=0,C=1,S=1,C0=0A=0,B=1,C=0,S=1,C0=0A=0,B=1,C=1,S=0,C=1A=1,B=0,C=0,S=1,C0=0\A=1,B=0,C=1,S=0,C0=1A=1,B=1,C=0,S=0,C0=1A=1,B=1,C=1,S=1,C0=1实验2:A=0,B=0,C=0,S=0,C0=0A=0,B=0,C=1,S=1,C0=0A=0,B=1,C=0,S=1,C0=0A=0,B=1,C=1,S=0,C0=1A=1,B=0,C=0,S=1,C0=0A=1,B=0,C=1,S=0,C0=1A=1,B=1,C=0,S=0,C0=1A=1,B=1,C=1,S=1,C0=1五、实验结论实验1需要用到与非门,异或门,电路实现相对复杂,实验2用到了74138译码器,直接能得到最小项的非,最后通过四输入与非门得到S与C0的输出。

东南大学微机实验报告3、4定时中断流水灯

东南大学微机实验报告3、4定时中断流水灯

东南大学《微机实验及课程设计》实验报告实验三定时-中断实验:模拟流水灯姓名:学号:专业:自动化类实验室:金智楼416实验时间:2020年4月29日报告时间:2020年5月1日评定成绩:审阅教师:实验三定时-中断实验:模拟流水灯一. 实验目的与内容1.实验目的:1)掌握 PC 机中断处理系统的基本原理;2)学会编写中断服务程序。

3)掌握计数器/定时器 8253/8254 的基本工作原理和编程应用方法;4)了解掌握 8253(8254)的计数器/定时器典型应用方法。

2.实验内容:1. 查阅实验指导书 P60,了解微机主板上的 8259 IRQ0 是留给时钟的中断,类型号是 08H;2. 在提供的例程 int.asm 基础上编写利用 IRQ0 的定时中断程序(即修改对应的中断服务程序),每次中断在屏幕上输出一行字;3. 查阅课本 P273 例程,了解主机板上 8253 端口号和通道 0 对应的时钟,修改 8253 初始化程序,使得通道 0 输出时钟为55ms;4. 修改之前的程序,使其功能为:每 18 次中断(对应约1s)在屏幕上输出一行字;5. 根据提供的画图程序,模拟单色流水灯,按每秒一个灯向着单方向流动;6. 双向流水灯、键控(方向/加减速)流水灯。

二. 基本实验原理中断:PC 机用户可使用的硬件中断只有可屏蔽中断,由 8259 中断控制器管理。

中断控制器用于接收外部中断请求信号,经过优先级判别等处理后向 CPU 发出可屏蔽中断请求。

IBMPC、PC/XT 机内有一片 8259 中断控制器对外可以提供 8 个中断源:中断源中断类型号中断功能IRQ0 08H 时钟IRQ1 09H 键盘IRQ2 0AH 保留IRQ3 OBH 串行口2IRQ4 0CH 串行口1IRQ5 0DH 硬盘IRQ6 0EH 软盘IRQ7 0FH 并行打印机8 个中断源的中断请求信号线 IRQ0~IRQ7 在主机的 62 线 ISA 总线插座中可以引出,系统已设定中断请求信号为“边沿触发”,普通结束方式。

东南大学MCU课程设计报告

东南大学MCU课程设计报告

东南大学MCU课程设计报告东南大学自动化学院《MCU技术及课程设计》课程设计报告姓名:学号:专业:自动化实验室:金智楼组别:同组人员:设计时间:2017年08月28日——2017年09月06日评定成绩:审阅教师:目录一. 课程设计的目的与要 (3)二. 原理设计 (3)三. 方案论证 (8)四.方案实现与测试 (8)五.分析与总结 (9)一.课程设计的目的与要求本次设计使用MSP430F6638实现一基于单片机的电子密码锁的设计,其主要具有如下功能:1.密码通过键盘输入,若密码正确,则绿灯亮,表示密码锁打开,若密码错误,红灯亮,表示密码锁关闭。

2.按AC键可以清除已输入的密码,重新输入。

二. 原理设计1.数码管显示(1) TM1638 控制芯片TM1638 是带键盘扫描接口的 LED驱动控制专用电路,内部集成有 MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。

主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。

TM1638 原理图如5-1所示,其中SEG_DIO,SEG_CLK,SEG_STB 与 MSP430芯片中 P3.5, P3.4, P3.2 三个 IO 口相连,仅占用 3 个端口即可完成数据的输入输出,大大节约单片机的 IO 口和开发板的空间,降低了布线的难度。

TM1638 与 MSP 430 实验箱连接示意图如图 4-1 所示,实验开发板 LED 数码管对应关系见图 5-2。

(2) TM1638 接收数据串行数据传输格式:读取和接收 1 个 BIT 都在时钟的上升沿操作。

数据接收(写数据)时序如图 5-4 所示。

以下写数据代码仅作为参考。

(更多关于TM1638 的程序请参考给出的TM1638.h 和 TM1638.c 两个文件以及芯片说明书)void TM1638_Write(unsigned char DATA) //写数据函数{ unsigned char i; DIO_OUT; //将DIO 配置为输出状态for(i=0;i<8;i++) { CLK_low; if(DATA & 0x01){ DIO_high; } else {DIO_low;} CLK_high; DATA>>=1; //数据左移一位 } }(3) LED 数码管显示图 5-5 共阴极数码管连接图图5-5 给出一个共阴数码管的连接示意图,如果让该数码管显示“0”,那你需要在 GRID1 为低电平的时候让 SEG1, SEG2, SEG3, SEG4,SEG5, SEG6为高电平, SEG7 为低电平,即在 00H 地址单元里面写数据 3FH 就可以让数码管显示“0”。

东南大学光电子物理实验报告3

东南大学光电子物理实验报告3

实验目的1. 掌握F-P标准具、F-P扫描干涉仪的原理和使用方法2. 掌握He-Ne激光器横模模式的观察和测量3. 掌握多光束干涉法测量激光线宽的原理及方法4. 掌握用腔内损耗法测量激光参数的原理和方法5. 根据自动测试系统测得的曲线,取适当的数据,编写程序,利用计算机进行计算6. 通过对激光器增益等参数的测量,对激光器的工作过程有进一步的了解、实验原理1.激光横模的观察和测量为了简单起见,我们只讨论基模,即TEM 00模,这个基模的光斑形状为图1所示。

这个模的电矢量E的振幅为: A x2A(x,y,Z)=W;)e xP(=2(z)这种光场分布是高斯光束,所以成这样的光束为高斯光束。

如果记= x2y2当p =0, z=0时(即束腰的中心),电矢量振幅A得知最大,为A(0,0) = A /w0而当p o=W通常将电矢量振幅降到中心值的1/e处时的径向距离称为光斑半径,用w(z)表示,w(z)作为光斑大小的量度,w o为z=0处的光斑半径,通常称之为激光光束的腰粗。

在实际测量中,都是测量光强,因为光强与电矢量振幅之间的关系为:H A2所以激光束的横向光强分布为2“exp( 2 ) = I°(z)exp(w (z)则A(?, z)矢exp( w⑵w2(z)2门w2(z)当P =0时,l(O,z)=l o (z)可以测出谐振腔轴上 (即光斑中心)的光强随着光束不同位置 时的值。

2P 2当 z 值固定时,1( T ,Z ) = l o (z)exp( 2)w (z)这样可以测出,随着径向不同位置 P 时的光强值。

光强随P 而改变的关系由纪录仪直接 给出,如图2。

由光强的高斯分布曲线(图 2)可以找出光强下降到光斑中心光强的1/e 2处位置,这点离光斑中心的距离就为该处的光斑半径 w(z)。

可以由w(z)与束腰W o 之间的关系式求得 W o ,其关系式为w(z) =W 0[1 (刍)2]1/2%w 0激光光束尽管方向性很好,但也不是理想的平行束,而具有一定的发散角。

东南大学过程控制实验报告四

东南大学过程控制实验报告四

东南大学自动化学院实验报告课程名称:过程控制第四次实验实验名称:液位单回路调节系统实验院(系):自动化专业:自动化姓名:学号:同组人员:实验时间:2017 年 5 月13 日评定成绩:审阅教师:目录一.实验目的 (3)二.实验内容 (3)三.实验步骤 (3)四.实验现象 (5)五.思考题 (9)一、实验目的1、熟悉PID参数对控制系通过实验掌握单回路控制系统的构成,构成单回路单容液位控制系统;2、并应用临界比例度法、经验试凑法和衰减曲线法等整定方法来整定控制系统的PID 参数;3、了解扰动对过程品质指标的影响,用调节器仪表进行PID参数的整定和自动控制的投运;4、熟练掌握调节器的参数设置和手动、自动的操作方法。

二、实验内容1、单回路系统简介:单回路调节系统,一般是指用一个控制器来控制一个被控对象,即SISO(single input single output)系统。

其中,控制器只接收一个测量喜好,其输出也只控制一个执行机构。

单回路流量PID控制系统也是一种单回路调节系统,系统框图如上图所示。

在此控制回路中,被控对象的液位是被控量。

利用压力型液位感测器和调理电路对测量信号进行归一化处理,形成4~20mA的信号;PID控制器作为系统的核心,控制输出,使液位打到期望的设定值。

单回路系统示意图如图4.1所示。

图4.1 单回路系统示意图三、实验步骤1、接好实验导线,打开或关闭相应的阀门;2、接通总电源和各仪表电源;3、液位回路整定参数值的计算:选取工程中常用的整定方法(经验试凑法、临界比例度法、衰减曲线法等)的一种或两种,按照每种整定方法不同的整定步骤,计算和整定液位回路的P、I、D参数;4、将计算所得的PID参数值置于调节器中,系统投入闭环运行。

加入扰动信号观察液位的变化,直至过渡过程曲线符合要求为止。

注意每改变一次整定参数,系统必须处于稳定状态下再加阶跃信号;5、曲线的分析处理:对液位的过渡曲线进行分析和处理,描绘几组典型的整定曲线,分别标出得到每组曲线时所设定的PID参数值,计算每条整定曲线的超调量、峰值时间、调节时间等指标并分析比较哪组曲线整定效果相对最佳并给出合理的解释,总结P、I或D参数对过渡曲线性能指标的影响;6、记录曲线,运用力控组态软件中的历史趋势曲线,曲线下方操作按钮的作用参看附录二。

第四次实验东南大学控制专业技术与系统实验报告

第四次实验东南大学控制专业技术与系统实验报告
定时器的时标为100ms(即输入脉冲周期为100ms),每个定时器的定时范围可从0.1-3276.7(因为字长16位),定时器每条指令占用3字长。
当继电器M8028置1时,定时器T0-T31认为100ms时标,而T32-T55时标变为10ms。
定时器的指令格式如下图1-29
当X0合上,T0开始定时,当定时到T50时(5s),T0触发点输出为1,T0于Y0接通,Y0有输出。
第四次实验东南大学-控制技术与系统实验报告
———————————————————————————————— 作者:
———————————————————————————————— 日期:
东南大学
控制技术与系统
可编程控制器实验
姓名:张子龙组员:焦越
学号:指导教师:朱利丰
实验日期:2016年11月30日
1、掌握定时器指令的格式、功能和编程方法。
2、掌握计数器指令的格式、功能和编程方法。
3、熟悉实验步骤原理,内容及步骤。
第二章应用试验
实验一、交通信号灯自动控制实验
一、实验目的Leabharlann 1、掌握实用PLC控制十字路口交通灯的程序设计方法
2、进一步熟悉PLC指令的使用
二、实验器材
1、可编程序控制器试验箱
2、交通信号灯演示装置
2)实验步骤二
输入执行上面程序
观察结果输出。
当X0合上,Y0每隔0.1s闪烁一次。当X0断开,Y0每隔1s闪烁一次。说明M8028控制T32-T55的定时时基脉冲。
2、计数器指令实验
1)如图1-31
2)实验步骤三
X0、X1接试验箱模拟开关0#、1#
输入执行上面程序
观察结果输出。
当X1为0时,X0合上10次,Y0有输出,再按下X1一次,Y0无输出,再X0合上10次,Y0有输出。

东南大学计算机与网络第四次实验祥解

东南大学计算机与网络第四次实验祥解

东南大学自动化学院实验报告课程名称:信息通信网络概论第4次实验实验名称:设计协议院(系):自动化专业:自动化姓名:学号:实验室:金智楼实验组别:同组人员:实验时间:2013 年12 月23日评定成绩:审阅教师:目录一.实验目的和要求 (3)二.实验原理 (3)三.实验方案与实验步骤 (4)四.实验设备与器材配置 (5)五.实验记录 (5)六.实验总结 (9)七.思考题或讨论题 (9)一.实验目的和要求目的:1.设计简单的应用层协议,2.开发基于TCP/IP或UDP/IP的网络通信程序,实现数据传送和文件传输。

要求:1.正确理解应用层协议的概念;2.更深入了解客户/服务器模式的网络程序设计。

二.实验原理1. 应用层协议应用层协议的定义包括如下内容:(1)交换的报文类型,如请求报文和响应报文;(2)各种报文类型的语法,如报文中的各个字段公共详细描述;(3)字段的语义,即包含在字段中信息的含义;(4)进程何时、如何发送报文及对报文进行响应。

有些应用层协议是由RFC文档定义的,因此它们位于公共领域。

例如,web的应用层的协议HTTP(超文本传输协议,RFC 2616)就作为一个RFC供大家使用。

如果浏览器开发者遵从HTTP RFC规则,所开发出的浏览器就能访问任何遵从该文档标准的web,服务器并获取相应的web 页面。

还有很多别的应用层协议是专用的.不能随意应用于公共领域。

例如,很多现有的P2P 文件共享系统使用的是专用应用层协议。

目的,应用层协议主要有以下几种。

2)SOCKET编程服务器要创建一个用于侦听的套接字,为该套接字分配地址之后,调用listen()函数使它处于侦听状态;客户机在创建套接字完毕后,为套接字分配地址,然后调用connect()函数,请求与服务器套接字连接;服务器套接字在收到客户机的连接请示后,调用accept()函数,该函数创建一个用于连接的套接字。

应用该套接字和客户机上的连接套接字,用户就可以在服务器和客户机之间进行数据传输了。

东南大学计算机控制技术实验报告三

东南大学计算机控制技术实验报告三

东南大学自动化学院实验报告课程名称:计算机控制技术第三次实验实验名称:离散化方法研究院(系):自动化专业:自动化姓名:学号:同组人员:实验时间:2017 年 4 月12 日评定成绩:审阅教师:目录一.实验目的 (3)二.实验设备 (3)三.实验原理 (3)四.实验步骤 (7)五.实验结果 (8)一、实验目的1.学习并掌握数字控制器的设计方法(按模拟系统设计方法与按离散设计方法);2.熟悉将模拟控制器D(S)离散为数字控制器的原理与方法(按模拟系统设计方法);3.通过数模混合实验,对D(S)的多种离散化方法作比较研究,并对D(S)离散化前后闭环系统的性能进行比较,以加深对计算机控制系统的理解。

二、实验设备1.THBDC-1型控制理论·计算机控制技术实验平台2.PCI-1711数据采集卡一块3.PC机1台(安装软件“VC++”及“THJK_Server”)三、实验原理由于计算机的发展,计算机及其相应的信号变换装置(A/D和D/A)取代了常规的模拟控制。

在对原有的连续控制系统进行改造时,最方便的办法是将原来的模拟控制器离散化。

在介绍设计方法之前,首先应该分析计算机控制系统的特点。

图3-1为计算机控制系统的原理框图。

图3-1 计算机控制系统原理框图由图3-1可见,从虚线I向左看,数字计算机的作用是一个数字控制器,其输入量和输出量都是离散的数字量,所以,这一系统具有离散系统的特性,分析的工具是z变换。

由虚线II向右看,被控对象的输入和输出都是模拟量,所以该系统是连续变化的模拟系统,可以用拉氏变换进行分析。

通过上面的分析可知,计算机控制系统实际上是一个混合系统,既可以在一定条件下近似地把它看成模拟系统,用连续变化的模拟系统的分析工具进行动态分析和设计,再将设计结果转变成数字计算机的控制算法。

也可以把计算机控制系统经过适当变换,变成纯粹的离散系统,用z变化等工具进行分析设计,直接设计出控制算法。

按模拟系统设计方法进行设计的基本思想是,当采样系统的采样频率足够高时,采样系统的特性接近于连续变化的模拟系统,此时忽略采样开关和保持器,将整个系统看成是连续变化的模拟系统,用s 域的方法设计校正装置D(s),再用s 域到z 域的离散化方法求得离散传递函数D(z)。

东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学电工电子实验中心实验报告课程名称:模拟电子电路第四次实验实验名称:波形的产生、分解与合成院(系):专业:姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年5月15 日评定成绩:审阅教师:波形的产生、分解与合成一、实验目的1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2.掌握由运算放大器组成的RC有源滤波器的工作原理,熟练掌握RC有源滤波器的基本参数的测量方法和工程设计方法;3.掌握移相电路设计原理与方法4.掌握比例加法合成器的基本类型、选型原则和设计方法。

5.掌握多级电路的级联安装调试技巧;6.熟悉FilterPro、MultiSim软件高级分析功能的使用方法。

二、实验内容设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

(1) 设计一个方波发生器,要求其频率为500Hz,幅度为5V;(2) 设计合适的滤波器,从方波中提取出基波和3次谐波;(3) 设计移相电路,使高次谐波与基波之间的初始相位差为零。

(4) 设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

三、电路设计(1) 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数:I方波发生器电路设计21122122ln 2ln(12)2112ln(12)R R T RC RC R R R f R TRC R =-=++==+这里取R 1= R 3=10k Ω,R 2=9k Ω,C 1=0.1μF , VCC=6V, VEE=-6V ,此时f =500Hz 仿真结果仿真分析由上图可以看出,输出波形为频率为500Hz ,幅度为5V 的方波,符合实验设计要求。

II 滤波器设计思路我们知道,方波信号可以分解为:411()(sin sin 3sin 5......)35Uf t t t t ωωωπ=+++ 这里我们分别采用两个有源带通滤波器来实现基波和三次谐波的提取。

东南大学过程控制实验报告三

东南大学过程控制实验报告三

东南大学自动化学院实验报告课程名称:过程控制第三次实验实验名称:被控过程的电动调节阀实验院(系):自动化专业:自动化姓名:学号:同组人员:实验时间:2017 年 5 月13 日评定成绩:审阅教师:目录一.实验目的 (3)二.实验内容 (3)三.实验步骤 (3)四.实验现象 (3)五.思考题 (6)一、实验目的1、了解执行器的功能和组成;2、掌握电动调节阀的使用方法,并完成调节阀特性的测定工作;3、熟练掌握调节器的参数设置和手动、自动的操作方法。

二、实验内容1、仪表的配线操作;2、本实验的仪表配线图见图1.2,对实验控制台上的2#、3#调节器的输入、输出、电源进行插棒连线(6根弱电,4根强电);3、调节器参数的设置;记录曲线,运用组态王中的历史趋势曲线,曲线下方操作按钮的作用参看附录二。

三、实验步骤1、了解P909智能调节器的工作原理P909介绍;2、掌握P909智能调节器的使用方法P909及其使用;3、掌握力控组态过程控制实验平台的使用方法力控软件;4、理解电动调节阀特性电动调节阀的使用;5、当液位平衡后,改变进水阀的开度,一般变化10%左右,等待液位再次平衡,并且记录下改变阀位的时刻。

四、实验现象1、电动调节阀的使用与评价(1)使用注意事项在工业自动化仪表中,电动调节阀算是一种极其笨重的仪表设备,因其结构简单,主要元部件又被壳体笼罩,加之安装在工艺管道上,所以往往不被人们重视。

但是,它的工作状态的好坏会直接影响自动控制过程,如调节阀一旦出现问题,操作人员就会忙手忙脚,还会涉及系统投运、生产安全、产品质量、环境污染等等。

为了确保电动调节阀能够正常工作,使生产系统安全运行,新阀在安装之前,应首先检查阀上的铭牌标记是否与设计要求相符。

同时还应对其基本误差限、全行程偏差、回差、死区、泄漏量(在要求严格的场合时进行)等项目进行调试。

如果是对原生产系统中调节阀进行了大修,除了对上述各项进行校验外,还应对旧阀的填料函和连接处等部位进行密封性检查。

东南大学现代检测技术第四次实验

东南大学现代检测技术第四次实验

检测技术实验报告院(系):自动化专业:自动化姓名:学号:同组人员:评定成绩:评阅教师:实验一:发光二极管(光源)的照度标定一、实验目的:了解发光二极管的工作原理及工作电流与光照度的对应关系。

二、需用器件与单元:主机箱(恒流源、电流表、照度表);照度计探头;发光二极管;遮光筒。

三、实验原理:发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。

因此它具有一般P-N结的I-N特性,即正向导通,在正向电压下,电子由N区注入P区,空穴由P区注入N区。

进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。

除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。

发光的复合量相对于非发光复合量的比例越大,光量子效率越高。

由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

原理图如下:发光二极管的工作原理四、步骤:1、按图1-2配置接线,接线注意+、-极性。

2、检查接线无误后,合上主机箱电源开关。

3、调节主机箱中的恒流源电流大小即发光二管的工作电流大小就可改变光源的光照度值。

拔去发光二极管的其中一根连线头,则光照度为0(因恒流源的起始电流不为0,要得到0照度只能断开光源的一根线)。

按表1进行标定实验(调节恒流源),得到照度—电流对应值。

图1—2 工作电流与光照度的关系图1—3 工作电压与光照度的关系5合上主机箱电源,调节主机箱中的0~24V可调电压(电压表量程20V档),就可以改变光源(发光二极管)的光照度值。

按表7-1进行标定实验(调节电压源),得到照度~电压对应值。

6、根据表1画出发光二极管的电流~照度、电压~照度特性曲线。

东南大学微机原理微机系统与接口实验三四实验报告范文自动化学院

东南大学微机原理微机系统与接口实验三四实验报告范文自动化学院

东南大学微机原理微机系统与接口实验三四实验报告范文自动化学院《微机实验及课程设计》实验报告学号08011东南大学《微机实验及课程设计》实验报告实验三TPC装置系统,I/O与存储器简单输入输出实验四(1)姓名:学号:08011专业:自动化实验室:计算机硬件技术实验时间:2022年04月9日报告时间:2022年04月21日评定成绩:审阅教师:《微机实验及课程设计》实验报告学号08011一.实验目的与内容实验三:(1)实验目的:1)2)3)4)了解掌握TPC实验系统的基本原理和组成结构,学会测试检查TPC-PCI总线转接卡地址;正确掌握I/O地址译码电路的工作原理,学会动态调试程序DEBUG/TD的直接I/O操作方法;学会利用I/O指令单步调试检查硬件接口功能,学会利用示波器检测I/O指令执行时总线情况;进一步熟悉8086/8088及PC机的分段存储特性,了解存储器扩展原理,完成编程及测试。

(2)实验内容:1)观察了解TPC-2003A实验系统的基本原理和组成结构,测试基本单元电路功能,熟悉各部分辅助电路的使用;2)通过Win/某P控制台硬件信息或测试程序检查TPC-PCI总线转接卡地址,并记录;3)按图3.3-5的I/O地址译码测试参考电路连线,分析电路原理,分别利用动态调试程序直接I/O操作功能和单步功能测试;4)编程利用片选负脉冲控制指示灯(如L7)闪烁发光(亮、灭、亮、灭、),时间间隔通过软件延时实现;5)修改延时参数,使亮(约1秒)与灭的时间间隔分别为1秒、5秒和8秒,记录延时程序对应参数B某,C某。

实验四:(1)实验目的6)进一步掌握TPC实验装置的基本原理和组成结构7)掌握利用I/O指令单步调试检查硬件接口功能,学会用示波器检测I/O指令执行时总线情况8)掌握简单并行输入输出接口的工作原理和使用方法,进一步熟悉掌握输入输出单元的功能和使用(2)实验内容9)连接简单并行输出接口电路,编程从键盘输入一个字符或数字,将其ASCII码通过这个输出接口电路输出,根据8个放光二极管发光情况验证正确性10)连接简单并行输入接口电路,用逻辑电平开关K0~K7预置一字母的ASCII码,编程输入这个ASCII码,并将其对应字母在屏幕上显示出来二.基本实验原理实验三:实验电路图见3.3-5,实验电路中D触发器CLK端输入脉冲时,上升沿使Q端锁存输出高电平L7发光,CD端为低电平时L7灭:《微机实验及课程设计》实验报告学号08011参考程序:程序名:decode.amioportequ0c800h-0280h;tpc卡中设备的IO地址outport1equioport+2a0h;CLK端译码输出端选为地址Y4outport2equioport+2a8h;CD端对应译码输出选为地址Y5tackegmenttackdb100dup()tackendcodeegmentaumec:code,:tackmainprocfartart:mova某,tackmov,a某movd某,outport1;Y4,置位,CLK端写outd某,alcalldelay;调延时子程序movd某,outport2;Y5,清空CD端写outd某,alcalldelay;调延时子程序movah,1int16hjetart;ZF=1,无键输入movah,4chint21h;返回DOS操作系统mainendpdelayprocnear;延时子程序movb某,2000ZZZ:movc某,0ZZ:loopZZdecb某2《微机实验及课程设计》实验报告学号08011jneZZZretdelayendpcodeendendtart实验四:(1)简单并行输入输出接口电路连线图输出接口电路输入接口电路(2)简单并行输入输出电路原理数据D0~D7先预存入273中,当输出端口2A8H和写信号同时低电平时,发生时钟触发,此时将数据运送到输出端Q1~Q8。

东南大学模电实验报告-实验四-信号的产生、分解与合成

东南大学模电实验报告-实验四-信号的产生、分解与合成

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第四次实验实验名称:信号的产生、分解与合成院(系):自动化学院专业:自动化姓名:某某学号:*****实验室: 101 实验组别:同组人员:实验时间:2017年5月10日评定成绩:审阅教师:实验四信号的产生、分解与合成一、实验目的1.掌握方波信号产生的基本原理和基本分析方法、电路参数的计算方法、各参数对电路性能的影响;2.掌握由运算放大器组成的RC有源滤波器的工作原理,熟练掌握RC有源滤波器的基本参数的测量方法和工程设计方法;3.掌握移相电路设计原理与方法;4.掌握比例加法合成器的基本类型、选型原则和设计方法;5.掌握多级电路的级联安装调试技巧;6.熟悉FilterPro、Multisim软件高级分析功能的使用方法。

二、预习思考1.方波发生电路(Multisim 仿真)(1)图4.1中R W调到最小值时输出信号频率是多少,调到最大值时输出信号频率又是多少。

(2)稳压管为6V,要求输出方波的前后沿的上升、下降时间不大于半个周期的10%,试估算图4.1电路的最大输出频率。

(3)如果两个稳压管中间有一个开路,定量画出输出波形图,如果两个稳压管中间有一个短路呢?(4)简单总结一下,在设计该振荡器时必须要考虑运算放大器的哪些参数。

(1)R w 最小时,T=2.290ms,f=436.7Hz;R w最大时,T=24.4ms,f=41Hz。

实际设计1kHz,5Vp方波发生器电路时应该选择更小的R1,通过调整R1的阻值获得1kHz的输出信号。

(2)实验中使用的Ua741运放,数据手册中指出转换速率SR为0.5V/μS,于是稳压管为6V情况下,∆U=12V,∆t=12/0.5=24Μs,T min=∆t/10%*2=480Μs,可得f max=2.08kHz。

(3)有一个开路:上短路:下短路:(4)运放的电压转换速率;运放的最大输出电流;运放的增益带宽积(高频时可能产生不了能够使稳压管正常工作的电压)。

东南大学MSP430LCD+ADC实验报告

东南大学MSP430LCD+ADC实验报告
#define delay_ms(x) __delay_cycles((long)(CPU_F*(double)x/1000.0))
// LCD segment definitions.
#define d 0x01
#define c 0x20
#define b 0x40
#define a 0x80
#define dp 0x10
#define f 0x08
#define e 0x02
int sin_table[100];
int *sin_data_pr;
uint fre_term_pr;
int j;
double i=0;
#define CPU_F ((double)1000000)
#define delay_us(x) __delay_cycles((long)(CPU_F*(double)x/1000000.0))
#define uint unsigned int
#define uchar unsigned char
#define PI 3.1416
#define d 0x01
#define c 0x20
#define b 0x40
#define a 0x80
#define dp 0x10
#define g 0x04
// changed is n x 32 x 32 x f_MCLK / f_FLL_reference. See UCS chapter in 5xx UG for
// optimization , 32 x 32 x 8 MHz / 32,768 Hz = 250000 = MCLK cycles for DCO to settle

东南大学msp实验

东南大学msp实验
只要在处理函数中对LED端口状态取反就行。
(3)如何改写程序,使用KEY1和KEY2分别控制LED_RED和LED_GREEN的亮灭。
if((P4IN&BIT2)==0x00)//4.2
{
P4OUT |= BIT4//4.4
}
else if((P4IN&BIT3)==0x00)//4.3
{
P4OUT |= BIT5//4.5
图2-2开发板上按键和MCU的IO口对应关系图
开发板上三个LED灯和MCU的IO口对应关系如图2-3所示。
LED_YELLOW---P4.6、LED_GREEN---P4.5、LED_RED --- P4.4
图2-3开发板上三个LED灯和MCU的IO口对应关系
·端口中断使用中需要注意的地方
在msp430f6638的9个GPIO端口P1~P9中,仅仅P1和P2具有中断功能,而P3~P9不具备中断功能。这里按键使用的是P4口的两个引脚,不具有中断,那么如何用中断来实现呢?
break;
case 2: P4OUT&=~BIT4;
P4OUT|=BIT5;
P4OUT&=~BIT6;
break;
case 3: P4OUT&=~BIT4;
P4OUT&=~BIT5;
P4OUT|=BIT6;
break;
default :break;
}
turns++;
if(turns>3) turns = 1;
if((P4IN&BIT2)==0x00)
{
P4OUT |= BIT4+BIT5+BIT6;//LED等亮暗转换
}

东南大学数字电路实验报告(三)

东南大学数字电路实验报告(三)

实验报告课程名称:计算机逻辑设计实践第三次实验实验名称:MSI设计逻辑电路院(系):电气工程专业:电气工程姓名:黄博然学号:实验室: 104 实验时间:13年11月21日评定成绩:审阅教师:一、实验目的1. 掌握常用中规模组合逻辑器件的功能和使用方法;2. 掌握逻辑函数工程设计方法;3. 掌握存储器实现复杂逻辑函数的原理和存储器的使用过程。

二、实验原理全减器:全减器是两个二进制的数进行减法运算时使用的一种运算单元。

最简单的全减器是采用本位结果和借位来显示,二进制中是借一当二,所以可以使用两个输出变量的高低电平变化来实现减法运算。

A iB i D i-1C iD i0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1全减器输出逻辑函数如下:C i=A i⊕B i⊕D i-1 D i=A iˊ(B i⊕D i-1)+B i D i-1三、实验内容A)3.3节实验:用MSI进行组合逻辑函数电路设计内容1.用多种方法设计全减器真值表如下:Ai Bi Ci-1Pi Ci0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 11 0 0 1 01 0 1 0 01 1 0 0 01 1 1 1 1电路图如下:方案二:用译码器实现电路图如下:方案四:用全加器和门电路实现实验所得真值表与理论一致2.用一个4选1数据选择器实现如下逻辑函数:Y(DCBA)=Σm(0,1,2,5,8,10,12,13)。

Y=D’C’B’A’+D’C’B’A+D’C’BA’+D’CB’A+DC’B’A’+DC’BA’+DCB’A’+DCB’A=(DC’)’+(D’C)’+C’3.人类有4 种血型:A、B、AB 和O 型。

输血时,输血者与受血者必须符合图3.3.1 的规定,否则有生命危险,利用一个 4 选 1 数据选择器和最少数量的与非门,完成血型配对任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学自动化学院实验报告课程名称: MCU技术及综合课程设计第 3 次实验实验名称:实验三:定时器输出PWM波形院(系):自动化学院专业:自动化姓名:杨淳元学号:08012131实验室:实验组别:同组人员:实验时间:2015年5月7日评定成绩:审阅教师:目录一、实验目的和要求 (2)二、实验原理 (2)三、实验方案与实验步骤 (6)四、实验设备与器材配置 (7)五、实验记录 (7)七、思考题或讨论题 (8)八、附上源代码 (9)一、实验目的和要求1) 实验目的(1) 学习MP430单片机的时钟原理和定时器使用方法。

(2) 认识学习PWM波形的作用及原理。

2) 实验要求编写程序输出1s周期的PWM波形,产生两路PWM波形从引脚P1.2和P1.3分别输出。

CCR0中的值定义了PWM信号的周期,CCR1,CCR2中的值定义了PWM信号的占空比。

定时使用32.768KHz的ACLK作为输入时钟源,P1.2上的占空比为75%,P1.3上的占空比为25%。

二、实验原理1)Timer_A定时器模块框图如图3-1所示。

由图3-1可知,Timer_A 模块可以有三种时钟源输入。

分别是ACLK,SMCLK,TAxCLK。

时钟源的选择通过TASSEL 信号来完成。

被选择的时钟源可以直接送给TIMER 模块,或者通过ID 信号进行2,4,8分频。

选择的时钟信号还可以通过TAIDEX 信号进一步做2,3,4,5,6,7 或者8 分频。

当TACLK 信号被设置的时候,TIMER 的时钟分频逻辑被复位。

图3-1 Timer_A 模块框图2)Timer A 控制寄存器TA0CTL详细定义如图3-2所示。

图3-2 Timer A 控制寄存器TA0CTL3)定时器中断的中断向量中包含一个独立中断和若干个共源中断,Timer_A模块的中断分类如图3-3所示。

图3-3 Timer_A模块的中断向量分类图1)独立中断源的中断处理TA0CCTL0 = CCIE; //CCR0 中断使能#pargma vector = TIMER0_A0_VECTOR //中断向量定义,可查询头文件得到__interrupt void TIMER0_A0_ISR(void){//添加中断处理代码}2)共源中断向量寄存器TAxIV图3-4共源中断向量寄存器TAxIV共源中断程序switch处理方式:#pragma vector=TIMER0_A0_VECTOR //共源中断入口__interrupt void TIMER0_A0_ISR(void){switch(__even_in_range(TA0IV,14)) //共源中断处理{case 0: fun_no(); break; // No interruptcase 2: fun_CCR1(); break; // CCR1 interruptcase 4: fun_CCR2(); break; // CCR2 interruptcase 6: fun_CCR3(); break; // CCR3 interruptcase 8: fun_CCR4(); break; // CCR4 interruptcase 10: fun_CCR5(); break; // CCR5 interruptcase 12: fun_CCR6(); break; // CCR6 interruptcase 14: fun_overflow(); break; // overflowdefault: fun_default(); break; // default}}3)PWM原理PWM 技术的三个要素,具体如图3-5所示, PWM频率计算见图3-6。

(1) Frequency 时钟频率(2) Duty cycle 占空比(3) Amplitude 信号幅度图3-5 PWM计数三要素示意图图3-6 PWM频率计算示意图4)实验箱I/O硬件电路如图3-7所示。

图3-7 实验箱I/O口P1的硬件电路图三、实验方案与实验步骤四、实验设备与器材配置MSP430F6638,数据线,电脑。

五、实验记录设置p1.2和p1.3为输出,并且把这两个端口接上示波器观察现象。

P1.2端口输出的是占空比为75%的PWM波形.P1.3端口输出的是占空比为25%的PWM波形。

六、实验总结本次试验我学会了利用定时器timerA输出pwm的波形,主要的工作就是设置寄存器计数值。

通过更改控制寄存器能够使用不同的模块,这对今后的程序设计是很重要的启发七、思考题或讨论题(1)430时钟系统产生的ACLK、MCLK和SMCLK各自用于什么场合?系统复位时三种时钟输出的默认值为多少?ACLK为低速时钟,主要为片内一些低速设备提供低速时钟。

MCLK一般为CPU提供运行时钟,但是也可以用于其他高速模块(如定时器和数模转换模块)。

SMCLK为高速时钟,主要为片内一些高速外设提供高速时钟。

(2)MSP430F6638有哪些定时器模块?其中Timer_A0有多少捕获/比较器?三个Timer_A,一个Timer_B。

Timer_A0有5个捕获/比较器。

(3)定时器有哪几种工作模式?各种工作模式的特点和定时周期如何计算?其最大定时周期分别是多少?1)4种,通过设定MC1,MC2实现。

00:停止模式:定时器停止01:增计数模式:定时器重复从0计数到TAxCCR010:连续计数模式:定时器重复从0计数到0FFFFh11:增\减计数模式:定时器重复从0计数到TAxCCR0,再减计算到02)特点如上。

定时周期取决于所选择的时钟,周期为计数最大值除以时钟频率。

最大定时周期:增计数模式:(TAxCCR0+1)/时钟源。

连续奇数:10000h/时钟源增减计数:(2*TAxCCR0+1)/时钟源(4)PWM 控制技术主要运用在哪些场合?如何根据指定的PWM定时周期和占空比来计算计数周期?电机驱动控制转速。

定时周期乘以占空比。

八、附上源代码#include <msp430f6638.h>void main(void){WDTCTL = WDTPW + WDTHOLD; //关闭看门狗UCSCTL6 &= ~XCAP_3; //配置内接电容值TA0CCR0 = 512-1; // PWM周期TA0CCTL1 = OUTMOD_7; // 复位/置位输出方式TA0CCR1 = 384; // 占空比384/512=75%TA0CCTL2 = OUTMOD_7; // 复位/置位输出方式TA0CCR2 = 128; // 占空比128/512=25%P1DIR |= BIT2 + BIT3; // P1.2和P1.3输出P1SEL |= BIT2 + BIT3; // P1.2和P1.3设置为第二功能:TA0.1和TA0.2 TA0CTL |= TASSEL_1 + MC_1; // ACLK, Timer_A增计数模式for (;;){_BIS_SR(LPM3_bits); // 进入LPM3_NOP();}}东南大学自动化学院实验报告课程名称: MCU技术及综合课程设计第 4 次实验实验名称:实验四:LED数码管的使用院(系):自动化学院专业:自动化姓名:杨淳元学号:08012131实验室:实验组别:同组人员:实验时间:2015年5月7日评定成绩:审阅教师:目录一、实验目的和要求 (13)二、实验原理 (13)三、实验方案与实验步骤 (17)四、实验设备与器材配置 (17)五、实验记录 (17)七、思考题或讨论题 (18)八、附上源代码 (18)一、实验目的和要求1)实验目的(1)了解TM1638 芯片工作原理与使用方法;(2)掌握LED 数码管的动态显示控制。

2)实验要求通过MSP430F6638 端口控制TM1638芯片以实现LED 数码管显示,例如用数码管显示自己八位学号。

二、实验原理(1)TM1638控制芯片TM1638 是带键盘扫描接口的LED驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。

主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。

TM1638 原理图如4-1所示,其中SEG_DIO,SEG_CLK,SEG_STB 与MSP430 芯片中P3.5,P3.4,P3.2 三个IO 口相连,仅占用3 个端口即可完成数据的输入输出,大大节约单片机的IO 口和开发板的空间,降低了布线的难度。

TM1638与MSP 430 实验箱连接示意图如图4-1所示,实验开发板LED数码管对应关系见图4-2。

图4-1 MSP430 与TM1638连接示意图图4-2 实验开发板LED数码管对应关系图TM1638的各引脚定义如图4-3所示。

图4-3 TM1638各引脚定义(2)TM1638接收数据串行数据传输格式:读取和接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)时序如图4-4所示。

图4-4 TM1638数据接收时序图以下写数据代码仅作为参考。

(更多关于TM1638的程序请参考给出的TM1638.h和TM1638.c两个文件以及芯片说明书)void TM1638_Write(unsigned char DA TA) //写数据函数{unsigned char i;DIO_OUT; //将DIO配置为输出状态for(i=0;i<8;i++){CLK_low;if(DA TA & 0x01){DIO_high;}else{DIO_low;}CLK_high;DATA>>=1; //数据左移一位}}(3)LED数码管显示图4-5 共阴极数码管连接图图4-5给出一个共阴数码管的连接示意图,如果让该数码管显示“0”,那你需要在GRID1 为低电平的时候让SEG1,SEG2,SEG3,SEG4,SEG5,SEG6 为高电平,SEG7 为低电平,即在00H 地址单元里面写数据3FH 就可以让数码管显示“0”。

共阴极LED数码管编码如表4-1所示。

表4-1共阴极LED数码管编码表(4)开发板上LED地址开发板共有8个LED 数码管,从左至右其地址分别为:08h, 0ah,0ch,0eh,00h,02h,04h,06h。

例如:const uint8_t Disp[8] = {0, 8, 0, 1, 2, 1, 4, 0}; //要显示的学号const uint8_t Num[16] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71}; //段码const uint8_t Addr[8] = {08h, 0ah, 0ch, 0eh, 00h, 02h, 04h, 06h}; //地址Write DATA(Addr[0], Num[Disp[0]]); //最左边的数码管显示第一位学号(5)ACLK设置初始化时,需要设置ACLK引脚输出,即P1DIR |= BIT0;P1SEL |= BIT0;三、实验方案与实验步骤四、实验设备与器材配置MSP430F6638,数据线,电脑。

相关文档
最新文档