《Matlab神经网络30个案例分析》RBF网络的回归-非线性回归的实现
MATLAB 神经网络RBF网络的回归--非线性函数回归的实现
![MATLAB 神经网络RBF网络的回归--非线性函数回归的实现](https://img.taocdn.com/s3/m/a8543bf352d380eb63946d1a.png)
清空环境变量产生输入输出数据设置步长网络建立和训练网络建立输入为[x1;x2],输出为F。
Spread使用默认。
Warning: Rank deficient, rank = 21, tol = 6.683543e-14. net =Neural Networkname: 'Radial Basis Network, Exact'efficiency: .cacheDelayedInputs, .flattenTime, .memoryReductionuserdata: (your custom info)dimensions:numInputs: 1numLayers: 2numOutputs: 1numInputDelays: 0numLayerDelays: 0numFeedbackDelays: 0numWeightElements: 1205sampleTime: 1connections:biasConnect: [1; 1]inputConnect: [1; 0]layerConnect: [0 0; 1 0]outputConnect: [0 1]subobjects:inputs: {1x1 cell array of 1 input}layers: {2x1 cell array of 2 layers}outputs: {1x2 cell array of 1 output}biases: {2x1 cell array of 2 biases}inputWeights: {2x1 cell array of 1 weight}layerWeights: {2x2 cell array of 1 weight}functions:adaptFcn: (none)adaptParam: (none)derivFcn: 'defaultderiv'divideFcn: (none)divideParam: (none)divideMode: 'sample'initFcn: 'initlay'performFcn: 'mse'performParam: .regularization, .normalization plotFcns: {}plotParams: {1x0 cell array of 0 params}trainFcn: (none)trainParam: (none)weight and bias values:IW: {2x1 cell} containing 1 input weight matrix LW: {2x2 cell} containing 1 layer weight matrix b: {2x1 cell} containing 2 bias vectorsmethods:adapt: Learn while in continuous useconfigure: Configure inputs & outputsgensim: Generate Simulink modelinit: Initialize weights & biasesperform: Calculate performancesim: Evaluate network outputs given inputstrain: Train network with examplesview: View diagramunconfigure: Unconfigure inputs & outputs网络的效果验证。
研究生必备的人工神经网络电子书汇总(31本)
![研究生必备的人工神经网络电子书汇总(31本)](https://img.taocdn.com/s3/m/0d81c819b7360b4c2e3f647f.png)
研究生必备的人工神经网络电子书汇总(31本)这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我QQ:415295747,或者登录我的博客/u/17236977421.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别5 译者序6 前9 致谢10 作者简介11 目录19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战27 第2章神经网络基础和线性数据分析模型72 第3章用于非线性模式识别的神经网络105 第4章神经网对非线性模式的学习166 第5章从数据中抽取可靠模式的神经网络模型的实现205 第6章数据探测、维数约简和特征提取235 第7章使用贝叶斯统计的神经网络模型的不确定性评估276 第8章应用自组织映射的方法发现数据中的未知聚类359 第9章神经网络在时间序列预测中的应用458 附录2.MATLB 神经网络30个案例分析第1章BP神经网络的数据分类——语音特征信号分类23 第2章BP神经网络的非线性系统建模——非线性函数拟合33 第3章遗传算法优化BP神经网络——非线性函数拟合48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模66 第6章PID神经元网络解耦控制算法——多变量系统控制77 第7章RBF网络的回归——非线性函数回归的实现85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测93 第9章离散Hopfield神经网络的联想记忆——数字识别102 第10章离散Hopfield神经网络的分类——高校科研能力评价112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算124 第12章SVM的数据分类预测——意大利葡萄酒种类识别134 第13章SVM的参数优化——如何更好的提升分类器的性能145 第14章SVM的回归预测分析——上证指数开盘指数预测153 第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测165 第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测171 第17章SOM神经网络的数据分类——柴油机故障诊断182 第18章Elman神经网络的数据预测——电力负荷预测模型研究188 第19章概率神经网络的分类预测——基于PNN的变压器故障诊断195 第20章神经网络变量筛选——基于BP的神经网络变量筛选200 第21章LVQ神经网络的分类——乳腺肿瘤诊断210 第22章LVQ神经网络的预测——人脸朝向识别220 第23章小波神经网络的时间序列预测——短时交通流量预测230 第24章模糊神经网络的预测算法——嘉陵江水质评价241 第25章广义神经网络的聚类算法——网络入侵聚类248 第26章粒子群优化算法的寻优算法——非线性函数极值寻优255 第27章遗传算法优化计算——建模自变量降维270 第28章基于灰色神经网络的预测算法研究——订单需求预测280 第29章基于Kohonen网络的聚类算法——网络入侵聚类289 第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类2.MATLAB 神经网络仿真与应用章节信息7 目录15 第1章神经网络概述38 第2章感知神经网络64 第3章自组织竞争神经网络106 第4章BP神经网络143 第5章线性神经网络171 第6章径向基函数神经网络196 第7章反馈神经网络及MA TLAB实现228 第8章神经网络预测与控制273 第9章神经网络优化及故障诊断302 第10章图形用户界面设计334 参考文献4.混合神经网络技术7 目录11 第1章绪论26 第2章基础知识43 第3章BP神经网络70 第4章RBF神经网络84 第5章Hopfield神经网络96 第6章随机神经网络114 第7章遗传神经网络158 第8章粒子群神经网络193 第9章模糊神经网络244 第lO章混沌神经网络293 第11章小波神经网络331 第12章神经网络集成356 附录5.神经网络控制(第三版)7 目录13 第1章绪19 第2章神经网络理论基础63 第3章基于神经网络的系统辨识101 第4章神经网络控制142 第5章遗传算法与神经控制179 附录203 参考文献6.脉冲耦合神经网络与数字图像处理丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 数字图像处理出版者:科学出版社ISBN:978-7-03-022389-0出版地:北京出版日期:200807页数:3047 《智能科学技术著作丛书》序9 前13 目录21 第1章脉冲耦合神经网络50 第2章图像滤波及脉冲噪声滤波器77 第3章脉冲耦合神经网络在图像分割中的应用142 第4章脉冲耦合神经网络与图像编码185 第5章脉冲耦合神经网络与图像增强195 第6章脉冲耦合神经网络与图像融合210 第7章脉冲耦合神经网络与形态学245 第8章脉冲耦合神经网络在特征提取中的应用278 第9章脉冲耦合神经网络与数字图像签名技术292 第10章脉冲耦合神经网络与组合决策优化306 第11章脉冲耦合神经网络和小波变换322 参考文献7.混沌系统的模糊神经网络控制理论与方法主要责任者:谭文; 王耀南主题词:混沌学; 应用; 模糊控制; 神经网络出版者:科学出版社ISBN:978-7-03-021258-0出版地:北京出版日期:200805页数:2364 内容简介5 前7 目录13 第1章绪论37 第2章模糊神经网络控制理论基础70 第3章神经网络在混沌控制中的作用83 第4章基于径向基神经网络的非线性混沌控制99 第5章超混沌系统的模糊滑模控制111 第6章不确定混沌系统的模糊自适应控制120 第7章模糊神经网络在混沌时间序列预测中的应用134 第8章混沌系统的混合遗传神经网络控制150 第9章不确定混沌系统的模糊神经网络自适应控制165 第10章基于动态神经网络的混沌系统控制200 第11章基于线性矩阵不等式方法的混沌系统模糊控制223 第12章基于递归神经网络的不确定混沌系统同步245 结束语8. 智能预测控制及其MATLB 实现(第2版)丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:人工智能; 预测控制; 计算机辅助计算; 软件包出版者:电子工业出版社ISBN:978-7-121-10147-2出版地:北京出版日期:201001页数:3364 内容简介5 前7 目录13 第一篇神经网络控制及其MA TLAB实现13 第1章神经网络控制理论87 第2章MATLAB神经网络工具箱函数160 第3章基于Simulink的神经网络控制系统175 第二篇模糊逻辑控制及其MATLAB实现175 第4章模糊逻辑控制理论208 第5章MA TLAB模糊逻辑工具箱函数237 第6章模糊神经和模糊聚类及其MA TLAB实现267 第三篇模型预测控制及其MATLAB实现267 第7章模型预测控制理论281 第8章MA TLAB预测控制工具箱函数320 第9章隐式广义预测自校正控制及其MA TLAB实现334 附录A 隐式广义预测自校正控制仿真程序清单341 附录B MA TLAB函数一览表347 附录C MA TLAB函数分类索引349 参考文献9. 基于神经网络的优化设计及应用主要责任者:孙虎儿出版者:国防工业出版社ISBN:978-7-118-06282-3出版地:北京出版日期:200905页数:111目录11 第1章绪论11 1.1 优化设计发展概况20 1.2 信号处理的主要方法22 1.3 正交设计方法25 1.4 基于神经网络的立体正交优化设计概述28 第一篇基拙理论篇28 第2章基于小波变换的信号处理28 2.1 小波变换的源起与发展概述30 2.2 小波分析基础34 2.3 小波分析的工程解释35 2.4 基于小波分析的信号处理38 第3章神经网络结构的确定38 3.1 神经网络综论42 3.2 神经网络的基本原理47 3.3 人工神经网络的建模53 3.4 前馈型神经网络57 第4章正交设计法57 4.1 正交设计法的基本内容60 4.2 正交设计法的基本内容60 4.3 有交互作用的正交设计法63 4.4 方差分析法67 第二篇创新篇67 第5章立体正交表67 5.1 建立立体正交表70 5.2 立体正交表的基本性质71 5.3 立体正交试验的误差分析75 第6章立体正交优化设计75 6.1 立体正交优化设计概述77 6.2 立体正交优化设计的建模基础78 6.3 立体正交优化设计的特点79 6.4 立体正交设计的步骤及实现85 第三篇实践篇85 第7章液压振动筛参数优化设计与试验85 7.1 振动筛基本原理89 7.2 试验台设计91 7.3 模拟试验101 7.4 液压振动筛参数的立体正交优化设计108 第8章液压激振压路机的液压振动系统优化108 8.1 液压激振压路机基本原理110 8.2 液压振动轮的模型试验117 参考文献10.神经网络稳定性理论主要责任者:钟守铭; 刘碧森; 王晓梅; 范小明主题词:人工神经网络; 运动稳定性理论; 高等学校; 教材出版者:科学出版社ISBN:978-7-03-02116-2出版地:北京出版日期:200806页数:289内容简介5 前7 目录11 第1章绪论73 第2章Hopfield型神经网络的稳定性97 第3章细胞神经网络的稳定性150 第4章二阶神经网络的稳定性212 第5章随机神经网络的稳定性243 第6章神经网络的应用291 参考文献11. 神经模糊控制理论及应用丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:神经网络; 应用; 模糊控制出版者:电子工业出版社ISBN:978-7-121-07537-7出版地:北京出版日期:200901页数:3326 目录10 第一篇神经网络理论及其MA TLAB实现12 第1章神经网络理论77 第2章MATLAB神经网络工具箱191 第3章神经网络控制系统218 第二篇模糊逻辑理论及其MATLAB实现220 第4章模糊逻辑理论258 第5章MA TLAB模糊逻辑工具箱295 第6章模糊神经和模糊聚类及其MA TLAB实现327 附录A MA TLAB程序清单334 附录B MA TLAB函数一览表340 附录C MA TLAB函数分类索引342 参考文献12.时滞递归神经网络主要责任者:王林山主题词:时滞; 递归论; 神经网络出版者:科学出版社ISBN:978-7-03-020533-9出版地:北京出版日期:200804页数:254出版说明9 前言13 目录15 第1章概述29 第2章几类递归神经网络模型44 第3章时滞局域递归神经网络的动力行为116 第4章时滞静态递归神经网络的动力行为154 第5章时滞反应扩散递归神经网络的动力行为214 第6章时滞反应扩散方程的吸引子与波动方程核截面的Hausdorff维数估计244 第7章Ляпунов定理的推广与矩阵微分方程的渐近行为研究265 索引13. 神经网络实用教程丛书题名:普通高等教育“十一五”规划教材主要责任者:张良均; 曹晶; 蒋世忠主题词:人工神经元网络; 高等学校; 教材出版者:机械工业出版社ISBN:978-7-111-23178-3出版地:北京出版日期:200802页数:1840001 7 目录0002 5 前言0003 11 第1章人工神经网络概述0004 19 第2章实用神经网络模型与学习算法0005 83 第3章神经网络优化方法0006 98 第4章nnToolKit神经网络工具包0007 135 第5章MA TLAB混合编程技术0008 175 第6章神经网络混合编程案例0009 181 附录2NDN神经网络建模仿真工具0010 194 参考文献14.细胞神经网络动力学主要责任者:黄立宏; 李雪梅主题词:神经网络; 细胞动力学; 生物数学出版者:科学出版社ISBN:978-7-03-018109-1出版地:北京出版日期:200704页数:3334 内容简介5 前7 目录9 第一章细胞神经网络的模型及基本概念30 第二章基本理论60 第三章细胞神经网络的完全稳定性118 第四章细胞神经网络的全局渐近稳定性和指数稳定性176 第五章细胞神经网络的周期解与概周期解242 第六章细胞神经网络的动力学复杂性285 第七章一维细胞神经网络的动力学性质322 参考文献15. 人工神经网络基础丛书题名:研究生用教材主要责任者:丁士圻; 郭丽华主题词:人工神经元网络出版者:哈尔滨工程大学出版社ISBN:978-7-81133-206-3出版地:哈尔滨出版日期:200803页数:2084 内容简介5 前7 目录9 第1章绪论44 第2章前向多层网络86 第3章Hopfield网络110 第4章波尔兹曼机(BM)网络简介131 第5章自组织特征映射网络(SOFM)163 第6章ART网络197 第7章人工神经网络的软件实践和仿真15.智能控制理论及应用丛书题名:国家精品课程教材主要责任者:师黎; 陈铁军; 等主题词:智能控制出版者:清华大学出版社ISBN:978-7-302-16157-8出版地:北京出版日期:200904页数:408目录17 第1章绪论30 第2章模糊控制91 第3章模糊建模和模糊辨识118 第4章神经网络控制227 第5章模糊神经网络259 第6章专家系统301 第7章遗传算法333 第8章蚁群算法351 第9章DNA计算与基于DNA的软计算389 第10章其他智能控制16. 人工神经网络及其融合应用技术∙丛书题名:智能科学技术著作丛书∙主要责任者:钟珞 ; 饶文碧 ; 邹承明∙主题词:人工神经元网络 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-018325-5∙出版地:北京∙出版日期:200701∙页数:1607 目录13 第1章绪论24 第2章前馈型神经网络47 第3章反馈型神经网络58 第4章自组织型神经网络72 第5章量子神经网络81 第6章神经网络与遗传算法103 第7章神经网络与灰色系统123 第8章神经网络与专家系统139 第9章模糊神经网络159 参考文献164 附录Matlab简介17.智能技术及其应用:邵世煌教授论文集∙主要责任者:丁永生 ; 应浩 ; 等∙主题词:人工智能 ; 文集∙出版者:科学出版社∙ISBN:978-7-03-023230-4∙出版地:北京∙出版日期:200902∙页数:573目录15 治学之路,开拓之道117 解析模糊控制理论:模糊控制系统的结构和稳定性分析127 不同模糊逻辑下模糊控制器的解析结构134 一个基于“类神经元”模型的智能控制系统及其在柔性臂上的应用研究142 交通系统的模糊控制及其神经网络实现149 采用遗传算法学习的神经网络控制器164 一种采用增强式学习的模糊控制系统研究169 基因算法及其在最优搜索上的应用191 DNA计算与软计算199 采用DNA遗传算法优化设计的TS模糊控制系统206 DNA计算研究的现状与展望223 混沌系统的一种自学习模糊控制228 用遗传算法引导混沌轨道405 模糊环境的表示及机器人轨迹规划409 多变地形下机器人路径规划415 一个环境知识的自学习方法444 含有模糊和随机参数的混合机会约束规划模型469 基于规则的模糊离散事件系统建模与控制研究491 基于最优HANKEL范数近似的线性相位IIR滤波器设计507 自适应逆控制的异步电机变频调速系统研究514 带有神经网络估计器的模糊直接转矩控制551 基于移动Agent的数字水印跟踪系统的设计和实现573 采用元胞自动机机理的针织电脑编织系统591 语词计算的广义模糊约束及其传播研究598 后记18.人工神经网络原理及应用∙丛书题名:现代计算机科学技术精品教材∙主要责任者:朱大奇 ; 史慧∙主题词:人工神经元网络∙出版者:科学出版社∙ISBN:7-03-016570-5∙出版地:北京∙出版日期:200603∙页数:218目录12 第1章人工神经网络的基础知识44 第2章BP误差反传神经网络76 第3章Hopfield反馈神经网络104 第4章BAM双向联想记忆神经网络117 第5章CMAC小脑神经网络139 第6章RBF径向基函数神经网络155 第7章SOM自组织特征映射神经网络175 第8章CPN对偶传播神经网络190 第9章ART自适应谐振理论210 第10章量子神经网络19.软计算及其应用要责任者:温显斌; 张桦; 张颖等主题词:电子计算机; 计算方法出版者:科学出版社ISBN:978-7-03-023427-8出版地:北京出版日期:200902页数:189前7 目录11 第1章绪论24 第2章模拟退火算法45 第3章人工神经网络93 第4章遗传算法138 第5章支持向量机162 第6章模糊计算20计算智能与科学配方∙主要责任者:冯天瑾 ; 丁香乾∙其他责任者:杨宁 ; 马琳涛∙主题词:人工智能 ; 神经网络 ; 计算 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-020603-9∙出版地:北京∙出版日期:200801∙页数:272前10 目录16 第一章绪论38 第二章产品配方与感觉品质评估65 第三章神经网络与感觉评估99 第四章知识发现与复杂相关性分析154 第五章模式识别与原料分类187 第六章支持向量机方法214 第七章进化计算配方寻优方法243 第八章计算智能的若干哲理256 第九章人机交互智能配方系统278 参考文献287 致谢21.计算智能与计算电磁学主要责任者:田雨波; 钱鉴主题词:人工智能; 神经网络; 计算; 研究出版者:科学出版社ISBN:978-7-03-021201-6出版地:北京出版日期:200804页数:2337 目录11 第1章绪论19 第2章遗传算法基本原理50 第3章遗传算法电磁应用98 第4章模糊理论基本原理122 第5章神经网络基本原理188 第6章神经网络电磁应用235 附录1 计算智能和计算电磁学相关网站236 附录2 相关程序22.脉冲耦合神经网络原理及其应用丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 理论; 应用出版者:科学出版社ISBN:7-03-016657-4出版地:北京出版日期:200604页数:1826 内容简介9 《智能科字技术著作丛书》库11 前15 目录19 第1章神经网络图像处理技术34 第2章PCNN模型及其应用概述49 第3章PCNN在图像滤波中的应用66 第4章PCNN在图像分割中的应用120 第5章PCNN在图像编码中的应用137 第6章PCNN与图像增强152 第7章PCNN与粗集理论、形态学和小波变换182 第8章PCNN的其他应用23.人工神经网络教程主要责任者:韩力群主题词:人工神经元网络; 研究生; 教材出版者:北京邮电大学出版社ISBN:7-5635-1367-1出版地:北京出版日期:200612页数:3307 序9 目录17 第1章绪论38 第2章人工神经网络建模基础63 第3章感知器神经网络100 第4章自组织竞争神经网络143 第5章径向基函数神经网络162 第6章反馈神经网络192 第7章小脑模型神经网络201 第8章支持向量机218 第9章遗传算法与神经网络进化237 第10章神经网络系统设计与软硬件实现267 第11章人工神经系统281 附录A 常用算法的MA TLAB程序298 附录B 常用神经网络源程序340 附录C 神经网络常用术语英汉对照344 参考文献24.神经网络专家系统主要责任者:冯定主题词:人工神经元网络出版者:科学出版社ISBN:7-03-017734-7出版地:北京出版日期:200609页数:3487 目录11 第1章从专家系统到神经网络专家系统22 第2章神经网络设计75 第3章数据的前后处理94 第4章神经网络专家系统中的模糊数146 第5章基于神经网络的知识表示199 第6章机器学习218 第7章基于神经网络的推理251 参考文献254 附录神经网络源程序25.神经网络新理论与方法主要责任者:张代远主题词:人工神经元网络出版者:清华大学出版社ISBN:7-302-13938-5出版地:北京出版日期:200611页数:1259 目录11 第1章概论17 第2章基本概念24 第3章实神经网络的代数算法44 第4章全局最小值分析51 第5章复数神经网络的代数算法61 第6章样条权函数神经网络及其学习算法124 第7章神经网络的统计灵敏度分析26.人工神经网络算法研究及应用主要责任者:田景文; 高美娟主题词:人工神经元网络; 计算方法; 研究出版者:北京理工大学出版社ISBN:7-5640-0786-9出版地:北京出版日期:200607页数:2837 目录9 第1章绪论32 第2章人工神经网络49 第3章改进遗传算法的径向基函数网络方法研究及应用95 第4章小波变换及小波神经网络方法研究及应用140 第5章模糊神经网络方法研究及应用189 第6章改进的模拟退火人工神经网络方法研究及应用235 第7章支持向量机方法研究及应用278 第8章结论281 参考文献27.神经计算与生长自组织网络主要责任者:程国建主题词:人工神经元网络; 计算; 自组织系统出版者:西安交通大学出版社ISBN:978-7-5605-2979-0出版地:西安出版日期:200810页数:242内容简介5 作者简介7 前17 目录23 第1章神经计算概述37 第2章人工神经网络的基本结构及其特性56 第3章神经感知器69 第4章自适应线性元件87 第5章多层前馈神经网络105 第6章径向基函数网络118 第7章古典生长型神经网络135 第8章生长型自组织神经网络158 第9章生长神经元结构及其变种182 第10章外生长型神经元结构206 第11章多生长神经元结构230 第12章双生长神经气网络252 参考文献28.神经计算原理丛书题名:计算机科学丛书主要责任者:(美)科斯塔尼克其他责任者:叶世伟; 王海娟主题词:突然南宫神经元网络; 计算出版者:机械工业出版社ISBN:978-7-111-20637-8出版地:北京出版日期:200705页数:491出版者的话7 专家指导委员会8 译者序9 前12 致谢13 重要符号和算符17 重要缩写词20 目录25 第一部分神经计算的基本概念和部分神经网络体系结构及其学习规则25 第1章神经计算概述40 第2章神经计算的基本概念95 第3章映射网络144 第4章自组织网络168 第5章递归网络和时间前馈网络201 第二部分神经计算的应用201 第6章用神经网络解决最优化问题238 第7章用神经网络解决矩阵代数问题275 第8章使用神经网络求解线性代数方程组318 第9章使用神经网络的统计方法372 第10章使用神经网络进行辨识、控制和枯计435 附录A 神经计算的数学基础497 主题索引29. 人工神经网络与模拟进化计算主要责任者:阎平凡主题词:人工神经元网络; 计算出版者:清华大学出版社ISBN:7-302-10663-0出版地:北京出版日期:200509页数:639出版说明9 前11 第一版前15 目录27 第1章绪论37 第2章前馈网络77 第3章径向基函数网络112 第4章学习理论与网络结构选择166 第5章核方法与支持向量机210 第6章自组织系统(Ⅰ)236 第7章自组织系统(Ⅱ)271 第8章自组织系统(Ⅲ)302 第9章动态信号与系统的处理361 第10章多神经网络集成386 第11章反馈网络与联想存储器424 第12章神经网络用于优化计算441 第13章神经网络中的动力学问题463 第14章误差函数与参数优化方法487 第15章贝叶斯方法505 第16章神经网络在信号处理中的应用552 第17章进化计算概论与进化策略575 第18章遗传算法及其理论分析596 第19章遗传算法的设计与实现619 第20章遗传算法在神经网络中的应用626 第21章遗传算法在作业调度中的应用636 第22章分布估计算法660 索引30.人工神经网络与盲信号处理主要责任者:杨行竣; 郑君里主题词:人工神经元网络; 信号处理; 应用; 人工神经元网络出版者:清华大学出版社ISBN:7-302-05880-6出版地:北京出版日期:200301页数:3997 目录11 第1章绪论33 第2章前向多层神经网络与递归神经网络123 第3章自组织神经网络163 第4章Hopfield神经网络244 第5章模糊神经网络311 第6章遗传算法及其在人工神经网络中的应用337 第7章盲信号处理31.人工神经网络理论、设计及应用(第二版)主要责任者:韩力群主题词:人工神经元网络; 高等学校; 教材出版者:化学工业出版社ISBN:978-7-5025-9523-4出版地:北京出版日期:2000709页数:2437 前9 目录15 1 绪论34 2 神经网络基础知识52 3 监督学习神经网络85 4 竞争学习神经网络121 5 组合学习神经网络133 6 反馈神经网络168 7 小脑模型神经网络178 8 基于数学原理的神经网络207 9 神经网络的系统设计与软件实现220 10 神经网络研究展望223 附录1 常用神经网络C语言源程序254 附录2 神经网络常用术语英汉对照256 参考文献。
matlab多元非线性回归及显着性分析(实例)
![matlab多元非线性回归及显着性分析(实例)](https://img.taocdn.com/s3/m/3d1a45d0c1c708a1284a4486.png)
matlab多元非线性回归及显著性分析给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。
模型:DA TA=... %DA TA前三列是影响因子,第四列为响应值[2 130 75 48.61;2 110 75 56.43;2 130 45 61.32;2 110 45 65.28;1 110 45 55.80;1 130 75 45.65;1 110 75 50.91;1 130 45 67.94;1.5 120 60 74.15;1.5 120 60 71.28;1.5 120 60 77.95;1.5 120 60 74.16;1.5 120 60 75.20;1.5 120 85 35.65;1.5 140 60 48.66;1.5 120 30 74.10;1.5 100 60 62.30;0.5 120 60 66.00;2.5 120 60 75.10];回归分析过程:(1)MA TLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)b0 = beta(1);b1 = beta(2);b2 = beta(3);b3 = beta(4);x0 = x(:,1);x1 = x(:,2);x2 = x(:,3);x3 = x(:,4);y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;(2)MA TLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_functionx=[1 2 130 75 48.61;1 2 110 75 56.43;1 2 130 45 61.32;1 2 110 45 65.28;1 1 110 45 55.80;1 1 130 75 45.65;1 1 110 75 50.91;1 1 130 45 67.94;1 1.5 120 60 74.15;1 1.5 120 60 71.28;1 1.5 120 60 77.95;1 1.5 120 60 74.16;1 1.5 120 60 75.20;1 1.5 120 85 35.65;1 1.5 140 60 48.66;1 1.5 120 30 74.10;1 1.5 100 60 62.30;1 0.5 120 60 66.00;1 2.5 120 60 75.10]; %%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5); %%指定响应变量yy和自变量xxbeta0=[0.5 0.4 0.7 0.5]; %%设置初始回归系数(如何确定初值?)[beta_fit,residual] = nlinfit(xx,yy,@user_function,beta0) %%非线性回归结果beta_fit =91.37571.2712-0.0009-0.0049residual =-4.2935-1.0248-9.2044-9.7957-15.4620-3.4398-2.73111.229311.18898.318914.988911.198912.2389-9.5678-9.3704-2.0767-4.83315.58147.0540即y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;。
MATLAB神经网络(7)RBF网络的回归——非线性函数回归的实现
![MATLAB神经网络(7)RBF网络的回归——非线性函数回归的实现](https://img.taocdn.com/s3/m/7f2e1ed34128915f804d2b160b4e767f5acf8077.png)
MATLAB 神经⽹络(7)RBF ⽹络的回归——⾮线性函数回归的实现7.1 案例背景7.1.1 RBF 神经⽹络概述径向基函数是多维空间插值的传统技术,RBF 神经⽹络属于前向神经⽹络类型,⽹络的结构与多层前向⽹络类似,是⼀种三层的前向⽹络。
第⼀层为输⼊层,由信号源结点组成;第⼆层为隐藏层,隐藏层节点数视所描述问题的需要⽽定,隐藏层中神经元的变换函数即径向基函数是对中⼼点径向对称且衰减的⾮负⾮线性函数,该函数是局部响应函数,⽽以前的前向⽹络变换函数都是全局响应的函数;第三层为输出层,它对输⼊模式作出响应。
RBF ⽹络的基本思想是:⽤RBF 作为隐单元的“基”构成隐藏层空间,隐含层对输⼊⽮量进⾏变换,将低维的模式输⼊数据变换到⾼维空间内,使得在低维空间内的线性不可分的问题在⾼维空间内线性可分。
RBF 神经⽹络结构简单、训练简洁⽽且学习收敛速度快,能够逼近任意⾮线性函数,因此已被⼴泛应⽤于时间序列分析、模式识别、⾮线性控制和图形处理等领域。
7.1.2 RBF 神经⽹络结构模型径向基神经⽹络的节点激活函数采⽤径向基函数,通常定义为空间任⼀点到某⼀中⼼之间的欧式距离的单调函数。
径向基神经⽹络的激活函数是以输⼊向量和权值向盘之间的距离||dist ||作为⾃变量的。
径向基神经⽹络的激活函数的⼀般表达式为R (||dist ||)=e −||dist ||2随着权值和输⼊向量之间距离的减少,⽹络输出是递增的,当输⼊向量和权值向量⼀致时,神经元输出为1。
图中的b 为阔值,⽤于调整神经元的灵敏度。
利⽤径向基神经元和线性神经元可以建⽴⼴义回归神经⽹络,此种神经⽹络适⽤于函数逼近⽅⾯的应⽤;径向基神经元和竞争神经元可以建⽴概率神经⽹络,此种神经⽹络适⽤于解决分类问题。
RBF 神经⽹络中,输⼊层仅仅起到传输信号的作⽤,与前⾯所讲述的神经⽹络相⽐较,输⼊层和隐含层之间可以看作连接权值为1的连接,输出层和隐含层所完成的任务是不同的,因⽽它们的学习策略也不相同。
MATLAB在RBF神经网络模型中的应用
![MATLAB在RBF神经网络模型中的应用](https://img.taocdn.com/s3/m/b53916c72cc58bd63186bd57.png)
MATLAB 在RBF 神经网络模型中的应用高宁1,张建中2(1.安徽农业大学信息与计算机学院,安徽合肥230036;2.安徽建筑工业学院电子与信息工程学院,安徽合肥230022)摘要:本文介绍了RBF 神经网络的基本原理及主要特点,并举例说明了基于MATLAB 神经网络工具箱建立RBF 神经网络模型及实现仿真的方法。
关键词:仿真;MATLAB 神经网络工具箱;RBF 神经网络中图分类号:TP399文献标识码:A文章编码:1672-6251(2009)02-0110-02Application of RBF neural network model based on MATLABGAO Ning 1,ZHANG Jan-zhong 2(1.College of Information and computer,Anhui Agriculture University,Hefei 230036,China;2.College of Electronics and Information Enginner,Anhui Architecture University,Hefei 230022,China)Abstract:In this paper,the principle and characteristic of RBF neural network are explained,and the method of building and simulating RBF neural network model is introduced.Key words:Simulation;MATLAB neural network toolbox;RBF neural network人工神经网络具有大规模并行处理能力、分布式存储能力、自适应(学习)能力等特征,神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法的缺陷,已广泛应用于模式识别、信号处理等各种应用领域。
matlab智能算法30个案例分析
![matlab智能算法30个案例分析](https://img.taocdn.com/s3/m/8b8c8923f4335a8102d276a20029bd64783e62b9.png)
matlab智能算法30个案例分析Matlab智能算法30个案例分析。
Matlab作为一种强大的数学软件,拥有丰富的算法库和强大的编程能力,能够实现各种复杂的智能算法。
本文将针对Matlab智能算法进行30个案例分析,帮助读者深入了解Matlab在智能算法领域的应用和实践。
1. 遗传算法。
遗传算法是一种模拟自然选择和遗传机制的优化算法,能够有效解决复杂的优化问题。
在Matlab中,可以利用遗传算法工具箱快速实现各种优化问题的求解,例如函数最小化、参数优化等。
2. 神经网络。
神经网络是一种模拟人脑神经元网络的计算模型,能够实现复杂的非线性映射和模式识别。
Matlab提供了丰富的神经网络工具箱,可以用于神经网络的建模、训练和应用,例如分类、回归、聚类等任务。
3. 模糊逻辑。
模糊逻辑是一种处理不确定性和模糊信息的逻辑推理方法,能够有效处理模糊规则和模糊数据。
Matlab中的模糊逻辑工具箱提供了丰富的模糊推理方法和工具,可以用于模糊控制、模糊识别等领域。
4. 粒子群算法。
粒子群算法是一种模拟鸟群觅食行为的优化算法,能够有效处理多维优化问题。
在Matlab中,可以利用粒子群算法工具箱快速实现各种优化问题的求解,例如函数最小化、参数优化等。
5. 蚁群算法。
蚁群算法是一种模拟蚂蚁觅食行为的优化算法,能够有效处理离散优化问题和组合优化问题。
Matlab中的蚁群算法工具箱提供了丰富的蚁群优化方法和工具,可以用于解决各种组合优化问题。
6. 遗传规划算法。
遗传规划算法是一种结合遗传算法和规划算法的优化方法,能够有效处理复杂的规划问题。
在Matlab中,可以利用遗传规划算法工具箱快速实现各种规划问题的求解,例如路径规划、资源分配等。
7. 人工免疫算法。
人工免疫算法是一种模拟免疫系统的优化算法,能够有效处理多峰优化问题和动态优化问题。
在Matlab中,可以利用人工免疫算法工具箱快速实现各种复杂的优化问题的求解。
8. 蜂群算法。
应用matlab进行非线性回归分析
![应用matlab进行非线性回归分析](https://img.taocdn.com/s3/m/2f28b2fe846a561252d380eb6294dd88d0d23d77.png)
应用MATLAB进行非线性回归分析摘要早在十九世纪,英国生物学家兼统计学家高尔顿在研究父与子身高的遗传问题时,发现子代的平均高度又向中心回归大的意思,使得一段时间内人的身高相对稳定。
之后回归分析的思想渗透到了数理统计的其他分支中。
随着计算机的发展,各种统计软件包的出现,回归分析的应用就越来越广泛。
回归分析处理的是变量与变量间的关系。
有时,回归函数不是自变量的线性函数,但通过变换可以将之化为线性函数,从而利用一元线性回归对其进行分析,这样的问题是非线性回归问题。
下面的第一题:炼钢厂出钢水时用的钢包,在使用过程中由于钢水及炉渣对耐火材料的侵蚀,使其容积不断增大。
要找出钢包的容积用盛满钢水时的质量与相应的实验次数的定量关系表达式,就要用到一元非线性回归分析方法。
首先我们要对数据进行分析,描出数据的散点图,判断两个变量之间可能的函数关系,对题中的非线性函数,参数估计是最常用的“线性化方法”,即通过某种变换,将方程化为一元线性方程的形式,接着我们就要对得到的一些曲线回归方程进行选择,找出到底哪一个才是更好一点的。
此时我们通常可采用两个指标进行选择,第一个是决定系数,第二个是剩余标准差。
进而就得到了我们想要的定量关系表达式。
第二题:给出了某地区1971—2000年的人口数据,对该地区的人口变化进行曲线拟合。
也用到了一元非线性回归的方法。
首先我们也要对数据进行分析,描出数据的散点图,然后用MATLAB编程进行回归分析拟合计算输出利用Logistic模型拟合曲线。
关键词:参数估计,Logistic模型,MATLAB正文一、一元非线性回归分析的求解思路:•求解函数类型并检验。
•求解未知参数。
可化曲线回归为直线回归,用最小二乘法求解;可化曲线回归为多项式回归。
二、回归曲线函数类型的选取和检验1、直接判断法2、作图观察法,与典型曲线比较,确定其属于何种类型,然后检验。
3、直接检验法(适应于待求参数不多的情况)4、表差法(适应于多想式回归,含有常数项多于两个的情况)三、化曲线回归为直线回归问题用直线检验法或表差法检验的曲线回归方程都可以通过变量代换转化为直线回归方程,利用线性回归分析方法可求得相应的参数估计值。
如何使用Matlab进行线性回归与非线性回归
![如何使用Matlab进行线性回归与非线性回归](https://img.taocdn.com/s3/m/c8df4a347dd184254b35eefdc8d376eeafaa1753.png)
如何使用Matlab进行线性回归与非线性回归使用Matlab进行线性回归与非线性回归简介:线性回归和非线性回归是统计分析中常用的两种回归模型。
线性回归假设自变量与因变量之间存在线性关系,而非线性回归则假设二者之间存在非线性关系。
本文将介绍如何使用Matlab进行线性回归和非线性回归分析,并分析其应用领域和优缺点。
一、线性回归分析线性回归是一种最基本的回归分析方法,广泛应用于统计学、经济学、金融学等领域。
在Matlab中,可以使用fitlm函数进行线性回归分析。
回归模型的基本形式如下所示:Y = β0 + β1X1 + β2X2 + ... + ε其中Y是因变量,X1,X2等是自变量,β0,β1,β2等是回归系数,ε是误差项。
线性回归模型的参数估计可以采用最小二乘法。
在Matlab中,可以使用fitlm 函数进行参数估计和显著性检验。
显著性检验可以帮助我们确定回归系数的是否显著不等于零,从而判断自变量对因变量的影响是否显著。
二、非线性回归分析在某些情况下,变量之间的关系不是线性的,而是呈现出曲线的形式。
这时,我们需要使用非线性回归模型进行分析。
在Matlab中,可以使用cftool函数进行非线性回归分析。
cftool是一个交互式的拟合工具箱,通过界面操作可以方便地进行曲线拟合。
用户可以选择不同的拟合模型,并根据数据点进行拟合。
cftool提供了各种常见的非线性回归模型,如指数模型、幂函数模型、对数模型等。
用户可以根据实际需求选择合适的模型进行分析。
非线性回归模型的参数估计可以使用最小二乘法、最大似然估计等方法。
在Matlab的cftool中,可以直接进行参数估计,并生成相应的拟合曲线。
三、线性回归与非线性回归的应用领域线性回归和非线性回归分析在各个领域都有广泛的应用。
线性回归常用于预测、趋势分析、经济建模等方面。
非线性回归则更适用于描述非线性关系的数据,常用于生物医学、环境科学、物理学等领域。
以医学领域为例,线性回归可以用于预测患者的生存时间、评估药物的剂量-效应关系等。
MATLAB程序设计 第6章 回归分析和方差分析
![MATLAB程序设计 第6章 回归分析和方差分析](https://img.taocdn.com/s3/m/9e1cfd5c591b6bd97f192279168884868662b81d.png)
参数估计和假设检验
(1)区间估计 ❖例:有一大批糖果,现从中随机地取16袋,称得质量(单位:g)如下: 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496
参数估计和假设检验
❖计算的MATLAB程序如下:
x0 = [506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496]; x0 = x0( : ); alpha = 0.05; mu = mean( x0); sig = std( x0 ); n =length(x0 ); t =[mu -sig/sqrt(n)*tinv(1-alpha /2,n-1),mu+ sig/sqrt(n)*tinv(1 -alpha/2,n-1)]; %以下命令ttest的返回值ci就直接给出了置信区间估计 [h,p,ci] =ttest(x0, mu,0.05)%通过假设检验也可求得置信区间
记
多元线性回归
(2)参数估计 理论模型中的参数 β0 ,β1,…,βm用最小二乘法估计,即应选取估计值
, j=0,1,…,m 时,误差平方和达到最小。
,使当
令
得
整理化为正规方程组
多元线性回归
正规方程组的矩阵形式为
,
当矩阵 X列满秩时,XT X 为可逆方阵,
将 代回原模型得到 y 的估计值,
而这组数据的拟合值为,
非线性回归
非线性回归是指因变量 y对回归系数 β1 ,…, βm (而不是自变量)是非线性的。 MATLAB统计工具箱中的命令 nlinfit、nlparci、nlpredci、nlintool,不仅可以给出 拟合的回归系数及其置信 区间,而且可以给出预测值及其置信区间等。
MATLAB-智能算法30个案例分析-终极版(带目录)
![MATLAB-智能算法30个案例分析-终极版(带目录)](https://img.taocdn.com/s3/m/b7fd2091bceb19e8b8f6ba47.png)
MATLAB 智能算法30个案例分析(终极版)1 基于遗传算法的TSP算法(王辉)2 基于遗传算法和非线性规划的函数寻优算法(史峰)3 基于遗传算法的BP神经网络优化算法(王辉)4 设菲尔德大学的MATLAB遗传算法工具箱(王辉)5 基于遗传算法的LQR控制优化算法(胡斐)6 遗传算法工具箱详解及应用(胡斐)7 多种群遗传算法的函数优化算法(王辉)8 基于量子遗传算法的函数寻优算法(王辉)9 多目标Pareto最优解搜索算法(胡斐)10 基于多目标Pareto的二维背包搜索算法(史峰)11 基于免疫算法的柔性车间调度算法(史峰)12 基于免疫算法的运输中心规划算法(史峰)13 基于粒子群算法的函数寻优算法(史峰)14 基于粒子群算法的PID控制优化算法(史峰)15 基于混合粒子群算法的TSP寻优算法(史峰)16 基于动态粒子群算法的动态环境寻优算法(史峰)17 粒子群算法工具箱(史峰)18 基于鱼群算法的函数寻优算法(王辉)19 基于模拟退火算法的TSP算法(王辉)20 基于遗传模拟退火算法的聚类算法(王辉)21 基于模拟退火算法的HEV能量管理策略参数优化(胡斐)22 蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊)23 基于蚁群算法的二维路径规划算法(史峰)24 基于蚁群算法的三维路径规划算法(史峰)25 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊)26 有导师学习神经网络的分类——鸢尾花种类识别(郁磊)27 无导师学习神经网络的分类——矿井突水水源判别(郁磊)28 支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊)29 支持向量机的回归拟合——混凝土抗压强度预测(郁磊)30 极限学习机的回归拟合及分类——对比实验研究(郁磊)智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我们的论坛问题,恨是因为智能算法感觉比较“玄乎”,很难理解,更难用它来解决问题。
MATLAB实例:BP神经网络用于回归任务
![MATLAB实例:BP神经网络用于回归任务](https://img.taocdn.com/s3/m/2c68ce7bf56527d3240c844769eae009581ba2c2.png)
MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。
通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。
因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。
神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。
BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。
如下图所⽰。
整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。
这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。
y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。
这⾥隐层节点数为20。
BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。
MATLAB智能算法30个案例分析
![MATLAB智能算法30个案例分析](https://img.taocdn.com/s3/m/2cd1ea7382c4bb4cf7ec4afe04a1b0717fd5b391.png)
MATLAB智能算法30个案例分析1.线性回归:通过拟合数据,预测未知的连续变量。
2.逻辑回归:基于已知输入和输出数据,通过对数斯蒂格回归模型,进行二元分类。
3.决策树:通过对已知数据进行分类预测,构建一棵决策树模型。
4.随机森林:通过构建多个决策树模型,进行分类和回归分析。
5.支持向量机:通过找到一个最优超平面,对数据进行二元分类。
6.高斯混合模型:基于多个高斯分布,对数据进行聚类分析。
7.K均值聚类:通过对数据进行分组,找到数据的簇结构。
8.主成分分析:找到最具有代表性的主成分,实现数据的降维和可视化。
9.独立成分分析:在多变量数据中,找到相互独立的成分。
10.关联规则挖掘:通过分析大规模数据集,找到数据项之间的关联规则。
11.朴素贝叶斯分类器:基于贝叶斯理论,进行分类和预测。
12.遗传算法:通过模拟进化过程,找到最优解。
13.粒子群算法:通过模拟粒子在空间中的移动,优化问题的解。
14.蚁群算法:通过模拟蚂蚁在空间中的行为,解决优化问题。
15.神经网络:通过多层神经元之间的连接,进行模式识别和预测。
16.卷积神经网络:通过卷积层和池化层,进行图像分类和目标检测。
17.循环神经网络:通过循环连接,进行时间序列预测和自然语言处理。
18.支持张量分解的非负矩阵分解:通过分解张量,进行数据降维和特征提取。
19.马尔科夫链:通过状态转移概率,对随机过程进行建模和分析。
20.K最近邻算法:通过找到与未知样本最接近的训练样本,进行分类和回归分析。
21.高斯过程回归:利用高斯过程进行回归分析和置信区间估计。
22.隐马尔科夫模型:通过观测序列推断隐藏状态序列。
23.时序聚类:通过对时间序列数据进行聚类分析,找到相似的模式。
24.大规模机器学习:通过将数据划分为小批量,进行机器学习模型的训练。
25.非线性最小二乘:通过最小化非线性函数的残差平方和,拟合数据。
26.分类集成学习:通过结合多个分类器的预测结果,提高分类准确率。
matlab30个案例分析-连续Hopfield神经网络的优化
![matlab30个案例分析-连续Hopfield神经网络的优化](https://img.taocdn.com/s3/m/ccbdf93d5a8102d276a22fec.png)
%% 连续Hopfield神经网络的优化—旅行商问题优化计算% function main%% 清空环境变量、定义全局变量clear allclcglobal A D%% 导入城市位置load city_location%% 计算相互城市间距离distance=dist(citys,citys');%% 初始化网络N=size(citys,1);A=200;D=100;U0=0.1;step=0.0001;delta=2*rand(N,N)-1;U=U0*log(N-1)+delta;V=(1+tansig(U/U0))/2;iter_num=10000;E=zeros(1,iter_num);%% 寻优迭代for k=1:iter_num% 动态方程计算dU=diff_u(V,distance);% 输入神经元状态更新U=U+dU*step;% 输出神经元状态更新V=(1+tansig(U/U0))/2;% 能量函数计算e=energy(V,distance);E(k)=e;end%% 判断路径有效性[rows,cols]=size(V);V1=zeros(rows,cols);[V_max,V_ind]=max(V);for j=1:colsV1(V_ind(j),j)=1;endC=sum(V1,1);R=sum(V1,2);flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));%% 结果显示% 计算初始路径长度sort_rand=randperm(N);citys_rand=citys(sort_rand,:);Length_init=dist(citys_rand(1,:),citys_rand(end,:)');for i=2:size(citys_rand,1)Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');end% 绘制初始路径figure(1)plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-') for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_rand(1,1),citys_rand(1,2),[' 起点' ])text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])title(['优化前路径(长度:' num2str(Length_init) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 计算最优路径长度[V1_max,V1_ind]=max(V1);citys_end=citys(V1_ind,:);Length_end=dist(citys_end(1,:),citys_end(end,:)');for i=2:size(citys_end,1)Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');enddisp('最优路径矩阵');V1% 绘制最优路径figure(2)plot([citys_end(:,1);citys_end(1,1)],...[citys_end(:,2);citys_end(1,2)],'o-')for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_end(1,1),citys_end(1,2),[' 起点' ])text(citys_end(end,1),citys_end(end,2),[' 终点' ])title(['优化后路径(长度:' num2str(Length_end) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 绘制能量函数变化曲线plot(1:iter_num,E);ylim([0 2000])title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);xlabel('迭代次数');ylabel('能量函数');elsedisp('寻优路径无效');end% %===========================================% function du=diff_u(V,d)% global A D% n=size(V,1);% sum_x=repmat(sum(V,2)-1,1,n);% sum_i=repmat(sum(V,1)-1,n,1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% du=-A*sum_x-A*sum_i-D*sum_d;% %==========================================% function E=energy(V,d)% global A D% n=size(V,1);% sum_x=sumsqr(sum(V,2)-1);% sum_i=sumsqr(sum(V,1)-1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% sum_d=sum(sum(V.*sum_d));% E=0.5*(A*sum_x+A*sum_i+D*sum_d);% % % % 计算dufunction du=diff_u(V,d)global A Dn=size(V,1);sum_x=repmat(sum(V,2)-1,1,n);sum_i=repmat(sum(V,1)-1,n,1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;du=-A*sum_x-A*sum_i-D*sum_d;% % % % % 计算能量函数function E=energy(V,d)global A Dn=size(V,1);sum_x=sumsqr(sum(V,2)-1);sum_i=sumsqr(sum(V,1)-1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;sum_d=sum(sum(V.*sum_d));E=0.5*(A*sum_x+A*sum_i+D*sum_d);。
基于BP神经网络和RBF网络的非线性函数逼近问题比较研究
![基于BP神经网络和RBF网络的非线性函数逼近问题比较研究](https://img.taocdn.com/s3/m/755cb757a8956bec0975e3be.png)
基于BP神经网络和RBF网络的非线性函数逼近问题比较研究丁德凯摘要:人脑是一个高度复杂的、非线性的和并行的计算机器,人脑可以组织神经系统结构和功能的基本单位,即神经元,以比今天已有的最快的计算机还要快很多倍的速度进行特定的计算,例如模式识别、发动机控制、感知等。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习,以及很强的非线性映射能力,所以它在函数(特别是非线性函数)逼近方面得到了广泛的应用。
BP神经网络和RBF神经网络,都是非线性多层前向网络,本文分别用BP(Back Propagation)网络和RBF(Radial Basis Function)网络对非线性函数f=sin(t)+cos(t)进行逼近,结果发现后者的学习速度更快,泛化能力更强,而前者的程序设计相对比较简单。
关键词:BP神经网络,RBF神经网络,函数逼近0 引言人工神经网络(Artificial Neural Networks,ANN)[1]是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的,且对输入信号有功能强大的反应和处理能力。
神经网络是由大量的处理单元(神经元)互相连接而成的网络。
为了模拟大脑的基本特性,在神经科学研究的基础上,提出了神经网络的模型。
但是,实际上神经网络并没有完全反映大脑的功能,只是对生物神经网络进行了某种抽象、简化和模拟。
神经网络的信息处理通过神经元的互相作用来实现,知识与信息的存储表现为网络元件互相分布式的物理联系。
神经网络的学习和识别取决于各种神经元连接权系数的动态演化过程。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
当前,它在许多领域有重要的作用。
例如,模式识别和图像处理;印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。
MATLAB 回归分析regress,nlinfit,stepwise函数
![MATLAB 回归分析regress,nlinfit,stepwise函数](https://img.taocdn.com/s3/m/4acfd205fe00bed5b9f3f90f76c66137ee064f62.png)
MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。
alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。
图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。
(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。
RBF神经网络:原理详解和MATLAB实现
![RBF神经网络:原理详解和MATLAB实现](https://img.taocdn.com/s3/m/32b10420be23482fb4da4ce1.png)
RBF神经网络:原理详解和MATLAB实现——2020年2月2日目录RBF神经网络:原理详解和MATLAB实现 (1)一、径向基函数RBF (2)定义(Radial basis function——一种距离) (2)如何理解径向基函数与神经网络? (2)应用 (3)二、RBF神经网络的基本思想(从函数到函数的映射) (3)三、RBF神经网络模型 (3)(一)RBF神经网络神经元结构 (3)(二)高斯核函数 (6)四、基于高斯核的RBF神经网络拓扑结构 (7)五、RBF网络的学习算法 (9)(一)算法需要求解的参数 (9)0.确定输入向量 (9)1.径向基函数的中心(隐含层中心点) (9)2.方差(sigma) (10)3.初始化隐含层至输出层的连接权值 (10)4.初始化宽度向量 (12)(二)计算隐含层第j 个神经元的输出值zj (12)(三)计算输出层神经元的输出 (13)(四)权重参数的迭代计算 (13)六、RBF神经网络算法的MATLAB实现 (14)七、RBF神经网络学习算法的范例 (15)(一)简例 (15)(二)预测汽油辛烷值 (15)八、参考资料 (19)一、径向基函数RBF定义(Radial basis function——一种距离)径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。
任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数。
标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。
在神经网络结构中,可以作为全连接层和ReLU层的主要函数。
如何理解径向基函数与神经网络?一些径向函数代表性的用到近似给定的函数,这种近似可以被解释成一个简单的神经网络。
径向基函数在支持向量机中也被用做核函数。
常见的径向基函数有:高斯函数,二次函数,逆二次函数等。
matlab 的rbf函数编程
![matlab 的rbf函数编程](https://img.taocdn.com/s3/m/686304e6b1717fd5360cba1aa8114431b90d8eb5.png)
matlab 的rbf函数编程在MATLAB中,实现RBF(径向基函数)网络的编程通常需要以下步骤:1. 导入数据,首先,你需要导入你的数据集。
可以使用MATLAB的内置函数如`csvread`或者`xlsread`来导入数据,或者直接创建一个数据矩阵。
2. 数据预处理,对于RBF网络,通常需要对数据进行标准化或归一化处理,以确保网络的训练和预测过程能够顺利进行。
3. 网络训练,使用MATLAB的神经网络工具箱(Neural Network Toolbox)中的函数,比如`newrb`(用于建立RBF网络)和`train`(用于训练网络),来训练RBF网络。
在训练之前,你需要确定RBF网络的结构,比如隐藏层节点的数量和RBF函数的类型。
4. 网络预测,训练完成后,可以使用训练好的RBF网络对新的数据进行预测。
使用`sim`函数来进行预测,传入训练好的网络和待预测的输入数据。
下面是一个简单的示例代码,用于在MATLAB中实现RBF网络的训练和预测:matlab.% 导入数据。
data = load('your_data_file.csv');% 数据预处理。
% 这里假设数据已经进行了合适的预处理。
% 定义RBF网络结构。
hiddenLayerSize = 10; % 设置隐藏层节点数量。
net = newrb(input, target, goal, spread); % 创建RBF网络。
% 网络训练。
net = train(net, input, target); % 训练RBF网络。
% 网络预测。
output = sim(net, input); % 使用训练好的网络进行预测。
在这个示例中,`input`是输入数据,`target`是对应的目标输出,`goal`是训练的目标性能,`spread`是RBF函数的扩展参数。
你需要根据你的数据和需求来调整这些参数。
需要注意的是,RBF网络的性能很大程度上取决于网络结构和参数的选择,因此在实际应用中需要进行一定的调参和验证工作。
matlab数学建模30个案例分析
![matlab数学建模30个案例分析](https://img.taocdn.com/s3/m/e9f3fd49c850ad02de804153.png)
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Contents 产 环 训练 ( 训练输 ,训练输 RBF 经 络 测试 RBF 络进 , 图 , 3维图 ) 络输
环
clc clear
产 ld 为
训练 数
( 训练输
,训练输
)
ld=400; % 产 2*ld 阵 x=rand(2,ld); % x转换 [-1.5 1.5] 之 x=(x-0.5)*1.5*2; % x 为x1 , x1=x(1,:); x2=x(2,:); 为x2.
neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons
file:///D|/Mydesktop/30
视频
关/MATLAB
经
络30
码+数
/
/
7/html/chapter7_2.html[2010/11/20 20:09:27]
7�RBF
络
归-
线
数
归
现பைடு நூலகம்
NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB,
= = = = = = = = = = = = = = = = = = = = = = =
0, MSE = 108.563 2, MSE = 106.612 3, MSE = 106.588 4, MSE = 105.692 5, MSE = 103.957 6, MSE = 103.901 7, MSE = 103.661 8, MSE = 99.4239 9, MSE = 99.3709 10, MSE = 98.4437 11, MSE = 98.4334 12, MSE = 97.0947 13, MSE = 97.0662 14, MSE = 97.0623 15, MSE = 96.9707 16, MSE = 96.5273 17, MSE = 89.0728 18, MSE = 83.7398 19, MSE = 82.6886 20, MSE = 73.5795 21, MSE = 68.2986 22, MSE = 64.3154 23, MSE = 56.6795
7�RBF
络
归-
线
数
归
现
7 :RBF
该 1: 2: 3: 4: 5: 为 驻 当当预 套 创 :
络
, 对该 书:« Matlab 视频, 视频 , 转载请 关 , 经 载
归问, 络30 («Matlab 们欢
线
问 » 经 络30 见,
数 归
套书
现
为:
/vbuy.html ») , 们 虑 加
% 计 络输 F值 F=20+x1.^2-10*cos(2*pi*x1)+x2.^2-10*cos(2*pi*x2);
RBF
经
络 经 络 spread 为 认值
approximate RBF
net=newrb(x,F);
NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB, NEWRB,
24, MSE = 56.2971 25, MSE = 48.7566 26, MSE = 47.2739 27, MSE = 45.9051 28, MSE = 45.0112 29, MSE = 42.8181 30, MSE = 41.491 31, MSE = 35.6978 32, MSE = 35.0401 33, MSE = 31.7462 34, MSE = 30.1603 35, MSE = 29.2863 36, MSE = 28.3875 37, MSE = 26.2179 38, MSE = 24.2333 39, MSE = 21.639 40, MSE = 20.144 41, MSE = 18.4123 42, MSE = 15.9317 43, MSE = 14.5087 44, MSE = 11.1312 45, MSE = 8.44281 46, MSE = 6.90717 47, MSE = 5.66637 48, MSE = 4.84694 49, MSE = 4.38789 50, MSE = 3.67744 51, MSE = 3.51838 52, MSE = 3.23929 53, MSE = 2.91933 54, MSE = 2.5525 55, MSE = 2.07774 56, MSE = 1.58034 57, MSE = 1.4921 58, MSE = 1.04437 59, MSE = 0.968894 60, MSE = 0.874836 61, MSE = 0.811536 62, MSE = 0.774263 63, MSE = 0.739684 64, MSE = 0.63243 65, MSE = 0.595342 66, MSE = 0.578419 67, MSE = 0.513412 68, MSE = 0.431057 69, MSE = 0.348383 70, MSE = 0.28326 71, MSE = 0.260364 72, MSE = 0.233631 73, MSE = 0.17438 74, MSE = 0.140672 75, MSE = 0.127232 76, MSE = 0.107695 77, MSE = 0.0939278 78, MSE = 0.0755751 79, MSE = 0.0680948 80, MSE = 0.0523434 81, MSE = 0.0433914 82, MSE = 0.0417353 83, MSE = 0.0358314 84, MSE = 0.0308747 85, MSE = 0.0227491 86, MSE = 0.0191109 87, MSE = 0.016148 88, MSE = 0.01186 89, MSE = 0.00995707 90, MSE = 0.00970474 91, MSE = 0.00692245 92, MSE = 0.00604538 93, MSE = 0.00536777 94, MSE = 0.0040162 95, MSE = 0.00339511 96, MSE = 0.00291372 97, MSE = 0.0025272 98, MSE = 0.002166 99, MSE = 0.0018282 100, MSE = 0.00159732 101, MSE = 0.00146625 102, MSE = 0.00127549 103, MSE = 0.00112714 104, MSE = 0.00061357 105, MSE = 0.000556239 106, MSE = 0.000511452 107, MSE = 0.00039547 108, MSE = 0.000414003 109, MSE = 0.000375354 110, MSE = 0.000372545 111, MSE = 0.000363626 112, MSE = 0.000362367 113, MSE = 0.0003299 114, MSE = 0.00032986 115, MSE = 0.000322453 116, MSE = 0.000318573 117, MSE = 0.000277645
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons