最新[]第四章自组织神经网络幻灯片课件
合集下载
神经网络模型PPT课件
然而,人工神经网络却不具有这样的能 力,而可能估计出5.933或者6.007之类 的数字。换言之,如果属于定义清楚的 数学问题,却利用人工神经网络来解决, 并不妥当。人工神经网络最擅长之处, 在于复杂关系的辨认或是型态的对比。
人工神经网络的学习模式,若按照网 络神经间的联结强弱来划分类,大致 可分成三类:
表18-3
分为四组的人工神经网络分类结果
样本数 正确 错误 未知
预测组别 最低风险 次低风险 中度风险 高度风险
最低风险
25 22 1 2
22 0 1 0
实际组别
次低风险
中度中险
35
38
34
35
0
0
1
3
0
0
34
0
0
35
0
0
高度风险
30 28 0 2
0 0 0 28
表18-4
分为三组的人工神经网络分类结果
其中每经过一次训练过程,就将模拟的 结果与实际状况作比较,将其中的差异 回馈到系统中,以调整节点的强度,如 此即能获致自我组织及自我学习的效果。 在与环境互动时,亦可调整自身的结构, 以使系统结果能接近真实状况;人工神 经网络还具有容错(fault tolerance) 的特性,若是网络中有数个单元遭到损 坏,不致影响整个网络的功能。
样本数 正确 错误 未知
预测组别 低风险 中风险 高风险
低风险
27 26 0 1
26 0 0
实际组别
中风险
70 70 0 0
0 70 0
高风险
31 31 0 0
0 0 31
表18-5 分为二组的人工神经网络分类结果
样本数 正确 错误 未知
自组织神经网络概述
针对自组织神经网络的计算密集型特 性,硬件加速技术如GPU、FPGA等 正被广泛应用于提升自组织神经网络 的计算效率和实时性。
大规模数据的应用
随着大数据技术的不断发展,自组织 神经网络在大规模数据上的应用也日 益广泛,能够从海量数据中提取有用 的特征和模式。
未来展望
01
更高效的自组织学习机制
未来的研究将致力于开发更高效、更灵活的自组织学习算法,以适应不
它利用神经元之间的连接权重进 行学习,使得相似的输入数据能 够被映射到相近的神经元输出。
自组织映射能够自动识别输入数 据的内在结构和规律,从而对数
据进行分类、聚类和可视化。
竞争学习
01
竞争学习是自组织神经网络中 的一种重要机制,通过竞争的 方式选择最佳的神经元来表示 输入数据。
02
在竞争过程中,每个神经元根 据其与输入数据的相似度进行 响应,相似度最高的神经元将 获得胜利并更新其连接权重。
它不需要预先定义输入数据的类别或 结构,而是通过学习输入数据的内在 规律和模式,自动对数据进行分类或 聚类。
自组织神经网络的应用场景
图像识别
语音识别
自组织神经网络可以用于图像识别任务, 自动提取图像中的特征并进行分类。
在语音识别领域,自组织神经网络可以用 于自动提取语音中的特征,提高语音识别 的准确率。
总结词
通过最小化预测误差的方式,学习输入样本的映射关系,用于预测和函数逼近。
详细描述
回归型自组织神经网络采用最小化预测误差的规则,通过调整神经元权重,使得 神经元的输出能够逼近输入样本的目标值。这种类型的自组织神经网络常用于时 间序列预测和函数逼近。
概率型自组织神经网络
总结词
基于概率密度函数,学习输入样本的概 率分布,用于概率建模和异常检测。
自组织神经网络
11
自组织特征映射(SOFM)模型
自组织特征映射模型也称为Kohonen网络.或者称为Selforganizing map,由芬兰学者Teuvo Kohonen于1981年提 出。该网络是一个由全互连的神经元阵列形成的无教师自组 织自学习网络。Kohonen认为,处于空间中不同区域的神经 元有不同的分工,当一个神经网络接受外界输入模式时,将 会分为不同的反应区域,各区域对输入模式具有不同的响应 特征。
对这种竞争学习算法进行的模式分类,有时依赖于初始的 权值以及输入样本的次序。要得到较好的训练结果,例如图所 示的模式分类,网络应将其按Hamming距离分为三类。
9
竞争学习网络特征
假如竞争层的初始权值都是相 同的,那么竞争分类的结果 是:首先训练的模式属于类 1,由竞争单元1表示;随后训 练的模式如果不属于类1,它 就使竞争单元2表示类2;剩下 的不属于前两类的模式使单元3 获胜,为类3。假如不改变初始 权值分布,只改变模式的训练顺 序,这可能使竞争层单元对模式影响分类响应不一样,此时获胜 的竞争单元1有可能代表类2或3,这种顺序上的不一样会造成分 类学习很不稳定,会出现对同一输入模式在不同的迭代时有不同 的响应单元,分类结果就产生振荡。
10
竞争学习网络特征
竞争学习网络所实现的模式分类情况与典型的BP网络分类有 所不同。BP网络分类学习必须预先知道将输入模式分为几个类别, 而竞争网络将给定的模式分为几类预先并不知道,只有在学习后 才能确定。
竞争学习网络也存在一些局限性: (1)只用部分输入模式训练网络,当用一个明显不同的新 的输入模式进行分类时,网络的分类能力可能会降 低,甚至无法对其进行分类,这是由于竞争学习网络 采用的是非推理方式调节权值。 (2)竞争学习对模式变换不具备冗余性,其分类不是大 小、位移、旋转不变的,从结构上也不支持大小、 位移、旋转不变的分类模式。因此在使用上通常利用 竞争学习的无监督性,将其包含在其它网络中。
自组织特征映射(SOFM)模型
自组织特征映射模型也称为Kohonen网络.或者称为Selforganizing map,由芬兰学者Teuvo Kohonen于1981年提 出。该网络是一个由全互连的神经元阵列形成的无教师自组 织自学习网络。Kohonen认为,处于空间中不同区域的神经 元有不同的分工,当一个神经网络接受外界输入模式时,将 会分为不同的反应区域,各区域对输入模式具有不同的响应 特征。
对这种竞争学习算法进行的模式分类,有时依赖于初始的 权值以及输入样本的次序。要得到较好的训练结果,例如图所 示的模式分类,网络应将其按Hamming距离分为三类。
9
竞争学习网络特征
假如竞争层的初始权值都是相 同的,那么竞争分类的结果 是:首先训练的模式属于类 1,由竞争单元1表示;随后训 练的模式如果不属于类1,它 就使竞争单元2表示类2;剩下 的不属于前两类的模式使单元3 获胜,为类3。假如不改变初始 权值分布,只改变模式的训练顺 序,这可能使竞争层单元对模式影响分类响应不一样,此时获胜 的竞争单元1有可能代表类2或3,这种顺序上的不一样会造成分 类学习很不稳定,会出现对同一输入模式在不同的迭代时有不同 的响应单元,分类结果就产生振荡。
10
竞争学习网络特征
竞争学习网络所实现的模式分类情况与典型的BP网络分类有 所不同。BP网络分类学习必须预先知道将输入模式分为几个类别, 而竞争网络将给定的模式分为几类预先并不知道,只有在学习后 才能确定。
竞争学习网络也存在一些局限性: (1)只用部分输入模式训练网络,当用一个明显不同的新 的输入模式进行分类时,网络的分类能力可能会降 低,甚至无法对其进行分类,这是由于竞争学习网络 采用的是非推理方式调节权值。 (2)竞争学习对模式变换不具备冗余性,其分类不是大 小、位移、旋转不变的,从结构上也不支持大小、 位移、旋转不变的分类模式。因此在使用上通常利用 竞争学习的无监督性,将其包含在其它网络中。
《自组织神经网络》PPT课件
x3
2 -30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
w2
w1
8 9
10
34 34 44
-130 -100 -100
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81
16
42 -81
x2
x4
17
42 -80.5
Wˆ j*T Xˆ
max (
j{1, 2 ,...,m}
Wˆ j
T
Xˆ )
竞争学习规则——胜者为王(Winner-Take-All)
3.网络输出与权值调整
1 j j* o j (t 1) 0 j j*
Wj* (t 1) Wˆ j* (t) Wj* Wˆ j* (t) (t)(Xˆ Wˆ j* )
47.5 -81
16
42 -81
x2
x4
17
42 -80.5
18 43.5 -80.5
19 43.5 -75
20 48.5 -75
x5
训练 次数
W1
W2
1 18.43 -180
x3
2 -30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
w1
6 7
24 -180 24 -130
8
x5
训练 次数
W1
W2
1 18.43 -180
自组织神经网络
详细描述
自组织神经网络通常包含大量的神经元和参数,这使得训练过程变得非常耗时。传统的 优化算法往往需要长时间的迭代才能找到最优解,这限制了自组织神经网络的应用范围。
泛化能力不足
总结词
自组织神经网络的泛化能力不足是另一个挑 战,这主要是由于其容易过拟合训练数据。
详细描述
由于自组织神经网络具有强大的拟合能力, 它很容易过拟合训练数据,导致对测试数据 的泛化能力下降。这限制了自组织神经网络 在实际问题中的应用效果。
缺乏有效的学习规则
总结词
目前自组织神经网络缺乏有效的学习规则, 这限制了其自适应能力和进化速度。
详细描述
自组织神经网络的学习规则决定了其结构和 参数的调整方式,但目前大多数学习规则的 效果并不理想。如何设计更有效的学习规则 ,以提高自组织神经网络的自适应能力和进
化速度,是当前研究的重点之一。
未来发展方向与趋势
K-均值聚类算法
总结词
K-均值聚类算法是一种无监督的机器学 习算法,用于将输入数据划分为K个聚类 。
VS
详细描述
K-均值聚类算法通过迭代的方式将输入数 据划分为K个聚类,每个聚类由其质心表 示。算法通过计算每个数据点到各个质心 的距离,将数据点划分到最近的质心所在 的聚类中,并更新质心位置。K-均值聚类 算法具有简单、高效的特点,广泛应用于 数据挖掘、图像分割和机器视觉等领域。
自适应共振理论模型
总结词
自适应共振理论模型是一种基于自适应滤波原理的神经网络模型,能够自适应地学习和识别输入数据 中的模式。
详细描述
自适应共振理论模型通过调整神经元之间的连接权重,使得神经网络能够自适应地跟踪和识别输入数 据中的模式。该模型具有较强的鲁棒性和适应性,能够处理噪声和异常值,广泛应用于信号处理、语 音识别和自然语言处理等领域。
自组织神经网络通常包含大量的神经元和参数,这使得训练过程变得非常耗时。传统的 优化算法往往需要长时间的迭代才能找到最优解,这限制了自组织神经网络的应用范围。
泛化能力不足
总结词
自组织神经网络的泛化能力不足是另一个挑 战,这主要是由于其容易过拟合训练数据。
详细描述
由于自组织神经网络具有强大的拟合能力, 它很容易过拟合训练数据,导致对测试数据 的泛化能力下降。这限制了自组织神经网络 在实际问题中的应用效果。
缺乏有效的学习规则
总结词
目前自组织神经网络缺乏有效的学习规则, 这限制了其自适应能力和进化速度。
详细描述
自组织神经网络的学习规则决定了其结构和 参数的调整方式,但目前大多数学习规则的 效果并不理想。如何设计更有效的学习规则 ,以提高自组织神经网络的自适应能力和进
化速度,是当前研究的重点之一。
未来发展方向与趋势
K-均值聚类算法
总结词
K-均值聚类算法是一种无监督的机器学 习算法,用于将输入数据划分为K个聚类 。
VS
详细描述
K-均值聚类算法通过迭代的方式将输入数 据划分为K个聚类,每个聚类由其质心表 示。算法通过计算每个数据点到各个质心 的距离,将数据点划分到最近的质心所在 的聚类中,并更新质心位置。K-均值聚类 算法具有简单、高效的特点,广泛应用于 数据挖掘、图像分割和机器视觉等领域。
自适应共振理论模型
总结词
自适应共振理论模型是一种基于自适应滤波原理的神经网络模型,能够自适应地学习和识别输入数据 中的模式。
详细描述
自适应共振理论模型通过调整神经元之间的连接权重,使得神经网络能够自适应地跟踪和识别输入数 据中的模式。该模型具有较强的鲁棒性和适应性,能够处理噪声和异常值,广泛应用于信号处理、语 音识别和自然语言处理等领域。
神经网络基本理论资料PPT课件
1984年,博士又提出了连续神经网络模型,实现了神经 网络的电子线路仿真,开拓了计算机应用神经网络的新途径, 成功解决了著名的优化组合问题——旅行商问题,引起了相 关领域研究人员的广泛关注。
1986年,等提出多层网络的逆推学习算法,即BP算法, 否定了M.Minsky等人的错误结论,该算法一直成为应用最广、 研究最多、发展最快的算法。
2.1 神经网络概述
胞体:也称为细胞体,包括细胞质、细胞核和细胞膜 三部分,是细胞的营养中心。
树突:胞体的伸延部分产生的分枝称为树突,是接受 从其它神经元传入的信息入口。但不一定是神经传入的唯一 通道,还可以是胞体膜。
轴突:每个神经元只有一个轴突,一般自胞体发出, 与一个或多个目标神经元连接,为神经元的输出通道,其作 用是将细胞体发出的神经冲动传递给另一个或多个神经元。
如果在输出层没有得到期望的输出,则计算输出层的误差变化值,然后转向反向传播,通过网络将误差信号沿原来的连接通路反传回
1949年,心理学家提出神经 来,修改各层神经元的权值,直至达到期望目标。
但人们在应用专家系统解决语音识别、图像处理和机器人控制等类似人脑形象思维的问题时却遇到很大的唐困纳难。德·赫布
BP算法的核心是最速下降法,这是一种以梯度为基础的误差下降算法,具有原理简单、实现方便等特点,但也有许多不足之处: 联想记忆的作用是用一个不完整或模糊的信息联想出存储在记忆中的某个完整、清晰的模式来。
初创期:标志就是提出模型,建立规则。 神经网络的自学习和自适应能力使其成为对各类信号进行多用途加工处理的一种天然工具。 人工智能
侧,右脑支配人体的左侧,大脑受伤会使他支配的那部分身 体产生功能障碍。
左右脑具有不同的功能。左脑主要是语言中枢,同时从 事分析性工作,如逻辑推理、数学运算和写作等。右脑主要 处理空间概念和模式识别。
1986年,等提出多层网络的逆推学习算法,即BP算法, 否定了M.Minsky等人的错误结论,该算法一直成为应用最广、 研究最多、发展最快的算法。
2.1 神经网络概述
胞体:也称为细胞体,包括细胞质、细胞核和细胞膜 三部分,是细胞的营养中心。
树突:胞体的伸延部分产生的分枝称为树突,是接受 从其它神经元传入的信息入口。但不一定是神经传入的唯一 通道,还可以是胞体膜。
轴突:每个神经元只有一个轴突,一般自胞体发出, 与一个或多个目标神经元连接,为神经元的输出通道,其作 用是将细胞体发出的神经冲动传递给另一个或多个神经元。
如果在输出层没有得到期望的输出,则计算输出层的误差变化值,然后转向反向传播,通过网络将误差信号沿原来的连接通路反传回
1949年,心理学家提出神经 来,修改各层神经元的权值,直至达到期望目标。
但人们在应用专家系统解决语音识别、图像处理和机器人控制等类似人脑形象思维的问题时却遇到很大的唐困纳难。德·赫布
BP算法的核心是最速下降法,这是一种以梯度为基础的误差下降算法,具有原理简单、实现方便等特点,但也有许多不足之处: 联想记忆的作用是用一个不完整或模糊的信息联想出存储在记忆中的某个完整、清晰的模式来。
初创期:标志就是提出模型,建立规则。 神经网络的自学习和自适应能力使其成为对各类信号进行多用途加工处理的一种天然工具。 人工智能
侧,右脑支配人体的左侧,大脑受伤会使他支配的那部分身 体产生功能障碍。
左右脑具有不同的功能。左脑主要是语言中枢,同时从 事分析性工作,如逻辑推理、数学运算和写作等。右脑主要 处理空间概念和模式识别。
《神经网络》PPT幻灯片PPT
➢因此,类神经网络在选取启动函数时,不能够使用 传统的线性函数,通常来说会选择兼具正向收敛与 负向收敛的函数。
20
2.阶梯(step)启动函数的一般形式:
f Ij
,Ij 0 ,Ij 0
阶梯启动函数又称阈值(threshold)启动函
数。当 时1,,得0到
1
f Ij 0
,Ij 0 ,Ij 0
输入层只从外部环境接收信息,该层的每 个神经元相当于自变量,不完成任何计算 ,只为下一层传递信息。
输出层生成最终结果,为网络送给外部系 统的结果值。
13
隐藏层介于输入层和输出层之间,这些层 完全用于分析,其函数联系输入层变量和 输出层变量,使其更拟合(fit)资料。
隐藏层的功能主要是增加类神经网络的复 杂性,以能够模拟复杂的非线性关系。
一个神经元 j,有阈值,从上一层连接的 神经元得到n个输入变量X,每个输入变 量附加一个链接权重w。
输入变量将依照不同权重加以合并(一般 是加权总和),链接成组合函数( combination function),组合函数的值称 为电位(potential);然后,启动(转换 、激活、赋活)函数(activation function) 将电位转换成输出信号。
隐藏层的多少要适当,过多容易过度拟合 。
一层加权神经元的网络称单层感知器,多 层加权神经元的网络称多层感知器( multi-layer perceptrons)。
14
神经网络的形式:
一个 输出 元的 两层 神经 网络
15
一 个输 出元 的三 层神 经网 络
16
多个输出元的三层神经网络
17
三、神经元的结构
类神经网络可以处理连续型和类别型的数 据,对数据进行预测。
20
2.阶梯(step)启动函数的一般形式:
f Ij
,Ij 0 ,Ij 0
阶梯启动函数又称阈值(threshold)启动函
数。当 时1,,得0到
1
f Ij 0
,Ij 0 ,Ij 0
输入层只从外部环境接收信息,该层的每 个神经元相当于自变量,不完成任何计算 ,只为下一层传递信息。
输出层生成最终结果,为网络送给外部系 统的结果值。
13
隐藏层介于输入层和输出层之间,这些层 完全用于分析,其函数联系输入层变量和 输出层变量,使其更拟合(fit)资料。
隐藏层的功能主要是增加类神经网络的复 杂性,以能够模拟复杂的非线性关系。
一个神经元 j,有阈值,从上一层连接的 神经元得到n个输入变量X,每个输入变 量附加一个链接权重w。
输入变量将依照不同权重加以合并(一般 是加权总和),链接成组合函数( combination function),组合函数的值称 为电位(potential);然后,启动(转换 、激活、赋活)函数(activation function) 将电位转换成输出信号。
隐藏层的多少要适当,过多容易过度拟合 。
一层加权神经元的网络称单层感知器,多 层加权神经元的网络称多层感知器( multi-layer perceptrons)。
14
神经网络的形式:
一个 输出 元的 两层 神经 网络
15
一 个输 出元 的三 层神 经网 络
16
多个输出元的三层神经网络
17
三、神经元的结构
类神经网络可以处理连续型和类别型的数 据,对数据进行预测。
神经网络基础PPT课件
AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。
神经网络基本介绍ppt课件.ppt
电路系统实现,或用现有的计算机技术实现; (5)能进行学习,以适应环境的变化。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络控制的研究领域
(1)基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络辨识的特点
• 不要求建立实际系统的辨识格式,即可省去系统结构建模这一步 骤;
• 可以对本质非线性系统进行辨识; • 辨识的收敛速度不依赖于待辨识系统的维数,只于神经网络本身
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
图 单个神经元的解剖图
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经元由三部分构成: (1)细胞体(主体部分):包括细胞质、 细胞膜和细胞核; (2)树突:用于为细胞体传入信息; (3)轴突:为细胞体传出信息,其末端是 轴突末梢,含传递信息的化学物质; (4)突触:是神经元之间的接口( 104~105个/每个神经元)。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络控制的研究领域
(1)基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经网络辨识的特点
• 不要求建立实际系统的辨识格式,即可省去系统结构建模这一步 骤;
• 可以对本质非线性系统进行辨识; • 辨识的收敛速度不依赖于待辨识系统的维数,只于神经网络本身
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
图 单个神经元的解剖图
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
神经元由三部分构成: (1)细胞体(主体部分):包括细胞质、 细胞膜和细胞核; (2)树突:用于为细胞体传入信息; (3)轴突:为细胞体传出信息,其末端是 轴突末梢,含传递信息的化学物质; (4)突触:是神经元之间的接口( 104~105个/每个神经元)。
自组织神经网络36页PPT
60、人民的幸福是至高无个的法。— —西塞 罗
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
11 -180
6
24 -180
w1
7 8
24 -130 34 -130
w2
9
34 -100
10
44 -100
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
* *
*
* *
竞争学习原理
竞争学习规则——Winner-Take-All
2.寻找获胜神经元 当网络得到一个输入模式向量时, 竞争层的所有神经元对应的内星权向量均与其进行相 似性比较,并将最相似的内星权向量判为竞争获胜神 经元。
欲使两单位向量最相似,须使其点积最大。即:
W ˆj*TX ˆj { m 1,2,..m a.},(W x ˆjTX ˆ)
竞争学习规则——Winner-Take-All
X ˆ W ˆj* j m 1 ,2 ,.m . .iX ,ˆn W ˆj
X ˆW ˆj* (X ˆW ˆj*)T(X ˆW ˆj*)
X ˆTX ˆ2W ˆT j*X ˆW ˆT j*W ˆT j* 2(1WTj*X ˆ )
从上式可以看出,欲使两单位向量的欧式距离 最小,须使两向量的点积最大。即:
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
8
34 -130
w2
9
34 -100
10
44 -100
11
40.5 -100
12
40.5 -90
w1
13 14
43 -90 43 -81
15
47.5 -81
竞争层设两个权向量,随机初始化为单位向量: W1(0)1010o W2(0)01118o0
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
8
34 -130
w2
w1
9 10
34 -100 44 -100
5
11 -180
6
24 -180
7
24 -130
8
34 -130
w2
9
34 -100
10
44 -100
11
40.5 -100
12
40.5 -90
w1
13 14
43 -90 43 -81
15
47.5 -81
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
W j(t1)W ˆj(t)
jj*
步骤3完成后回到步骤1继续训练,直到学习率 衰减到0。
竞争学习的几何意义
☻*
*
*
*
竞争学习的几何意义
* Wˆ1
┆
** Wˆ j*
W (t) h(t)[ Xˆ p (t) Wˆ j* (t)]
*
Wˆ j* (t 1)
Xˆ p(t)
Wˆ j
Wˆ m
*
…
*
竞争学习游戏
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
w2
w1
8 9
10
34 -130 34 -100 44 -100
W ˆj*TX ˆj { m 1,2,..m a .},(W x ˆjTX ˆ)
竞争学习规则——胜者为王(Winner-Take-All)
3.网络输出与权值调整
1 j j*
oj
(t
1) 0
j j*
W j* ( t 1 ) W ˆj* ( t) W j* W ˆj* ( t)( t)(X ˆ W ˆj* )
[]第四章自组织神经网络
第四章 自组织神经网络
竞争层 输入层
自组织神经网络的典型结构
4.1.2 竞争学习原理
竞争学习规则——Winner-Take-All
网络的输出神经元之间相互竞争以求被 激活,结果在每一时刻只有一个输出神经元 被激活。这个被激活的神经元称为竞争获胜 神经元,而其它神经元的状态被抑制,故称
将一维样本空间的12个样本分为3类
竞争学习游戏
o1
o1
o1
w1
w2
w3
x
训练样本集
例4.1 用竞争学习算法将下列各模式分为2类:
X1
0.8 0.6
X2
00.1.9783468
X3
00..770077
X4
00..3943297 X5
00..68
解:为作图方便,将上述模式转换成极坐标形式 :
X1136.89o X2180oX31 4.4 5X4170oX5153.13o
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
为Winner Take All。
竞争学习规则——Winner-Take-All
1.向量归一化 首先将当前输入模式向量
X和竞争层中各神经元对应的内星向量Wj 全部进行归一化处理; (j=1,2,…,m)
Xˆ
X X
x1
n
x2j
j1
...
T
xn n x2j
j1Biblioteka 向量归一化之前*
*
* *
向量归一化之后
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
w2
w1
8 9
10
34 -130 34 -100 44 -100
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81