简述高层住宅楼筏板基础的设计

合集下载

高层建筑基础设计的基础形式

高层建筑基础设计的基础形式

高层建筑基础设计的基础形式在现代城市的天际线中,高层建筑如同一颗颗璀璨的明珠,展现着人类建筑技术的辉煌成就。

然而,要让这些高耸入云的建筑稳固矗立,基础设计至关重要。

基础是建筑物的根基,承载着整个建筑的重量,并将其传递到地下的土层或岩层中。

不同的基础形式适用于不同的地质条件和建筑要求,下面我们就来探讨一下高层建筑基础设计中常见的基础形式。

一、筏板基础筏板基础是一种大面积的平板式基础,就像一个巨大的筏子,将整个建筑物的荷载均匀地分布在地基上。

这种基础形式适用于地基承载力较弱、不均匀沉降要求较高的情况。

筏板基础的优点是能够有效地分散建筑物的荷载,减少不均匀沉降的风险,提高建筑物的整体稳定性。

同时,它的施工相对简单,能够适应较为复杂的地形和地下管线布置。

然而,筏板基础也存在一些不足之处。

由于其面积较大,混凝土用量较多,造价相对较高。

而且,在地下水位较高的地区,需要采取有效的防水措施,增加了施工的难度和成本。

二、箱型基础箱型基础是由钢筋混凝土底板、顶板和纵横交错的隔墙组成的一个封闭箱体。

它具有较大的刚度和整体性,能够有效地抵抗不均匀沉降和水平荷载。

箱型基础的优点在于其空间利用率高,可以作为地下室使用,增加建筑物的使用面积。

同时,其封闭的箱体结构能够提供良好的抗震性能,适用于地震区的高层建筑。

不过,箱型基础的施工工艺较为复杂,需要较高的技术水平和施工质量控制。

而且,由于其自身重量较大,对地基的承载力要求也较高。

三、桩基础桩基础是通过桩将建筑物的荷载传递到深层的坚硬土层或岩层中。

根据桩的施工方法和受力特点,可以分为灌注桩和预制桩。

灌注桩是在施工现场通过钻孔、灌注混凝土等工序形成的桩。

它能够适应各种复杂的地质条件,桩径和桩长可以根据实际需要进行调整。

预制桩则是在工厂或施工现场预先制作好,然后通过打入或压入的方式植入地基中。

预制桩的质量易于控制,施工速度较快。

桩基础的优点是能够提供较高的承载力,适用于地基承载力较弱、建筑物荷载较大的情况。

高层建筑结构筏板基础的设计方法之探讨

高层建筑结构筏板基础的设计方法之探讨

高层建筑结构筏板基础的设计方法之探讨摘要:文章分析高层建筑基础的类型及高层建筑基础的埋置深度需要考虑的因素,探讨高层建筑结构基础的设计方法,并以筏板基础为例,分析其设计方法及其构造要点。

关键词:建筑工程;高层建筑结构;筏板基础一、高层建筑结构基础设计的基本要求及内容基础设计是高层建筑结构的重要组成部分,它承托着上部结构的重量和外部作用力,并将其传到地基。

高层建筑结构基础的工程量大、造价高、消耗材料多,对建筑物施工工期影响也很大。

一般来说,9~16层民用高层建筑的地基基础所需工期占总工期的1/3左右,造价也占总造价的1/3左右。

因此,基础设计对高层建筑的经济技术指标有较大的影响。

在高层建筑结构基础设计中,应遵循以下的技术及质量要求:(1)基底的压力不超过地基承载力或桩基承载力;(2)基础总沉降量和差异沉降量控制在允许值范围内;(3)还要满足建筑物地下室部分的防水要求;(4)基础施工应避免和减轻对相邻建筑物的影响和干扰;(5)设计人员还要考虑综合经济技术指标,设计应考虑使用条件、施工条件和施工工期。

(一)高层建筑基础的类型高层建筑结构的基础设计,应综合考虑上部结构的类型、整体性和结构刚度、地基土条件、抗震设防要求、施工技术、周围建筑物和环境条件等各方面因素。

一般情况下,高层建筑宜优先选用整体性较好的箱形基础和筏板基础。

当层数少、高度不太高、地基情况较均匀时,可考虑采用交叉梁式基础。

高层建筑通常不宜采用独立柱基础。

当地基承载力不足、沉降量大时,可采用箱形基础、筏板基础与桩基础组合而成联合基础。

高层建筑直接建造在基岩上时,可考虑采用条形基础或单独基础。

裙房层数少、荷重轻、面积大,当不需要设置地下室时,可采用交叉梁基础和加拉梁的独立基础。

(二)高层建筑基础的埋置深度足够的埋置深度是保证高层建筑基础设计合理及安全的首要因素,因此,设计人员在确定埋置深度时,应综合地考虑建筑物的体型、高度、地基土质、抗震设防烈度等因素,充分满足抗滑移和抗倾覆要求。

高层住宅楼筏板基础的设计

高层住宅楼筏板基础的设计

高层住宅楼筏板基础的设计在现代城市的建设中,高层住宅楼如雨后春笋般拔地而起。

而作为支撑这些高楼大厦的重要基础结构,筏板基础的设计至关重要。

筏板基础具有整体性好、能有效调整不均匀沉降等优点,在高层住宅楼的建设中得到了广泛应用。

一、筏板基础的概念与特点筏板基础,简单来说,就是一块像筏子一样的钢筋混凝土板,将整个建筑物的底面积全部覆盖,把建筑物的荷载均匀地传递到地基上。

其主要特点包括:1、整体性好:筏板基础能够将上部结构的荷载均匀地分布到整个基础底面,有效地减少了不均匀沉降的发生。

2、稳定性高:由于基础面积大,对地基土的承载力要求相对较低,能够适应较软弱的地基条件。

3、抗渗性能强:对于地下水位较高的地区,筏板基础可以有效地抵抗地下水的渗透,保证建筑物的安全性。

二、高层住宅楼筏板基础设计的考虑因素在设计高层住宅楼的筏板基础时,需要综合考虑多个因素,以确保基础的安全性、经济性和合理性。

1、上部结构的荷载准确计算上部结构传递到基础的竖向荷载和水平荷载是设计的关键。

这包括建筑物的自重、使用活荷载、风荷载、地震作用等。

不同的荷载组合会对筏板基础的尺寸和配筋产生重要影响。

2、地质条件地质勘察报告提供的地基土的物理力学性质、承载力特征值、地下水位等信息是设计的基础。

根据地质条件,选择合适的基础持力层,并确定地基的处理方式。

3、沉降控制高层住宅楼由于高度较大,荷载较重,对沉降的要求较为严格。

设计时需要通过合理的基础尺寸和配筋,控制建筑物的沉降量和差异沉降,避免因不均匀沉降导致结构开裂和损坏。

4、抗浮设计在地下水位较高的地区,建筑物可能会受到地下水的浮力作用。

此时,需要进行抗浮设计,确保筏板基础能够抵抗地下水的浮力,保证建筑物的稳定性。

5、温度应力由于筏板基础的混凝土体积较大,在施工过程中会产生较大的温度应力。

设计时需要采取相应的措施,如设置后浇带、添加膨胀剂等,减少温度裂缝的产生。

三、筏板基础的设计计算1、地基承载力计算根据地质勘察报告提供的地基土参数,按照相关规范和公式,计算地基的承载力。

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计作者:杨曦来源:《装饰装修天地》2019年第07期摘; ; 要:本文简述了筏板基础的适用条件、技术特点、构造要求及内力计算等方面内容。

将理论公式与规范中的一些数据进行解读和整合,针对高层建筑的筏板基础设计做出简要分析。

关键词:筏板基础;构造要求;配筋率;受力分析1; 前言筏板基础以其成片覆盖于建筑物地基较大面积和完整的平面连续性为明显特点,它不仅易于满足软弱地基承载力的要求,减少地基的附加应力和不均匀沉降,增加建筑物的整体抗震性,所适应位于其上的工艺连续性作业和设备重新布置要求等。

有地下室或架空地板的筏基还具有一定的补偿性效应。

由于筏板平面面积较大,而厚度有限,造成它只具有有限的抗弯刚度。

无力调整过大的沉降差异。

由于它的连续性,在局部荷载下,即要有正弯矩钢筋,也要有负弯矩钢筋,还需有一定数量的构造钢筋,因此给的指标较高。

2; 构造要求按基础构造特点分,有等厚的平板式筏板基础以及沿纵横柱列方向的筏板顶面或底面加肋形成的梁板式筏板基础。

前者一般在荷载不太大,柱网较均匀且柱距较小的情况下采用。

平板式筏板基础的厚度不宜小于400mm,当柱荷载较大时,可将柱位下筏板局部加厚,梁板式筏板基础的板厚不得小于300mm,且不宜小于计算区段内最小板跨1/20,在一般情况下,筏板边缘伸出墙或柱外侧,对平板式筏基,其挑出长度从柱外皮算起不宜大于1000mm:对梁板式筏基,挑出长度从基础梁外皮算起,不宜大于1500mm,筏板的外挑部分可做成斜坡面,但边缘的最小厚度不小于200mm。

筏板受力钢筋的配置除应满足计算要求,纵、横两个方向的底部钢筋尚应有1/2~1/3贯通全跨,且其配筋率不应小于0.15%,顶部钢筋按计算配筋,全部连通。

3; 内力计算先按常规方法进行地基承载力验算。

为了避免基础发生太大的倾斜和改善基础受力状况,在决定筏板基础平面尺寸时,可以通过改变底板在四边的外挑长度未调整基底的形心位置,以使尽量减少基础所受的偏心力矩,当设计荷载为恒载与活载组合时,而无风载时,一般要求偏心距不超过基础宽度的1/60,有风载时为1/30,筏板的设计方法有按刚性的设计、按弹性板方法设计、按弹性地基梁设计等,以下仅就按刚性方法设计进行论述。

合理设计高层建筑基础筏板厚度

合理设计高层建筑基础筏板厚度

合理设计高层建筑基础筏板厚度在当今城市的天际线中,高层建筑如林立的巨人般矗立。

而这些高楼大厦的稳固性和安全性,很大程度上取决于其基础的设计,其中基础筏板的厚度设计更是至关重要。

基础筏板,作为高层建筑基础的重要组成部分,承担着将上部结构传来的巨大荷载均匀分散到地基中的关键任务。

如果筏板厚度设计不合理,就可能导致建筑物不均匀沉降、倾斜甚至倒塌等严重后果。

因此,合理设计高层建筑基础筏板厚度是一项极其重要的工作。

要设计出合理的筏板厚度,首先需要充分了解建筑物的上部结构特点和荷载情况。

上部结构的类型、高度、使用功能以及结构体系等因素都会对基础产生不同的荷载要求。

例如,高层住宅和商业写字楼的荷载分布就可能存在较大差异。

住宅通常以均匀分布的活荷载和恒荷载为主,而写字楼可能会因为局部的集中荷载(如大型设备、会议室等)而对基础产生特殊的要求。

同时,地质条件也是决定筏板厚度的关键因素之一。

不同的地质土层具有不同的承载力和压缩性。

如果地基土的承载力较高、压缩性较小,那么筏板厚度可以相对较薄;反之,如果地基土软弱、承载力低、压缩性大,就需要增加筏板厚度来提高基础的稳定性和抵抗变形的能力。

在实际工程中,地质勘察报告是了解地质条件的重要依据。

勘察人员会通过钻探、取样和试验等手段,获取土层的物理力学性质指标,为基础设计提供准确的数据支持。

此外,建筑物所在地区的抗震设防要求也会影响筏板厚度的设计。

在地震作用下,基础需要具备足够的刚度和整体性,以抵抗地震力的影响。

抗震规范通常会对基础的设计提出一些特殊要求,例如增加基础的埋深、提高基础的抗弯和抗剪能力等。

这些要求可能会导致筏板厚度的增加。

在计算筏板厚度时,需要运用到一系列的力学分析方法和设计理论。

常见的有弹性地基梁法、有限元法等。

弹性地基梁法是一种较为传统的计算方法,它将地基视为弹性体,通过求解梁的内力和变形来确定筏板的厚度。

有限元法则是一种更为精确的数值分析方法,它可以模拟地基和筏板的复杂受力状态,得到更为准确的结果。

高层建筑工程中筏板基础的设计方法

高层建筑工程中筏板基础的设计方法

高层建筑工程中筏板基础的设计方法摘要:在高层建筑工程设计过程中,基础选型是结构设计中非常重要的一个环节,对工程施工难度、工程施工造价、施工工期等均有比较大的影响。

筏板基础具有刚度大、埋设深度大、抗震性佳等优点,是高层建筑工程中常用的基础结构。

基于此,本文重点对高层建筑工程中伐板基础的设计方法分析和探讨。

关键词:高层建筑工程;筏板基础;设计方法在高层建筑设计过程中,建筑结构基础至关重要,在进行基础设计时,需要从技术和经济方面进行考虑。

当前,高层建筑地下部分主要用于停车场,因此在设计时不允许设置墙体过多,所以采用箱形基础就不合适。

而使用伐板基础不仅可以达到高层建筑地基承载要求,而且可以达到大空间要求。

施工比较简单,是一种比较理想的高层建筑基础结构形式,在高层建筑设计中应用广泛。

1确定高层建筑筏板基础的埋深和承载力当前,我国大型城市用地日益紧张,城市中高层建筑也比较密集,在确定高层建筑基础结构时,需要结合建筑的功能要求对建筑层高和层数进行确定,如此一来就可以确定出高层建筑的基础埋深,然后根据建筑场地土层特点和基础埋深对基础结构类型进行选择,并根据实际情况分析是否可以选用天然筏板基础。

对于地下水位比较高的地区或者需要布置一定埋设深,天然筏板基础或桩筏基础作为一种补偿性基础,在对地基基础结构进行确定时,主要采用下述两种方法:一是根据补偿性基础特点对地基承载力进行分析,二是按照地基承载力设计值来进行确定。

可以按照相关规范要求和地基承载力标准值,修正基础深度和宽度,最后得到地基承载力。

在对高层地下岩土性质进行分析时,可以采用压板试验、土工试验和标贯试验相结合的方法来进行判断。

比如,无锡双新科技园区1号楼,地下结构为两层,地上结构24层。

在进行地下室施工时,将原地面下10m下的原土挖去后进行地下室的建造。

此时卸土压力会达到180kPa。

相当于十层楼荷载重量。

当地下水位处于地面下两米时,地下水浮托力会达到80KPa,相当于五层楼荷载重量。

高层建筑筏板基础的设计研究

高层建筑筏板基础的设计研究

高层建筑筏板基础的设计研究摘要:高层建筑的基础设计是建筑结构设计中一项很重要的内容,在高层建筑基础设计中,筏板基础是把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇注底板。

由底板、梁等整体组成。

建筑物荷载较大,地基承载力较弱,常采用砼底板,承受建筑物荷载,形成筏基,其整体性好,能很好的抵抗地基不均匀沉降,因此在高层建筑中得到了较为广泛的应用。

关键词:高层建筑;筏板基础;设计要点1.常见的高层筏板基础类型高层建筑基础选型是整个结构设计中的一个重要组成部分,直接关系到工程造价、施工难度和工期,当地基很软弱,承载能力低,而上部结构传来的荷载又很大,即使是采用十字条形基础也不能满足建筑的地基承载力和沉降要求时,可采用钢筋混凝土筏板基础。

常见的高层建筑筏板基础有天然地基的筏板基础和桩筏基础,本文主要讨论天然地基的筏板基础。

天然地基的筏板基础有梁板式筏板基础及平板式筏板基础:1.1梁板式筏板基础梁板式筏板基础由地梁和基础筏板组成,地基梁的布置与上部结构的柱网设置有关,地基梁一般沿柱网布置,底板为连续双向板,也可在柱网间增设次梁,把底板划分成较小都矩形板。

梁板式筏基具有:结构刚度大,混凝土用量少,但同时存在筏基高度大,受地基梁板布置的影响,基础刚度变化不均匀等特点。

1.2平板式筏板基础平板式筏基由大厚混凝土板组成,常用的基础形式有:等厚的筏板基础、局部加厚的筏板基础等。

平板式筏基适用于复杂柱网结构,具有基础刚度大,受力均匀等特点,但也存在,超厚度板混凝土的施工温度控制要求高,混凝土用量大等不足。

2.高层建筑筏板基础选型应注意的问题2.1地质条件是影响高层基础选型的一个非常重要因素,虽然建设场地的地质条件在多数情况下是隐蔽的、复杂的和可变的,但目前的工程勘察和技术手段,一般能做到相对的准确。

作为设计人员,对提供的地质资料要能够进行准确分析和正确判断,进而能够合理地进行基础设计,并在施工过程中根据具体的地质条件变化修改设计。

高层住宅楼筏板基础的设计

高层住宅楼筏板基础的设计

高层住宅楼筏板基础的设计在高层住宅楼的建设中,筏板基础的设计是至关重要的环节。

筏板基础作为一种常见的基础形式,能够有效地将上部结构的荷载均匀地传递到地基中,为建筑物提供稳定的支撑。

接下来,让我们详细探讨一下高层住宅楼筏板基础的设计。

首先,我们要明确筏板基础的适用条件。

一般来说,当建筑物的地基承载力较弱、不均匀,或者上部结构的荷载较大、分布不均匀时,筏板基础就成为了一个理想的选择。

对于高层住宅楼而言,由于其高度较高、重量较大,对基础的稳定性和承载能力要求很高,筏板基础往往能够很好地满足这些需求。

在设计筏板基础之前,需要进行详细的地质勘察工作。

地质勘察能够提供关于地基土层的物理力学性质、地下水位等重要信息,这些信息是设计筏板基础的基础。

通过地质勘察报告,设计师可以了解到地基土的承载力特征值、压缩模量、土层分布等情况,从而为确定筏板基础的尺寸、厚度和配筋等提供依据。

筏板基础的尺寸设计是一个关键环节。

基础的长度、宽度和厚度需要根据上部结构的荷载、地基土的承载力以及建筑物的沉降要求等因素来综合确定。

通常情况下,筏板基础的长度和宽度会尽量与上部结构的外轮廓相接近,以减少基础的偏心距和不均匀沉降。

而筏板的厚度则需要满足抗弯、抗剪和冲切等承载力要求。

在确定筏板基础的厚度时,需要考虑多种因素。

一方面,要满足抗弯承载力的要求,防止筏板在受到上部荷载作用时发生过度弯曲而破坏。

另一方面,也要满足抗剪和冲切承载力的要求,确保筏板在柱、墙等竖向构件传递的集中力作用下不会发生剪切或冲切破坏。

此外,筏板的厚度还需要考虑建筑物的沉降控制要求,如果预计的沉降量较大,可能需要增加筏板的厚度来提高基础的刚度,从而减小沉降。

筏板基础的配筋设计同样重要。

配筋的数量和布置方式需要根据筏板所承受的弯矩、剪力和扭矩等内力来确定。

一般来说,筏板的底部和顶部都需要配置钢筋,以承受正负弯矩的作用。

在柱、墙等竖向构件下,还需要加强配筋,以抵抗集中力的作用。

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计高层建筑筏板基础设计是在建筑工程中非常重要的一环,它直接关系到建筑物的安全稳定性和耐久性。

筏板基础是一种广泛应用于高层建筑的基础形式,它具有承载力强、变形小、施工方便等优点,在高层建筑中应用广泛。

本文将从筏板基础的概念、设计原则、设计步骤等方面,对筏板基础的设计进行浅谈。

一、筏板基础的概念筏板基础又称合成地基,是一种大型承载层地基,它是在地基上直接放置厚度较大的混凝土板,然后再将建筑结构的受力部位通过柱子或墙体传递到地基上。

筏板基础一般适用于土壤较软、承载力较低的地区,能够有效地提高地基承载能力,减小地基沉降。

筏板基础是建筑工程中一种常见的基础形式,其结构简单,施工方便,具有较高的抗震和抗风性能,因此在高层建筑中得到广泛应用。

二、筏板基础设计原则1、满足地基稳定性的要求。

筏板基础的设计首先要保证地基的稳定性和承载能力,防止地基的沉降和位移。

2、考虑地基的变形。

地基在受到荷载作用时会发生变形,而筏板基础能够有效地减小地基的变形,保证建筑的稳定性。

3、考虑建筑结构的荷载传递。

筏板基础在设计时需要考虑建筑结构的荷载传递方式,保证建筑结构的受力合理分布,防止结构产生不均匀的变形和裂缝。

4、考虑地基的环境条件。

在设计筏板基础时需要考虑地基的环境条件,如土壤的密实程度、水分含量、地下水位等,合理选择材料和施工工艺。

5、考虑抗震和抗风性能。

在地震和风灾较为频繁的地区,筏板基础的设计要考虑抗震和抗风性能,确保建筑在自然灾害发生时具有一定的安全性能。

1、地基勘测。

在筏板基础的设计之前,首先需要对地基进行详细的勘测,包括地基的土层分布、土壤性质、地下水位等,了解地基的承载能力和变形特性。

2、确定建筑结构荷载。

根据建筑结构的荷载大小和分布方式,确定建筑结构对地基的要求和负荷。

3、选择筏板基础的类型。

根据地基的条件和建筑结构的要求,选择合适的筏板基础类型,包括承载型、抗拔型、预应力型等。

4、进行基础系列计算。

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计高层建筑是现代城市建设的重要组成部分,其受力条件复杂,对基础的要求也更高。

筏板基础是一种适用于高层建筑的一种基础形式,其通过对承载层的均匀分布力,能够有效地降低地基沉降和增强基础的稳定性。

本文将对高层建筑筏板基础设计的相关内容进行探讨。

一、基础类型在高层建筑中,常见的基础类型有桩基础、板桩基础、连续墙基础和筏板基础等。

其中,筏板基础以其在降低地基沉降和增强基础稳定性方面具有明显优势,成为近年来建筑设计中普遍采用的一种基础形式。

二、筏板基础的工作机理筏板基础是一种分布式基础,其承载能力可以平均分布到整个地基上,有效地降低了对承载土层的局部荷载集中,减少了土层的变形和沉降。

同时,它可以平衡地基内部的力量,增强了基础的稳定性,有效地防止了建筑结构因地基沉降而引起的各种问题。

三、筏板基础设计的要点考虑到 high-rise structure 的体积和重量的特点,采用筏板基础是比较明智的决策。

2. 承载土层高层建筑的地基通常由多层土层组成,承载土层的深度、厚度、稳定性和变形影响都需要进行全面、细致的分析和评估。

3. 基础尺寸根据高层建筑的结构类型、荷载特点、土层承载能力及变形情况等因素进行合理的基础尺寸设计,保证基础能够承受高层建筑的荷载并保证结构的安全稳定。

4. 布置方式根据不同高层建筑的荷载分布情况,选取合适的筏板基础布置方式。

常见的布置方式有均布荷载等分布和按荷载点等距离布置等。

5. 筏板厚度和钢筋配筋钢筋筏板应具有足够的强度和刚度以承担所施加的荷载,同时还需充分考虑到筏板厚度对地基沉降和变形的影响,对钢筋配筋进行细致精确的计算和设计。

四、结论高层建筑的筏板基础设计需要结合实际情况进行综合分析和评估, 需要考虑到基础类型, 承载土层, 基础尺寸, 布置方式, 筏板厚度和钢筋配筋等因素, 并要建立合理的数学模型进行计算和设计。

同时需要在设计中考虑安全性和经济性兼顾,应充分保证基础的稳定性和承载能力,并控制建设成本,使建筑结构能够长期、可靠地运行。

高层建筑条形及筏板基础设计

高层建筑条形及筏板基础设计

高层建筑条形及筏板基础设计【摘要】本文针对高层建筑柱下条形基础及筏板基础设计中常见的地基承载力取值、地基稳定性验算、沉降计算、底板结构设计、抗浮力设计等进行了全面的阐述,并结合实际工程设计实例作进一步的探讨,以供参考。

【关键词】筏板基础,补偿性,回弹再压缩,简化的叶果罗夫法,有限元【abstract 】this paper in high-rise building under column bar foundation and tube raft foundation bearing capacity in the design of the common values, foundation stability checking, settlement calculation and floor, structure design, the design of buoyancy comprehensive paper, and combined with engineering design example for further discussion, for reference.【key words 】raft foundation, compensatory, rebound and compression, simplified YeGuo rove method, finite element1 前言在我国的基建工程中,建筑物采用天然地基上的浅基础设计曾流行一时,但从70年代后期开始,随着高层建筑的大量兴建,桩基础越来越成为一种重要的基础型式。

究其原因,桩基础设计较简便,设计风险小,而更主要的是高层建筑不仅竖向荷载大而集中,而且风荷载和地震荷载引起的倾覆力矩成倍增长这就要求基础和地基提供更高的竖向和水平承载力,同时将沉降和倾斜控制在允许的范围内,并保证建筑物在风荷载下具有足够的稳定性。

浅谈高层建筑筏板基础的设计

浅谈高层建筑筏板基础的设计
的配筋量 。为了使筏板基础各部分的变形趋于一致 , 可以使用 变 形验算 的方法来调整柱基 的面积 , 这样在满足结构需求 的同 时, 也可 以达到一定的经济效益 。 在进行地基基础选型时 , 应参考高层建筑的实际情况 , 并考
的特点来分析地基的承载力。 2 计算筏板基础变形量 建筑设 计中 , 地基验算主要包括变形 量的验算 和地基承载
关 键 词 : 层 建 筑 ; 板 基 础 ; 计 高 筏 设
- 5 42 1 .5 2 o: . 9js . 6 8 5 . 0 . 8 1 9 .s 0 01 0
0 前言 高层建 筑设计 中 , 基础 的选 型是非常重要 的一步 , 它的选
右 ,所以实际观测得到的地基变形量是计算结果 的1 倍左右。 . 2 高层建筑 的基础埋深较大 ,使得总沉 降变形中地基 回弹再压缩
刚度随着面积的增加 而降低 , 另外 , 在设计过程中 , 可以根据实 际情况选择“ 独立柱基+ 板式筏基 ” 的联合基础 , 即在 高层建筑
物中部 使用筏板基础 , 在建 筑物的四周使用联合基础或者独立
以使用天然筏板基础。 因为地 区的地下水位较高 以及地下室需 要一定 的埋置 深度 , 天然筏板基础 又是补偿性 的基 础 , 以在 所 确定地基时可以有两种办法 : 一是根据地基承载力的设计值来
确定 。它是依照有关的设计规 范并结合地基 承载力 的标准值 , 对宽度和深度进行必要 的修正后得 到地基承载力 的设计值 , 使 用实验室 内的土工试验与压板试验 、 标贯试验等原位试 验相结 合 , 而判断 出高层地 基下岩土 的性质 ; 进 二是 根据补偿性基 础
基础 , 以使 筏板在面积减 少的同时增大 刚度 , 可 这样 在降低 由 于沉降变形 而产 生的挠 曲外 , 可以使筏板 的抗冲切能力得到 也 提升。 与此同时 , 使筏板 的钢筋应力降低 , 进而减低筏板基础中

【转载】浅谈高层建筑筏板基础的设计

【转载】浅谈高层建筑筏板基础的设计

【转载】浅谈高层建筑筏板基础的设计浅谈高层建筑筏板基础的设计建筑物采用何种基础型式,与地基土类别及土层分布情况密切相关。

工程设计中,常遇到这样的地质情况,地下室底板下的岩土层为风化残积土层、全风化岩层、强风化岩层或中风化软岩层,因此,有可能采用天然基础。

高层建筑地下室通常作为地下停车库,建筑上不允许设置过多的内墙,因而限制了箱型基础的使用;筏板基础既能充分发挥地基承载力,调整不均匀沉降,又能满足停车库的空间使用要求,因而就成为较理想的基础型式。

筏板基础主要构造型式有平板式筏板基础和梁板式筏板基础,平板式筏板基础由于施工简单,在高层建筑中得到广泛的应用。

本文以广州白云区某住宅楼的基础设计为例,拟对高层建筑基础的选型和筏板基础的设计方法进行介绍。

2 基础选型2.1工程地质概况本工程设地下室1层,塔楼地上20层,采用剪力墙结构。

根据岩土工程勘察报告,场地土层分布自上而下分别为:①人工填土层,厚度0.5m~3.0m;②冲洪积土层,厚度0.60m;③可塑状残积土层,厚度1.6m~8.30m,标贯击数为8~16击;④硬塑状残积土层,厚度2.2m~12.0m,标贯击数为18~29击;⑤岩石全风化带,厚度2.40m~8.60m,标贯击数为30~46击;⑥岩石强风化带,厚度0.60m~12.0m,标贯击数为50~65击;⑦岩石中风化带,厚度1.10m~2.13m,天然单轴极限抗压强度24.55MPa~49.55MPa;⑧岩石微风化带,厚度 1.0m~1.60m,天然单轴极限抗压强度43MPa~120MPa。

2.2基础结构方案选择高层建筑常用的基础结构型式为桩基础,本工程岩土工程勘察报告中建议基础型式采用预应力管桩基础或人工挖孔桩基础。

①采用预应力管桩基础,以强风化花岗岩为桩端持力层,由于场地基岩埋深相对较浅,地下室开挖后,最短有效桩长仅为2m左右,且场地局部地段在残积层中存在中风化岩孤石,对预应力管桩施工带来困难。

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计高层建筑筏板基础设计是高层建筑施工中至关重要的一环,直接影响着建筑物的稳定性、安全性和耐久性。

筏板基础是指由混凝土浇筑而成的大型平面基础,它能够分散建筑物的荷载,通过与土壤的作用使建筑物的荷载得到合理分布,是高层建筑中常用的一种基础形式。

本文将就高层建筑筏板基础设计进行探讨,分析其设计的关键要点和注意事项。

第一、测算地基承载力在进行筏板基础设计时,首先要对地基的承载力进行测算,确定地基能够承受的最大荷载。

在进行地基承载力测算时,要考虑地基土的物理和力学特性,包括土壤的质地、密实度和含水量等因素。

根据测算结果确定筏板基础的尺寸和深度,以确保筏板基础能够合理分散建筑物的荷载,保证建筑物的稳定性。

第二、确定筏板基础尺寸第三、采用合适的材料和施工工艺在进行筏板基础设计时,需要选择合适的混凝土材料,并严格控制混凝土的配合比和施工工艺,确保混凝土的质量和强度。

筏板基础的混凝土质量直接关系到建筑物的稳定性和安全性,因此在进行筏板基础设计时,应该严格按照标准规范进行设计和施工,保证筏板基础的质量。

第四、考虑地震和风荷载在进行高层建筑筏板基础设计时,需要考虑地震和风荷载对建筑物的影响,确保筏板基础能够承受地震和风荷载带来的影响。

一般情况下,需要根据建筑物所在地的地震和风荷载等因素,对筏板基础进行适当的加固设计,以确保建筑物在地震和风灾发生时能够保持稳定。

第五、考虑土壤沉降和地下水位变化在进行筏板基础设计时,还需要考虑土壤沉降和地下水位变化对建筑物的影响。

土壤的沉降和地下水位的变化会对建筑物的稳定性产生影响,因此在进行筏板基础设计时应该考虑土壤沉降和地下水位的变化,确保筏板基础能够适应土壤沉降和地下水位变化带来的影响。

高层建筑筏板基础设计是高层建筑施工中的一个重要环节,需要考虑地基承载力、筏板基础尺寸、材料和施工工艺、地震和风荷载以及土壤沉降和地下水位变化等因素。

只有在综合考虑各种因素的影响,严格控制设计和施工工艺,才能够设计出符合建筑物需求的筏板基础,确保高层建筑的稳定、安全和耐久。

探讨高层建筑结构筏板基础的设计要点

探讨高层建筑结构筏板基础的设计要点

探讨高层建筑结构筏板基础的设计要点摘要:筏板基础属于浅基础类型,主要用于负责承担基础上部的负荷,其在薄弱的地基中可以提供稳定的支持,预防地基变形,目的是提高地基基础的稳定性,消除高层建筑地基中潜在的安全风险,加强高层建筑基础的控制力度。

本文以高层建筑结构为分析对象,探讨了筏板基础的实践设计。

关键词:高层建筑;结构;筏板;基础设计引言对于高层建筑而言,基础设计至关重要,特别是垂直方向的载荷,干预了建筑基础的稳固性。

筏板基础设计的应用可以平衡高层建筑结构的受力,避免建筑基础的载荷受力过于复杂,满足高层建筑结构的基础需求。

筏板在建筑基础设计中,占有很重要的比重,属于高层建筑结构设计中的重点,有利于提高建筑基础的安全水平。

1、高层建筑结构筏板基础设计的重要性笩板基础是指把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇注底板,其由底板、梁等整体组成。

在高层建筑结构中其重要性表现为:①筏板基础能够为高层建筑地基,提供完整的刚度设计,适当调节地基中出现的沉降,缓解高层建筑地基中受力不均匀的问题,体现出了筏板基础的控制作用;②在高层建筑地基结构中,筏板基础设计方式的安全系数高,其安全性能要优于其他地基支撑方法,不仅可以保护地基,还能应用在高层建筑的地下室设计中,表明筏板基础在建筑安全方法的价值;③筏板基础本身具有一定的抗震能力,其可提升高层建筑结构的抗震水平,有利于强化高层建筑结构的刚度和强度,完善建筑地基结构的设计,便于落实筏板基础的应用。

2、高层建筑结构筏板基础的设计2.1筏板基础的承载力建筑物荷载较大,地基承载力较弱,筏板基础在高层建筑结构中可以弥补地基承载中的不足之处,根据高层建筑地基的实际情况设计筏板基础的承载力,补充地基的承载缺陷。

筏板基础承载力设计与高层建筑地基存在直接的关系,需要按照高层建筑地基的深度、宽度数据,积极调整筏板承载数值,获取准确的筏板承载,确保筏板承载符合高层建筑结构的需求。

浅谈高层建筑结构中筏基础的设计

浅谈高层建筑结构中筏基础的设计

浅谈高层建筑结构中筏基础的设计高层建筑结构的基础在建筑工程中的地位是非常重要的,它直接关系到建筑工程的安全、投资和施工进度,也是衡量工程设计合理与否的重要部分。

筏板基础具有刚度大、整体性强、抗震能力好等优点,不仅能充分发挥地基承载力,减小基础沉降量,调整地基不均匀沉降,而且可以满足地下大空间(如地下停车场、地下仓库、地下商场等)的要求。

因此,筏板基础作为建筑结构首选的基础方案,应用越来越广泛。

一、什么是筏基础筏板基础是把柱下独立基础或者条形基础全部用联系梁联系起来,下面再整体浇注底板,其形式犹如倒置的楼板,又似筏子,故称为筏板基础,又称满堂基础.筏板基础根据是否有梁可分为平板式和梁板式两种。

一般说来地基承载力不均匀或者地基软弱的时候用筏板型基础.而且筏板型基础埋深比较浅,甚至可以做不埋深式基础.由底板、梁等整体组成.建筑物荷载较大,地基承载力较弱,常采用砼底板,承受建筑物荷载,形成筏基,其整体性好,能很好的抵抗地基不均匀沉降.二、筏板基础的构造要求筏板基础的混凝土强度等级不应低于C30.采用筏板基础的地下室,应沿地下室四周布置钢筋混凝土外墙,外墙厚度不应小于250mm,内墙厚度不应小于200ram.墙的截面设计除满足承载力要求外,尚应考虑变形、抗裂及防渗等要求.墙体内应设置双面钢筋,竖向和水平钢筋的直径不应小于12mm,间距不应大于300mm.筏基底板的厚度均应满足受冲切承载力、受剪切承载力的要求.对12层以上建筑的梁板式筏基的板厚不宜小于400mm,且板厚与最大双向板格的短边之比不小于1/20.地下室底层柱、剪力墙至梁板式筏基的基础梁边缘的距离不应小于50mm.筏板与地下室外墙的接缝、地下室外墙沿高度处的水平接缝应严格按施工缝要求采取措施,必要时可设通长止水带。

三、筏板基础的设计3.1 筏板基础承载力的确定一是根据地基承载力的设计值来确定。

它是依照有关的设计规范并结合地基承载力的标准值,对宽度和深度进行必要的修正后得到地基承载力的设计值,使用实验室内的土工试验与压板试验、标贯试验等原位试验相结合,进而判断出高层地基下岩土的性质;二是根据补偿性基础的特点来分析地基的承载力。

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计

浅谈高层建筑筏板基础设计筏板基础是指在软土地基上,通过加固土层及利用土层承载能力,构成一个整体的承载结构,用以分布高层建筑的重载。

相比传统的承台基础、桩基础等形式,筏板基础具有承载能力强、变形小、刚度大等优点,尤其在软土地基和大面积超高层建筑中广泛采用。

在进行筏板基础设计时,需要考虑以下几个方面:要对地基进行详细的勘察和分析。

地基的类型、土质、承载力等参数都需要进行详细的勘察和测试。

只有对地基有充分的了解,才能做出合理的筏板设计。

需要考虑高层建筑的结构特点。

高层建筑的结构类型、荷载特点、变形要求等都会对筏板的设计产生影响。

一般来说,结构越复杂,荷载越大,对筏板的要求也就越高。

接着,要进行合理的基础平衡设计。

筏板基础的平衡设计是非常重要的环节,它直接关系到基础的安全性和稳定性。

在进行平衡设计时,需要考虑土质的承载能力、结构的荷载特点、地基的变形特点等多个因素,做出合理的设计。

筏板基础的防水设计也是不可忽视的。

在软土地基上,筏板基础常常需要进行防水处理,以防止土基水分的渗透,影响基础的稳定性。

在进行筏板设计时,需要考虑防水层的设置,选择合适的防水材料,并做好施工工艺。

需要进行合理的施工技术措施。

筏板基础的施工需要掌握一定的技术要领,尤其在软土地基上更是如此。

施工过程中需要注意控制沉降、保证质量、加强监测等方面的技术措施,确保筏板基础的稳定性和安全性。

高层建筑筏板基础设计是一个复杂的工程,需要综合考虑地基情况、建筑结构、荷载特点、平衡设计、防水设计、施工技术措施等多个方面的因素。

只有全面综合考虑,才能够做出合理的筏板基础设计,确保高层建筑的安全和稳定。

结构设计经验谈——高层筏板基础设计

结构设计经验谈——高层筏板基础设计

结构设计经验谈——高层筏板基础设计1筏板基础埋深及承载力的确定天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度.2天然筏板基础的变形计算地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的.(1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;(2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ]采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同;(3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位, 有些高层建筑若设置3~ 4 层(甚至更多层) 地下室时, 总荷载有可能等于或小于卸土荷载重量, 这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来, 对于高层建筑在计算地基沉降变形中, 地基回弹再压缩变形不但不应忽略, 而应予以重视和考虑.高层建筑箱型基础与筏板基础的计算与一般中小型建筑的基础有所不同, 如前所述, 高层建筑除具有基础面积大、埋置深, 尚有地基回弹等影响. 有时将基础做成补偿基础, 在这种情况下, 将附加压力视为很小或等于零, 这与实际不符. 由于基坑面积大, 基坑开挖造成坑底回弹,建筑物荷重增加到一定程度时, 基础仍然有沉降变形, 即回弹再压缩变形. 为了使沉降计算与实际变形接近, 采用总荷载作为地基沉降计算压力比用附加压力P 0 计算更趋合理, 且对大基础是适宜的. 这一方面近似考虑了深埋基础(或补偿基础) 计算中的复杂问题, 另一方面也解决了大面积开挖基坑坑底的回弹再压缩问题. 因此《高层建筑箱形与筏形基础技术规范》(JGJ 6—99) 除规定采用室内压缩模量ES 计算沉降量外, 又规定了按压缩模量E 0 (采用野外载荷试验资料算得压缩模量E 0, 基本上解决了试验土样扰动的问题, 土中应力状态在载荷板下与实际情况比较接近) 计算沉降量的方法. 设计人员可以根据工程的具体情况选择其中一种方法进行沉降计算.按平面布置规则, 立面沿高度大体一致的单幢建筑物, 当基底压缩土层范围内沿竖向和水平方向土层较均匀时, 基础的纵向挠曲曲线的形状呈盆状形, 即“∪”状. 在研究建筑物荷载的水平分布规律时: 对于筏板基础, 可将筏板划分为许多小单元, 如果不考虑各小单元之间的相互影响, 单位面积承受的荷载重量(基底应力曲线) 与基础的纵向挠曲曲线的形状相吻合, 即也呈“∪”状. 这说明建筑物四周各点沉降量受到其它各点荷载的影响较小, 中部各点沉降量受到其它各点荷载的影响较大; 若将基础设计成整片筏板基础, 势必造成在相同的地基承载力下, 中部沉降量大, 而四周沉降量较小, 基底土变形不相协调.试验表明[ 4 ]: 刚性筏板在试验荷载下主要是整体沉降, 挠曲变形极小, 最大也未超过3‰; 而有限刚度筏板基础则除了整体沉降外还产生挠曲变形, 筏板刚度不同, 挠曲程度也不同.在筏板厚度相同的情况下, 随着长×宽(以矩形为例) 的增加, 筏板的刚度随之降低.因此设计中可选取“板式筏基+ 独立柱基”相结合的基础形式, 即中部(电梯井等剪力墙集中处) 用筏基, 四周柱基础采用独立基础或联合基础. 使筏板的长×宽尺寸减小、刚度增大,这不仅降低沉降变形的挠曲程度, 提高筏板的抗冲切能力, 同时, 减低了板中钢筋应力, 减少筏基的配筋量. 为协调各部分的变形, 使其趋于一致, 还可通过变形验算调整独立柱基的面积.既满足结构使用要求, 又达到相当可观的经济效益.在基础选型设计中, 应结合工程的具体情况, 考虑多方面的因素影响, 充分利用天然地基的承载能力, 通过比较“整片筏基”与“板式筏基+ 独立柱基”的工程造价. 以上2 种不同基础形式, 后者较前者节省约30%~40% 的费用, 经济效益显著.当由于地层分布不均匀、上部结构荷载在筏板基础上分布不均匀而引起筏板基础各部分的差异沉降较大时, 可综合考虑采用以下处理措施:(1) 将出露地质较差的土层挖出一部分, 换填低强度等级的素混凝土形成素混凝土厚垫块, 以改变和调整地基的不均匀变形. 也可以采用“换填法”, 垫层采用碎石、卵石等材料, 经碾压或振密处理, 提高基础的承载能力;(2) 调整上部结构荷载或柱网间距, 减小基底压力差;(3) 调整筏板基础形状和面积, 适当设置悬臂板, 均衡和降低基底压力;(4) 加强底板的刚度和强度, 在大跨度柱间设置加强板带或暗梁等.3筏板基础的结构设计筏板基础的主要结构形式有平板式筏基和肋梁式筏基, 包括等厚度或变厚度底板和纵横向肋梁. 一般情况下宜将基础肋梁置于底板上面, 如果地基不均匀或有使用要求时, 可将肋梁置于板下, 框架柱位于肋梁交点处. 在具体筏基设计时应着重考虑如下问题:(1) 应尽量使上部结构的荷载合力重心与筏基形心相重合, 从而确定底板的形状和尺寸.当需要将底板设计成悬挑板时, 要综合考虑上述多方面因素以减小基础端部基底反力过大而对基础弯距的影响;(2) 底板厚度由抗冲切和抗剪强度验算确定. 柱网间距较大时可在柱间设置加强板带(暗梁加配箍筋) 来提高抗冲切强度以减少板厚, 也可采用后张预应力钢筋法来减少混凝土用量和造价. 决定板厚的关键因素是冲切, 应对筏基进行详细的冲切验算;(3) 无肋梁筏板基础的配筋可近似按无梁楼盖设柱上板带和跨中板带(倒楼盖法) 的计算方法进行, 精确计算可用有限元法;对肋梁式筏基, 当肋梁高度比板厚大得较多时, 可分别计算底板和肋梁的配筋, 即底板以肋梁为固定支座按双向板计算跨中和支座弯矩, 并适当调整板跨中和支座的配筋;(4) 构造配筋要求: 筏板受力筋应满足规范中0. 15%的配筋率要求, 悬挑板角处应设置放射状附加钢筋等. 设计人员往往配置受力钢筋有余, 构造钢筋却配置不足.4筏板基础抗浮锚杆的设置不少设计人员担心地下水位对底板的浮托力而设置抗拔锚杆, 在这里作如下分析和讨论.(1) 施工过程中浮托力的产生是由于基坑内积水(雨水和施工用水或地下水渗透) 所致;浮托力的大小与地下室的体积和基坑内积水高度有关. 因此, 只要能在地下室施工过程中有序排水或限制水位, 在基础底板底以下就不会产生浮托力.(2) 地下室上浮是因为地下室结构及上部结构的荷载重量不足以克服地下水的浮力, 当筏板基础底板上的结构重量大于实际上浮力后, 整个基础结构就能稳定. 因此在地下室和地面上相应有限几层的结构完成后, 就可以克服地下水的上浮力, 不需要在整个施工过程中对水位保持警惕.(3) 在计算地下水的浮托力时因注意: 筏基底板所承受的浮托压力只是底板与地基岩土的缝隙水压力、孔隙水压力, 板承受的浮托力与地基岩土的缝隙发育程度、孔隙率有关, 其实际压力强度小于静水压强. 其次, 底板的水承压面积并非全部. 由于底板与地基岩土已粘结成整体,因而能提供一定的粘结(抗拔) 力. 有关试验资料认为有效粘结面积占底板面积最小比率为K = 50% , 而粘结强度最低为250kpa (相当于毛石砌体与M 10 沙浆间的抗拉力). K 值是一重要因素, 应通过试验确定.浮托力的估算: 当K = 50%~100% 时,如地下水位为- 2. 0m 的10m 深地下2 层的基坑, 当底板厚度1 600mm , 顶板单位荷重为1 600kg, 则单位面积的浮托力T 和地下室结构重量W 分别为:T = 80×(50%~100% )= 40. 0 kpa~80. 0kpaW = 1. 6×25+ 16×2= 72. 0kpa从以上分析和讨论可见, 即使按K = 1 计算使浮托力T 最大, T 与W 的差值也只有8. 0kpa, 待地面上再施工1~2 层后, 就能保持整体平衡, 因此只要在地下室施工过程中能保持基坑干燥, 基础和地下室结构及地上 2 层结构施工完成后, 就可放弃对地下水位的监测, 从施工过程来看是无需设置抗浮锚杆的.对于一些地下室较大、较深而地面以上结构层数不多的建筑, 则应根据上述总体平衡的原则计算确定抗浮锚杆. 对于地下室面积较大而主体塔楼面积较小的建筑, 应验算裙房部位的浮托力能否与结构自重相平衡, 否则也应设置抗浮锚杆.在底板配筋设计时应注意到由于水的浮托力使底板产生的弯矩, 当板下不设置抗浮锚杆时应全面考虑浮托力产生的弯矩, 当底板设置抗浮锚杆后则可适量减少底板的配筋量.5裙房基础的设计由于裙房的单柱荷载与高层主楼相比要小的多, 因此无需采用厚筏基础, 采用薄板配柱下独立扩展基础即可. 这里需要强调的是, 裙楼独立柱基的沉降与主楼筏板基础的沉降要相协调, 即控制沉降差在允许值范围内. 应根据公式计算主楼沉降量S , 再按各柱的荷载N 值和S值反算出各独立柱基础的面积A (尚应验选地基承载力).6结束语高层建筑基础选型是整个结构设计中的一个重要组成部分, 直接关系到工程造价、施工难度和工期, 因此应认真研究场地岩土性质和上部结构特点, 通过综合技术经济比较确定.高层建筑的基础选型应因地制宜, 除基础应满足现行规范允许的沉降量和沉降差的限值外, 整体结构应符合规范对强度、刚度和延性的要求, 选用桩基或筏基都不是绝对的, 而安全可靠、经济合理才是基础选型的标准.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述高层住宅楼筏板基础的设计
要】我国经济发展速度不断加快,高层住宅楼越来越普及,筏板基础设计自然成为焦点。

本文首先对高层住宅楼筏板基础设计的有关理论进行分析,包括承载力与埋深的确定、基础变形量的计算、筏板基础抗浮锚杆设计以及筏板基础计算方法等,并结合具体案例进一步探究。

关键字】高层;筏板基础;设计;案例分析
前言:基础选型是高层住宅楼设计中非常关键的,很多高层住宅楼的地下被设计成停车场,自然不能设计太多墙体,此时筏板基础就能很好的满足各种需求,而且施工较为简单,已经广泛应用到高层住宅楼的建设中。

1.高层住宅楼筏板基础设计分析
1.1.确定承载力与埋深
由于我国城市用地紧张,因此高层住宅楼越来越密集,设备用房、车库等地下室成为必须设置的,要结合具体功能确定地下室层数和高度,因此基础埋深也就确定了,然后再结合土质特点确定基础类型的选择。

是否可以使用筏板基础的方式又两种,第一是结合承载力设计值确定;第二是结合补偿性基础特征对地基承载力进行研究。

1.2.筏板基础变形量的计算
地基变形量的计算是高层住宅建筑中最重要的验算,以当前的理论水平无法精准的计算地基变形量,计算结果会与实际情况有较大差距,因此给设计人员增大难度,可能会造成造价提高、资源浪费等后果。

高。

相关文档
最新文档