第四章自组织神经网络

合集下载

自组织竞争神经网络

自组织竞争神经网络

第23页
3.搜索阶段:
由Reset信号置获胜阶段无效开始,网络进入搜索 阶段。此时R为全0,G1=1 ,在C层输出端又得到了此 次输入模式X。所以,网络又进入识别及比较阶段,得 到新获胜节点(以前获胜节点不参加竞争)。这么重 复直至搜索到某一个获胜节点K,它与输入向量X充分 匹配到达满足要求为止。模式X编制到R层K节点所连 模式类别中,即按一定方法修改K节点自下而上和自上 而下权向量,使网络以后再碰到X或与X相近模式时, R层K节点能很快取得竞争胜利。若搜索了全部R层输 出节点而没有发觉有与X充分靠近模式,则增设一个R 层节点以表示X或与X相近模式。
⑥ 警戒线检测。设向量X中不为0个数用||X||表示,可
有 n || X || xi
n
||C'|| w' j *iXi i1
(5.3.1)
i 1
n
||C'|| w' j *iXi
(5.3.2)
i1
若||C||/||X||>成立,则接收j*为获胜节点,转⑦。
不然发Reset信号,置j*为0(不允许其再参加竞争),
信号1:输入X第i个分量Xi。 信号2:R层第j个单元自上而下返回信号Rj。 信号3:G1控制信号。 设C层第i个单元输出为Ci。 Ci依据“2/3规则”产 生,即Ci含有三个信号中多数相同值。 网络开始运行时, G1 =1,R层反馈信号为0。
自组织竞争神经网络
第18页
2.R 层结构:
R层功效结构相当于一个前向竞争网络,假设输出 层有m个节点,m类输入模式。输出层节点能动态增加, 以满足设置新模式类需要。设由C层自下而上连接到R 层第j个节点权向量用Wj={w1j,w2j,..,wnj} 表示。C层输出向量C沿Wj向前馈送,经过竞争在R层 输出端产生获胜节点,指示此次输入向量类别。

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本)这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我QQ:415295747,或者登录我的博客/u/17236977421.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别5 译者序6 前9 致谢10 作者简介11 目录19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战27 第2章神经网络基础和线性数据分析模型72 第3章用于非线性模式识别的神经网络105 第4章神经网对非线性模式的学习166 第5章从数据中抽取可靠模式的神经网络模型的实现205 第6章数据探测、维数约简和特征提取235 第7章使用贝叶斯统计的神经网络模型的不确定性评估276 第8章应用自组织映射的方法发现数据中的未知聚类359 第9章神经网络在时间序列预测中的应用458 附录2.MATLB 神经网络30个案例分析第1章BP神经网络的数据分类——语音特征信号分类23 第2章BP神经网络的非线性系统建模——非线性函数拟合33 第3章遗传算法优化BP神经网络——非线性函数拟合48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模66 第6章PID神经元网络解耦控制算法——多变量系统控制77 第7章RBF网络的回归——非线性函数回归的实现85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测93 第9章离散Hopfield神经网络的联想记忆——数字识别102 第10章离散Hopfield神经网络的分类——高校科研能力评价112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算124 第12章SVM的数据分类预测——意大利葡萄酒种类识别134 第13章SVM的参数优化——如何更好的提升分类器的性能145 第14章SVM的回归预测分析——上证指数开盘指数预测153 第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测165 第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测171 第17章SOM神经网络的数据分类——柴油机故障诊断182 第18章Elman神经网络的数据预测——电力负荷预测模型研究188 第19章概率神经网络的分类预测——基于PNN的变压器故障诊断195 第20章神经网络变量筛选——基于BP的神经网络变量筛选200 第21章LVQ神经网络的分类——乳腺肿瘤诊断210 第22章LVQ神经网络的预测——人脸朝向识别220 第23章小波神经网络的时间序列预测——短时交通流量预测230 第24章模糊神经网络的预测算法——嘉陵江水质评价241 第25章广义神经网络的聚类算法——网络入侵聚类248 第26章粒子群优化算法的寻优算法——非线性函数极值寻优255 第27章遗传算法优化计算——建模自变量降维270 第28章基于灰色神经网络的预测算法研究——订单需求预测280 第29章基于Kohonen网络的聚类算法——网络入侵聚类289 第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类2.MATLAB 神经网络仿真与应用章节信息7 目录15 第1章神经网络概述38 第2章感知神经网络64 第3章自组织竞争神经网络106 第4章BP神经网络143 第5章线性神经网络171 第6章径向基函数神经网络196 第7章反馈神经网络及MA TLAB实现228 第8章神经网络预测与控制273 第9章神经网络优化及故障诊断302 第10章图形用户界面设计334 参考文献4.混合神经网络技术7 目录11 第1章绪论26 第2章基础知识43 第3章BP神经网络70 第4章RBF神经网络84 第5章Hopfield神经网络96 第6章随机神经网络114 第7章遗传神经网络158 第8章粒子群神经网络193 第9章模糊神经网络244 第lO章混沌神经网络293 第11章小波神经网络331 第12章神经网络集成356 附录5.神经网络控制(第三版)7 目录13 第1章绪19 第2章神经网络理论基础63 第3章基于神经网络的系统辨识101 第4章神经网络控制142 第5章遗传算法与神经控制179 附录203 参考文献6.脉冲耦合神经网络与数字图像处理丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 数字图像处理出版者:科学出版社ISBN:978-7-03-022389-0出版地:北京出版日期:200807页数:3047 《智能科学技术著作丛书》序9 前13 目录21 第1章脉冲耦合神经网络50 第2章图像滤波及脉冲噪声滤波器77 第3章脉冲耦合神经网络在图像分割中的应用142 第4章脉冲耦合神经网络与图像编码185 第5章脉冲耦合神经网络与图像增强195 第6章脉冲耦合神经网络与图像融合210 第7章脉冲耦合神经网络与形态学245 第8章脉冲耦合神经网络在特征提取中的应用278 第9章脉冲耦合神经网络与数字图像签名技术292 第10章脉冲耦合神经网络与组合决策优化306 第11章脉冲耦合神经网络和小波变换322 参考文献7.混沌系统的模糊神经网络控制理论与方法主要责任者:谭文; 王耀南主题词:混沌学; 应用; 模糊控制; 神经网络出版者:科学出版社ISBN:978-7-03-021258-0出版地:北京出版日期:200805页数:2364 内容简介5 前7 目录13 第1章绪论37 第2章模糊神经网络控制理论基础70 第3章神经网络在混沌控制中的作用83 第4章基于径向基神经网络的非线性混沌控制99 第5章超混沌系统的模糊滑模控制111 第6章不确定混沌系统的模糊自适应控制120 第7章模糊神经网络在混沌时间序列预测中的应用134 第8章混沌系统的混合遗传神经网络控制150 第9章不确定混沌系统的模糊神经网络自适应控制165 第10章基于动态神经网络的混沌系统控制200 第11章基于线性矩阵不等式方法的混沌系统模糊控制223 第12章基于递归神经网络的不确定混沌系统同步245 结束语8. 智能预测控制及其MATLB 实现(第2版)丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:人工智能; 预测控制; 计算机辅助计算; 软件包出版者:电子工业出版社ISBN:978-7-121-10147-2出版地:北京出版日期:201001页数:3364 内容简介5 前7 目录13 第一篇神经网络控制及其MA TLAB实现13 第1章神经网络控制理论87 第2章MATLAB神经网络工具箱函数160 第3章基于Simulink的神经网络控制系统175 第二篇模糊逻辑控制及其MATLAB实现175 第4章模糊逻辑控制理论208 第5章MA TLAB模糊逻辑工具箱函数237 第6章模糊神经和模糊聚类及其MA TLAB实现267 第三篇模型预测控制及其MATLAB实现267 第7章模型预测控制理论281 第8章MA TLAB预测控制工具箱函数320 第9章隐式广义预测自校正控制及其MA TLAB实现334 附录A 隐式广义预测自校正控制仿真程序清单341 附录B MA TLAB函数一览表347 附录C MA TLAB函数分类索引349 参考文献9. 基于神经网络的优化设计及应用主要责任者:孙虎儿出版者:国防工业出版社ISBN:978-7-118-06282-3出版地:北京出版日期:200905页数:111目录11 第1章绪论11 1.1 优化设计发展概况20 1.2 信号处理的主要方法22 1.3 正交设计方法25 1.4 基于神经网络的立体正交优化设计概述28 第一篇基拙理论篇28 第2章基于小波变换的信号处理28 2.1 小波变换的源起与发展概述30 2.2 小波分析基础34 2.3 小波分析的工程解释35 2.4 基于小波分析的信号处理38 第3章神经网络结构的确定38 3.1 神经网络综论42 3.2 神经网络的基本原理47 3.3 人工神经网络的建模53 3.4 前馈型神经网络57 第4章正交设计法57 4.1 正交设计法的基本内容60 4.2 正交设计法的基本内容60 4.3 有交互作用的正交设计法63 4.4 方差分析法67 第二篇创新篇67 第5章立体正交表67 5.1 建立立体正交表70 5.2 立体正交表的基本性质71 5.3 立体正交试验的误差分析75 第6章立体正交优化设计75 6.1 立体正交优化设计概述77 6.2 立体正交优化设计的建模基础78 6.3 立体正交优化设计的特点79 6.4 立体正交设计的步骤及实现85 第三篇实践篇85 第7章液压振动筛参数优化设计与试验85 7.1 振动筛基本原理89 7.2 试验台设计91 7.3 模拟试验101 7.4 液压振动筛参数的立体正交优化设计108 第8章液压激振压路机的液压振动系统优化108 8.1 液压激振压路机基本原理110 8.2 液压振动轮的模型试验117 参考文献10.神经网络稳定性理论主要责任者:钟守铭; 刘碧森; 王晓梅; 范小明主题词:人工神经网络; 运动稳定性理论; 高等学校; 教材出版者:科学出版社ISBN:978-7-03-02116-2出版地:北京出版日期:200806页数:289内容简介5 前7 目录11 第1章绪论73 第2章Hopfield型神经网络的稳定性97 第3章细胞神经网络的稳定性150 第4章二阶神经网络的稳定性212 第5章随机神经网络的稳定性243 第6章神经网络的应用291 参考文献11. 神经模糊控制理论及应用丛书题名:自动控制技术应用丛书主要责任者:李国勇主题词:神经网络; 应用; 模糊控制出版者:电子工业出版社ISBN:978-7-121-07537-7出版地:北京出版日期:200901页数:3326 目录10 第一篇神经网络理论及其MA TLAB实现12 第1章神经网络理论77 第2章MATLAB神经网络工具箱191 第3章神经网络控制系统218 第二篇模糊逻辑理论及其MATLAB实现220 第4章模糊逻辑理论258 第5章MA TLAB模糊逻辑工具箱295 第6章模糊神经和模糊聚类及其MA TLAB实现327 附录A MA TLAB程序清单334 附录B MA TLAB函数一览表340 附录C MA TLAB函数分类索引342 参考文献12.时滞递归神经网络主要责任者:王林山主题词:时滞; 递归论; 神经网络出版者:科学出版社ISBN:978-7-03-020533-9出版地:北京出版日期:200804页数:254出版说明9 前言13 目录15 第1章概述29 第2章几类递归神经网络模型44 第3章时滞局域递归神经网络的动力行为116 第4章时滞静态递归神经网络的动力行为154 第5章时滞反应扩散递归神经网络的动力行为214 第6章时滞反应扩散方程的吸引子与波动方程核截面的Hausdorff维数估计244 第7章Ляпунов定理的推广与矩阵微分方程的渐近行为研究265 索引13. 神经网络实用教程丛书题名:普通高等教育“十一五”规划教材主要责任者:张良均; 曹晶; 蒋世忠主题词:人工神经元网络; 高等学校; 教材出版者:机械工业出版社ISBN:978-7-111-23178-3出版地:北京出版日期:200802页数:1840001 7 目录0002 5 前言0003 11 第1章人工神经网络概述0004 19 第2章实用神经网络模型与学习算法0005 83 第3章神经网络优化方法0006 98 第4章nnToolKit神经网络工具包0007 135 第5章MA TLAB混合编程技术0008 175 第6章神经网络混合编程案例0009 181 附录2NDN神经网络建模仿真工具0010 194 参考文献14.细胞神经网络动力学主要责任者:黄立宏; 李雪梅主题词:神经网络; 细胞动力学; 生物数学出版者:科学出版社ISBN:978-7-03-018109-1出版地:北京出版日期:200704页数:3334 内容简介5 前7 目录9 第一章细胞神经网络的模型及基本概念30 第二章基本理论60 第三章细胞神经网络的完全稳定性118 第四章细胞神经网络的全局渐近稳定性和指数稳定性176 第五章细胞神经网络的周期解与概周期解242 第六章细胞神经网络的动力学复杂性285 第七章一维细胞神经网络的动力学性质322 参考文献15. 人工神经网络基础丛书题名:研究生用教材主要责任者:丁士圻; 郭丽华主题词:人工神经元网络出版者:哈尔滨工程大学出版社ISBN:978-7-81133-206-3出版地:哈尔滨出版日期:200803页数:2084 内容简介5 前7 目录9 第1章绪论44 第2章前向多层网络86 第3章Hopfield网络110 第4章波尔兹曼机(BM)网络简介131 第5章自组织特征映射网络(SOFM)163 第6章ART网络197 第7章人工神经网络的软件实践和仿真15.智能控制理论及应用丛书题名:国家精品课程教材主要责任者:师黎; 陈铁军; 等主题词:智能控制出版者:清华大学出版社ISBN:978-7-302-16157-8出版地:北京出版日期:200904页数:408目录17 第1章绪论30 第2章模糊控制91 第3章模糊建模和模糊辨识118 第4章神经网络控制227 第5章模糊神经网络259 第6章专家系统301 第7章遗传算法333 第8章蚁群算法351 第9章DNA计算与基于DNA的软计算389 第10章其他智能控制16. 人工神经网络及其融合应用技术∙丛书题名:智能科学技术著作丛书∙主要责任者:钟珞 ; 饶文碧 ; 邹承明∙主题词:人工神经元网络 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-018325-5∙出版地:北京∙出版日期:200701∙页数:1607 目录13 第1章绪论24 第2章前馈型神经网络47 第3章反馈型神经网络58 第4章自组织型神经网络72 第5章量子神经网络81 第6章神经网络与遗传算法103 第7章神经网络与灰色系统123 第8章神经网络与专家系统139 第9章模糊神经网络159 参考文献164 附录Matlab简介17.智能技术及其应用:邵世煌教授论文集∙主要责任者:丁永生 ; 应浩 ; 等∙主题词:人工智能 ; 文集∙出版者:科学出版社∙ISBN:978-7-03-023230-4∙出版地:北京∙出版日期:200902∙页数:573目录15 治学之路,开拓之道117 解析模糊控制理论:模糊控制系统的结构和稳定性分析127 不同模糊逻辑下模糊控制器的解析结构134 一个基于“类神经元”模型的智能控制系统及其在柔性臂上的应用研究142 交通系统的模糊控制及其神经网络实现149 采用遗传算法学习的神经网络控制器164 一种采用增强式学习的模糊控制系统研究169 基因算法及其在最优搜索上的应用191 DNA计算与软计算199 采用DNA遗传算法优化设计的TS模糊控制系统206 DNA计算研究的现状与展望223 混沌系统的一种自学习模糊控制228 用遗传算法引导混沌轨道405 模糊环境的表示及机器人轨迹规划409 多变地形下机器人路径规划415 一个环境知识的自学习方法444 含有模糊和随机参数的混合机会约束规划模型469 基于规则的模糊离散事件系统建模与控制研究491 基于最优HANKEL范数近似的线性相位IIR滤波器设计507 自适应逆控制的异步电机变频调速系统研究514 带有神经网络估计器的模糊直接转矩控制551 基于移动Agent的数字水印跟踪系统的设计和实现573 采用元胞自动机机理的针织电脑编织系统591 语词计算的广义模糊约束及其传播研究598 后记18.人工神经网络原理及应用∙丛书题名:现代计算机科学技术精品教材∙主要责任者:朱大奇 ; 史慧∙主题词:人工神经元网络∙出版者:科学出版社∙ISBN:7-03-016570-5∙出版地:北京∙出版日期:200603∙页数:218目录12 第1章人工神经网络的基础知识44 第2章BP误差反传神经网络76 第3章Hopfield反馈神经网络104 第4章BAM双向联想记忆神经网络117 第5章CMAC小脑神经网络139 第6章RBF径向基函数神经网络155 第7章SOM自组织特征映射神经网络175 第8章CPN对偶传播神经网络190 第9章ART自适应谐振理论210 第10章量子神经网络19.软计算及其应用要责任者:温显斌; 张桦; 张颖等主题词:电子计算机; 计算方法出版者:科学出版社ISBN:978-7-03-023427-8出版地:北京出版日期:200902页数:189前7 目录11 第1章绪论24 第2章模拟退火算法45 第3章人工神经网络93 第4章遗传算法138 第5章支持向量机162 第6章模糊计算20计算智能与科学配方∙主要责任者:冯天瑾 ; 丁香乾∙其他责任者:杨宁 ; 马琳涛∙主题词:人工智能 ; 神经网络 ; 计算 ; 研究∙出版者:科学出版社∙ISBN:978-7-03-020603-9∙出版地:北京∙出版日期:200801∙页数:272前10 目录16 第一章绪论38 第二章产品配方与感觉品质评估65 第三章神经网络与感觉评估99 第四章知识发现与复杂相关性分析154 第五章模式识别与原料分类187 第六章支持向量机方法214 第七章进化计算配方寻优方法243 第八章计算智能的若干哲理256 第九章人机交互智能配方系统278 参考文献287 致谢21.计算智能与计算电磁学主要责任者:田雨波; 钱鉴主题词:人工智能; 神经网络; 计算; 研究出版者:科学出版社ISBN:978-7-03-021201-6出版地:北京出版日期:200804页数:2337 目录11 第1章绪论19 第2章遗传算法基本原理50 第3章遗传算法电磁应用98 第4章模糊理论基本原理122 第5章神经网络基本原理188 第6章神经网络电磁应用235 附录1 计算智能和计算电磁学相关网站236 附录2 相关程序22.脉冲耦合神经网络原理及其应用丛书题名:智能科学技术著作丛书主要责任者:马义德主题词:神经网络; 理论; 应用出版者:科学出版社ISBN:7-03-016657-4出版地:北京出版日期:200604页数:1826 内容简介9 《智能科字技术著作丛书》库11 前15 目录19 第1章神经网络图像处理技术34 第2章PCNN模型及其应用概述49 第3章PCNN在图像滤波中的应用66 第4章PCNN在图像分割中的应用120 第5章PCNN在图像编码中的应用137 第6章PCNN与图像增强152 第7章PCNN与粗集理论、形态学和小波变换182 第8章PCNN的其他应用23.人工神经网络教程主要责任者:韩力群主题词:人工神经元网络; 研究生; 教材出版者:北京邮电大学出版社ISBN:7-5635-1367-1出版地:北京出版日期:200612页数:3307 序9 目录17 第1章绪论38 第2章人工神经网络建模基础63 第3章感知器神经网络100 第4章自组织竞争神经网络143 第5章径向基函数神经网络162 第6章反馈神经网络192 第7章小脑模型神经网络201 第8章支持向量机218 第9章遗传算法与神经网络进化237 第10章神经网络系统设计与软硬件实现267 第11章人工神经系统281 附录A 常用算法的MA TLAB程序298 附录B 常用神经网络源程序340 附录C 神经网络常用术语英汉对照344 参考文献24.神经网络专家系统主要责任者:冯定主题词:人工神经元网络出版者:科学出版社ISBN:7-03-017734-7出版地:北京出版日期:200609页数:3487 目录11 第1章从专家系统到神经网络专家系统22 第2章神经网络设计75 第3章数据的前后处理94 第4章神经网络专家系统中的模糊数146 第5章基于神经网络的知识表示199 第6章机器学习218 第7章基于神经网络的推理251 参考文献254 附录神经网络源程序25.神经网络新理论与方法主要责任者:张代远主题词:人工神经元网络出版者:清华大学出版社ISBN:7-302-13938-5出版地:北京出版日期:200611页数:1259 目录11 第1章概论17 第2章基本概念24 第3章实神经网络的代数算法44 第4章全局最小值分析51 第5章复数神经网络的代数算法61 第6章样条权函数神经网络及其学习算法124 第7章神经网络的统计灵敏度分析26.人工神经网络算法研究及应用主要责任者:田景文; 高美娟主题词:人工神经元网络; 计算方法; 研究出版者:北京理工大学出版社ISBN:7-5640-0786-9出版地:北京出版日期:200607页数:2837 目录9 第1章绪论32 第2章人工神经网络49 第3章改进遗传算法的径向基函数网络方法研究及应用95 第4章小波变换及小波神经网络方法研究及应用140 第5章模糊神经网络方法研究及应用189 第6章改进的模拟退火人工神经网络方法研究及应用235 第7章支持向量机方法研究及应用278 第8章结论281 参考文献27.神经计算与生长自组织网络主要责任者:程国建主题词:人工神经元网络; 计算; 自组织系统出版者:西安交通大学出版社ISBN:978-7-5605-2979-0出版地:西安出版日期:200810页数:242内容简介5 作者简介7 前17 目录23 第1章神经计算概述37 第2章人工神经网络的基本结构及其特性56 第3章神经感知器69 第4章自适应线性元件87 第5章多层前馈神经网络105 第6章径向基函数网络118 第7章古典生长型神经网络135 第8章生长型自组织神经网络158 第9章生长神经元结构及其变种182 第10章外生长型神经元结构206 第11章多生长神经元结构230 第12章双生长神经气网络252 参考文献28.神经计算原理丛书题名:计算机科学丛书主要责任者:(美)科斯塔尼克其他责任者:叶世伟; 王海娟主题词:突然南宫神经元网络; 计算出版者:机械工业出版社ISBN:978-7-111-20637-8出版地:北京出版日期:200705页数:491出版者的话7 专家指导委员会8 译者序9 前12 致谢13 重要符号和算符17 重要缩写词20 目录25 第一部分神经计算的基本概念和部分神经网络体系结构及其学习规则25 第1章神经计算概述40 第2章神经计算的基本概念95 第3章映射网络144 第4章自组织网络168 第5章递归网络和时间前馈网络201 第二部分神经计算的应用201 第6章用神经网络解决最优化问题238 第7章用神经网络解决矩阵代数问题275 第8章使用神经网络求解线性代数方程组318 第9章使用神经网络的统计方法372 第10章使用神经网络进行辨识、控制和枯计435 附录A 神经计算的数学基础497 主题索引29. 人工神经网络与模拟进化计算主要责任者:阎平凡主题词:人工神经元网络; 计算出版者:清华大学出版社ISBN:7-302-10663-0出版地:北京出版日期:200509页数:639出版说明9 前11 第一版前15 目录27 第1章绪论37 第2章前馈网络77 第3章径向基函数网络112 第4章学习理论与网络结构选择166 第5章核方法与支持向量机210 第6章自组织系统(Ⅰ)236 第7章自组织系统(Ⅱ)271 第8章自组织系统(Ⅲ)302 第9章动态信号与系统的处理361 第10章多神经网络集成386 第11章反馈网络与联想存储器424 第12章神经网络用于优化计算441 第13章神经网络中的动力学问题463 第14章误差函数与参数优化方法487 第15章贝叶斯方法505 第16章神经网络在信号处理中的应用552 第17章进化计算概论与进化策略575 第18章遗传算法及其理论分析596 第19章遗传算法的设计与实现619 第20章遗传算法在神经网络中的应用626 第21章遗传算法在作业调度中的应用636 第22章分布估计算法660 索引30.人工神经网络与盲信号处理主要责任者:杨行竣; 郑君里主题词:人工神经元网络; 信号处理; 应用; 人工神经元网络出版者:清华大学出版社ISBN:7-302-05880-6出版地:北京出版日期:200301页数:3997 目录11 第1章绪论33 第2章前向多层神经网络与递归神经网络123 第3章自组织神经网络163 第4章Hopfield神经网络244 第5章模糊神经网络311 第6章遗传算法及其在人工神经网络中的应用337 第7章盲信号处理31.人工神经网络理论、设计及应用(第二版)主要责任者:韩力群主题词:人工神经元网络; 高等学校; 教材出版者:化学工业出版社ISBN:978-7-5025-9523-4出版地:北京出版日期:2000709页数:2437 前9 目录15 1 绪论34 2 神经网络基础知识52 3 监督学习神经网络85 4 竞争学习神经网络121 5 组合学习神经网络133 6 反馈神经网络168 7 小脑模型神经网络178 8 基于数学原理的神经网络207 9 神经网络的系统设计与软件实现220 10 神经网络研究展望223 附录1 常用神经网络C语言源程序254 附录2 神经网络常用术语英汉对照256 参考文献。

人工智能控制技术课件:神经网络控制

人工智能控制技术课件:神经网络控制
进行的,这种排列往往反映所感受的外部刺激的某些物理特征。
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之


,

,

,

)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2


W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统

自组织竞争神经网络

自组织竞争神经网络

dj =
n
∑ (x
i =1
i
− wi j ) 2
∆wi j = η h( j , j*)( xi − wi j )
j − j*2 h ( j , j *) = exp − σ2

自组织竞争神经网络算法能够进行有效的自适应分类,但它仍存在一些问题: 学习速度的选择使其不得不在学习速度和最终权值向量的稳定性之间进行折中。 有时有一个神经元的初始权值向量离输入向量太远以至于它从未在竞争中获胜, 因 此也从未得到学习,这将形成毫无用处的“死”神经元。
网络结构
%1.ÎÊÌâÌá³ö X=[0 1;0 1]; clusters=8; points=10; std_dev=0.05; P=nngenc(X,clusters,points,std_dev); plot(P(1,:),P(2,:),'+r'); title('ÊäÈëÏòÁ¿'); xlabel('P(1)'); ylabel('P(2)'); %2.ÍøÂçÉè¼Æ net=newc([0 1;0 1],8,.1) w=net.IW{1}; plot(P(1,:),P(2,:),'+r'); hold on; circle=plot(w(:,1),w(:,2),'ob') %3.ÍøÂçѵÁ· net.trainParam.epochs=7; net=train(net,P) w=net.IW{1}; delete(circle); plot(w(:,1),w(:,2),'ob'); %4.ÍøÂç²âÊÔ p=[0.5;0.2]; a=sim(net,p)

神经网络精选全文完整版

神经网络精选全文完整版

概述
神经网络的发展简史
初创(1943—1969) 1943年,McCulloch和Pitts 提出了M-P模型 1949年,Hebb提出Hebb学习规则 1957年,Rosenblatt提出感知器(perceptrons) 1969年,Minsky和Papert发表“Perceptrons”
x
(0) p2
x
(0) p, n0
T
d p d p1 d p1 d p,nQ T
( p 1,2, P)
利用该样本集首先对BP网络进行训练,也即对网络的连接权系数 进行学习和调整,以使该网络实现给定的输入输出映射关系。
i
2) 误差函数
e 1 2
k
(yˆ k yk )2
yˆ, y 分别表示输出层上节点k的期望输出与实
际输出
3) 连接权值的修正
w jk (t 1) w jk (t) w jk
wjk(t+1)和wjk(t)分别表示t+1和t时刻上从 节点j到节点k的连接权值, ∆wjk为修正量。
为了使连接权值沿着e的梯度变化方向得以改 善,网络逐渐收敛,取
e 1
2
( yˆk
yk )2
e yk
( yˆ
y)
又 yk netk
f
' (netk )
k ( yˆ k yk ) f ' (netk )
节点k不是输出层上的节点
k
e netk
e Ok
Ok netk
又 e Ok
m
mwkm
Ok netk
f ' (netk )
k f ' (netk ) mwkm
Y
N

竞争型神经网络与自组织神经网络

竞争型神经网络与自组织神经网络

竞争型神经网络是基于无监督学习的神经网络的一种重要类型,作为基本的网络形式,构成了其他一些具有组织能力的网络,如学习向量量化网络、自组织映射网络、自适应共振理论网络等。

与其它类型的神经网络和学习规则相比,竞争型神经网络具有结构简单、学习算法简便、运算速度快等特点。

竞争型神经网络模拟生物神经网络系统依靠神经元之间的兴奋、协调与抑制、竞争的方式进行信息处理。

一个竞争神经网络可以解释为:在这个神经网络中,当一个神经元兴奋后,会通过它的分支对其他神经元产生抑制,从而使神经元之间出现竞争。

当多个神经元受到抑制,兴奋最强的神经细胞“战胜”了其它神经元的抑制作用脱颖而出,成为竞争的胜利者,这时兴奋最强的神经元的净输入被设定为 1,所有其他的神经元的净输入被设定为 0,也就是所谓的“成者为王,败者为寇”。

一般说来,竞争神经网络包含两类状态变量:短期记忆变元(STM)和长期记忆变元(LTM)。

STM 描述了快速变化的神经元动力学行为,而 LTM 描述了无监督的神经细胞突触的缓慢行为。

因为人类的记忆有长期记忆(LTM)和短期记忆(STM)之分,因此包含长时和短时记忆的竞争神经网络在理论研究和工程应用中受到广泛关注。

竞争性神经网络模型图自组织特征映射神经网络(简称SOM),是由输入层和输出层组成的单层神经网络,主要用于对输入向量进行区域分类。

SOM是一种无导师聚类,能将一维输入模式在输出层映射成二维离散图形,此图形分布在网格中,网格大小由m*n 表示,并保持其拓扑结构不变,从而使有相似特征的神经元彼此靠近,不同特征的神经元彼此远离,最终实现区分识别样品的目的。

SOM 通过学习输入向量的分布情况和拓扑结构,靠多个神经元的协同作用来完成模式分类。

当神经网络接受外界输入模式时,神经网络就会将其分布在不同的对应区域,并且记忆各区域对输入模式的不同响应特征,使各神经元形成有序的空间分布。

当输入不同的样品光谱时,网络中的神经元便随机兴奋,经过SOM 训练后神经元在输出层有序排列,作用相近的神经元相互靠近,作用不同的神经元相互远离。

自组织特征映射神经网络研究与应用

自组织特征映射神经网络研究与应用

自组织特征映射神经网络研究与应用自组织特征映射神经网络,又称Kohonen网络,在机器学习领域中具有广泛的研究和应用价值。

它是由芬兰科学家Teuvo Kohonen于1982年提出的,用来解决模式分类和聚类问题。

本文将分别从网络结构、学习规则、应用场景等多个角度来介绍自组织特征映射神经网络的研究与应用。

一、网络结构自组织特征映射神经网络是一种有两层或多层的神经元组成的全连接网络,其特点是每个神经元与输入节点全连接,但只有部分神经元与输出节点连接,这些与输出节点相连接的神经元被称作胜者神经元。

胜者神经元的选择根据输入数据与神经元之间的权值距离进行,即越接近输入数据的神经元越容易胜出。

自组织特征映射神经网络的网络结构简单,但它可以通过适当调整参数,从而实现多种复杂的函数映射。

在具体应用中,还可以采用层级结构的自组织特征映射神经网络,对于复杂的数据集,可以通过层层处理,逐步提取其更高层次的特征。

二、学习规则自组织特征映射神经网络的学习规则是基于竞争性学习的,其原理是将输入数据投影到高维空间中的低维网格上,使其可以进行分类和聚类。

其学习过程中所用的算法有两种:批处理算法和在线算法。

批处理算法在每个Epoth后,在一个批次中对全部样本进行训练,并更新权值,从而可以获得更稳定的结果,但训练时间较长。

而在线算法则是对每个样本逐个进行学习,因此训练速度较快,但结果相对不稳定。

在学习过程中,自组织特征映射神经网络会通过不断调整权值,形成特征抽取与分类能力强的模型。

其学习的结果可以通过可视化方式,将数据点在网格上的分布呈现出来,形成热图的形式,便于分析与理解。

三、应用场景自组织特征映射神经网络在数据挖掘、图像处理、生物信息学等领域都有着广泛的应用。

在图像处理领域中,可以通过自组织特征映射神经网络对图像进行压缩和分类。

在数据挖掘方面,自组织特征映射神经网络可用于数据聚类和数据可视化。

通过自组织特征映射神经网络,大量数据可以被投射到低维空间,并形成可视化热图,从而能够更好地理解数据的分布规律。

自组织神经网络

自组织神经网络
11
自组织特征映射(SOFM)模型
自组织特征映射模型也称为Kohonen网络.或者称为Selforganizing map,由芬兰学者Teuvo Kohonen于1981年提 出。该网络是一个由全互连的神经元阵列形成的无教师自组 织自学习网络。Kohonen认为,处于空间中不同区域的神经 元有不同的分工,当一个神经网络接受外界输入模式时,将 会分为不同的反应区域,各区域对输入模式具有不同的响应 特征。
对这种竞争学习算法进行的模式分类,有时依赖于初始的 权值以及输入样本的次序。要得到较好的训练结果,例如图所 示的模式分类,网络应将其按Hamming距离分为三类。
9
竞争学习网络特征
假如竞争层的初始权值都是相 同的,那么竞争分类的结果 是:首先训练的模式属于类 1,由竞争单元1表示;随后训 练的模式如果不属于类1,它 就使竞争单元2表示类2;剩下 的不属于前两类的模式使单元3 获胜,为类3。假如不改变初始 权值分布,只改变模式的训练顺 序,这可能使竞争层单元对模式影响分类响应不一样,此时获胜 的竞争单元1有可能代表类2或3,这种顺序上的不一样会造成分 类学习很不稳定,会出现对同一输入模式在不同的迭代时有不同 的响应单元,分类结果就产生振荡。
10
竞争学习网络特征
竞争学习网络所实现的模式分类情况与典型的BP网络分类有 所不同。BP网络分类学习必须预先知道将输入模式分为几个类别, 而竞争网络将给定的模式分为几类预先并不知道,只有在学习后 才能确定。
竞争学习网络也存在一些局限性: (1)只用部分输入模式训练网络,当用一个明显不同的新 的输入模式进行分类时,网络的分类能力可能会降 低,甚至无法对其进行分类,这是由于竞争学习网络 采用的是非推理方式调节权值。 (2)竞争学习对模式变换不具备冗余性,其分类不是大 小、位移、旋转不变的,从结构上也不支持大小、 位移、旋转不变的分类模式。因此在使用上通常利用 竞争学习的无监督性,将其包含在其它网络中。

自组织神经网络

自组织神经网络
详细描述
自组织神经网络通常包含大量的神经元和参数,这使得训练过程变得非常耗时。传统的 优化算法往往需要长时间的迭代才能找到最优解,这限制了自组织神经网络的应用范围。
泛化能力不足
总结词
自组织神经网络的泛化能力不足是另一个挑 战,这主要是由于其容易过拟合训练数据。
详细描述
由于自组织神经网络具有强大的拟合能力, 它很容易过拟合训练数据,导致对测试数据 的泛化能力下降。这限制了自组织神经网络 在实际问题中的应用效果。
缺乏有效的学习规则
总结词
目前自组织神经网络缺乏有效的学习规则, 这限制了其自适应能力和进化速度。
详细描述
自组织神经网络的学习规则决定了其结构和 参数的调整方式,但目前大多数学习规则的 效果并不理想。如何设计更有效的学习规则 ,以提高自组织神经网络的自适应能力和进
化速度,是当前研究的重点之一。
未来发展方向与趋势
K-均值聚类算法
总结词
K-均值聚类算法是一种无监督的机器学 习算法,用于将输入数据划分为K个聚类 。
VS
详细描述
K-均值聚类算法通过迭代的方式将输入数 据划分为K个聚类,每个聚类由其质心表 示。算法通过计算每个数据点到各个质心 的距离,将数据点划分到最近的质心所在 的聚类中,并更新质心位置。K-均值聚类 算法具有简单、高效的特点,广泛应用于 数据挖掘、图像分割和机器视觉等领域。
自适应共振理论模型
总结词
自适应共振理论模型是一种基于自适应滤波原理的神经网络模型,能够自适应地学习和识别输入数据 中的模式。
详细描述
自适应共振理论模型通过调整神经元之间的连接权重,使得神经网络能够自适应地跟踪和识别输入数 据中的模式。该模型具有较强的鲁棒性和适应性,能够处理噪声和异常值,广泛应用于信号处理、语 音识别和自然语言处理等领域。

自组织特征映射神经网络

自组织特征映射神经网络

结合深度学习
1 2
深度自组织特征映射
将深度学习技术与自组织特征映射相结合,通过 逐层特征提取和抽象,提高分类精度和特征表达 能力。
卷积自组织特征映射
借鉴卷积神经网络的思想,设计卷积层和池化层, 对输入数据进行局部特征提取和空间信息的保留。
3
循环自组织特征映射
结合循环神经网络,实现序列数据的自组织特征 映射,解决序列分类和时间序列预测问题。
05 自组织特征映射神经网络 的发展趋势与未来展望
改进算法
优化学习率调整
通过动态调整学习率,提高神经网络的收敛速度和稳定性,减少 训练时间。
引入正则化技术
通过正则化技术,如L1、L2正则化,防止过拟合,提高模型的泛 化能力。
集成学习与多模型融合
将多个自组织特征映射神经网络集成在一起,通过多模型融合提高 分类性能。
跨领域应用拓展
01
02
03
图像识别
应用于图像分类、目标检 测等任务,提高图像处理 的自动化和智能化水平。
语音识别
应用于语音信号的特征提 取和分类,实现语音识别 系统的优化。
自然语言处理
应用于文本分类、情感分 析、机器翻译等任务,推 动自然语言处理技术的发 展。
06 自组织特征映射神经网络 与其他神经网络的比较
数据输入
卷积神经网络(CNN)特别适合处理图像等具有网格结构的数据,而SOM则适用于 各种类型的数据,包括图像、文本和数值数据。
拓扑结构
CNN的神经元排列具有固定的层次结构,而SOM的神经元可以形成任意拓扑结 构,这使得SOM在某些任务上具有更大的灵活性。
THANKS FOR WATCHING
感谢您的观看
特征提取
信息检索

自组织特征映射神经网络

自组织特征映射神经网络

邻域规则
获胜神经元的权重会根据 邻域内其他神经元的权重 进行更新,以实现特征的 映射和聚类。
调整权重的规则
根据输入样本与获胜神经 元的相似度,调整获胜神 经元的权重,以逐渐提高 网络的分类和聚类能力。
网络结构
输入层
接收外部输入数据,并将其传递给竞争层。
输出层
将竞争层的输出结果进行线性组合,得到网 络的最终输出。
通过训练,自组织特征映射神经网络能够学习到图像中的特征,并根据这些特征进行分 类和识别。在图像识别任务中,自组织特征映射神经网络可以用于人脸识别、物体识别
、车牌识别等。
语音识别
总结词
自组织特征映射神经网络在语音识别领域也展现出强大的能力,能够处理语音 信号并提取出关键特征。
详细描述
通过训练,自组织特征映射神经网络能够学习到语音信号中的特征,如音高、 音长、音色等,并根据这些特征进行语音识别。在语音识别任务中,自组织特 征映射神经网络可以用于语音转文字、语音搜索等应用。
自组织特征映射神经网络的早期实现是基于模拟神经元和突触的硬件和 软件系统,随着计算机技术的发展,逐渐发展成为基于数字信号处理的
神经网络模型。
近年来,随着深度学习技术的兴起,自组织特征映射神经网络得到了进 一步的发展和应用,出现了许多改进和变种的网络模型,如自编码器、 生成对抗网络等。
பைடு நூலகம்2
自组织特征映射神经网络 的基本原理
自组织特征映射神经网络在许多领域都有广泛的应用,如图像识别、语音识别、自 然语言处理、推荐系统等。
自组织特征映射神经网络具有高度的自适应性、鲁棒性和泛化能力,能够处理大规 模、高维度的数据,并且能够有效地降低数据的维度和复杂度。
自组织特征映射神经网络的发展历程

智能控制技术 第四章——人工神经元网络模型

智能控制技术 第四章——人工神经元网络模型

机械结构力学及控制国家重点实验室
18
4.1 引言
4.1.1 神经元模型
人工神经元:回顾历史
1982年,美国加州理工学院物理学家Hopfield提出了HNN神经 网络模型,对神经网络理论的发展产生了深远的影响。他引入了 “能量函数”的概念,使得网络稳定性研究有了明确的判决,并 应用与一些计算复杂度为NP完全型的问题,如著名的“巡回推销 员问题(TSP)”。 1984年,Hinton等人对Hopfield模型引入模拟退火方法,提出 了Boltzmann机模型。 1986年,Rumelhart提出了反向传播学习方法(BP算法),解 决了多层前向神经网络的学习问题,证明了多层前向网络具有很 强的学习能力。
4.1.2 神经网络的模型分类
目前,人工神经元网络模型的种类已经相当丰富,其中典型的有:
多层前向传播网络(BP神经网络)
Hopfield神经网络 CMAC小脑模型
BAM双向联系记忆
SOM自组织网络 Blotzman机构网络
Madaline网络
机械结构力学及控制国家重点实验室
前向网络的特点
xi

yk

从学习的观点来看,前馈网络是一种强有力的学习系统,其 结构简单而易于编程; 从系统的观点看,前馈网络是一静态非线性映射,通过简单 非线性处理单元的复合映射,可获得复杂的非线性处理能力。
机械结构力学及控制国家重点实验室
10
4.1 引言
4.1.1 神经元模型 生物学的神经网络——大脑 处理信息的效率极高
神经细胞之间电-化学信号的传递,与一台数字计算机中CPU的 数据传输相比,速度是非常慢的,但因神经细胞采用了并行的 工作方式,使得大脑能够同时处理大量的数据。例如,大脑视 觉皮层在处理通过我们的视网膜输入的一幅图象信号时,大约 只要100ms的时间就能完成。考虑到你的神经细胞的平均工作 频率只有100Hz,100ms的时间就意味只能完成10个计算步骤! 想一想通过我们眼睛的数据量有多大,你就可以看到这真是一 个难以置信的伟大工程了。

神经网络及BP与RBF比较

神经网络及BP与RBF比较

机器学习第四章神经网络报告一、神经网络概述1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实时学习的特点,它通过预先提供的一批相互对应的输入和输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。

人工神经网络(ANN)学习对于训练数据中的错误健壮性很好,且已被成功地应用到很多领域,例如视觉场景分析、语音识别、机器人控制以及医学图像处理等。

人工神经网络2.人工神经网络的特点及功能2.1人工神经网络具有以下几个突出的优点:(1)能充分逼近复杂的非线性关系。

只有当神经元对所有输入信号的综合处理结果超过某一个限值后才能输出一个信号。

(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,每个神经元及其连线只能表示一部分信息,因此当有节点断裂时也不影响总体运行效果,具有很强的鲁棒性和容错能力。

(3)采用并行分布处理方法,使得快速进行大量运算成为可能。

(4)可学习和自适应不知道或不确定的系统。

2.2人工神经网络的特点和优越性,使其具有以下三个显著的功能:(1)具有自学习功能:这种功能在图像识别和处理以及未来预测方面表现得尤为明显。

自学习功能在未来预测方面也意义重大,随着人工神经网络的发展,未来它将在更多的领域,比如经济预测、市场预测、效益预测等等,发挥更好的作用。

(2)具有联想存储功能:人的大脑能够对一些相关的知识进行归类划分,进而具有联想的功能,当我们遇到一个人或者一件事情的时候,跟此人或者此事相关的一些信息会浮现在你的脑海,而人工神经网络则通过它的反馈网络,实现一些相关事物的联想。

自组织映射知识

自组织映射知识

自组织映射(self-organizing feature mapping)自组织神经网络SOM(self-organization mapping net)是基于无监督学习方法的神经网络的一种重要类型。

自组织映射网络理论最早是由芬兰赫尔辛基理工大学Kohen于1981年提出的。

此后,伴随着神经网络在20世纪80年代中后期的迅速发展,自组织映射理论及其应用也有了长足的进步。

它是一种无指导的聚类方法。

它模拟人脑中处于不同区域的神经细胞分工不同的特点,即不同区域具有不同的响应特征,而且这一过程是自动完成的。

自组织映射网络通过寻找最优参考矢量集合来对输入模式集合进行分类。

每个参考矢量为一输出单元对应的连接权向量。

与传统的模式聚类方法相比,它所形成的聚类中心能映射到一个曲面或平面上,而保持拓扑结构不变。

对于未知聚类中心的判别问题可以用自组织映射来实现。

[1]自组织神经网络是神经网络最富有魅力的研究领域之一,它能够通过其输入样本学会检测其规律性和输入样本相互之间的关系,并且根据这些输入样本的信息自适应调整网络,使网络以后的响应与输入样本相适应。

竞争型神经网络的神经元通过输入信息能够识别成组的相似输入向量;自组织映射神经网络通过学习同样能够识别成组的相似输入向量,使那些网络层中彼此靠得很近的神经元对相似的输入向量产生响应。

与竞争型神经网络不同的是,自组织映射神经网络不但能学习输入向量的分布情况,还可以学习输入向量的拓扑结构,其单个神经元对模式分类不起决定性作用,而要靠多个神经元的协同作用才能完成模式分类。

学习向量量化LVQ(learning vector quantization)是一种用于训练竞争层的有监督学习(supervised learning)方法。

竞争层神经网络可以自动学习对输入向量模式的分类,但是竞争层进行的分类只取决于输入向量之间的距离,当两个输入向量非常接近时,竞争层就可能把它们归为一类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从上式可以看出,欲使两单位向量的欧式距离 最小,须使两向量的点积最大。即:
W ˆj*TX ˆj { m 1,2,..m a .},(W x ˆjTX ˆ)
第四章自组织神经网络
竞争学习规则——胜者为王(Winner-Take-All)
3.网络输出与权值调整
1 j j*
oj
(t
1) 0
j j*
W j* ( t 1 ) W ˆj* ( t) W j* W ˆj* ( t)( t)(X ˆ W ˆj* )
X Xi
类1
••
••
类2

••
T
••

(b)基于余弦法的相似性测量
第四章自组织神经网络
4.1.2 竞争学习原理
竞争学习规则——Winner-Take-All 网络的输出神经元之间相互竞争以求被
激活,结果在每一时刻只有一个输出神经元 被激活。这个被激活的神经元称为竞争获胜 神经元,而其它神经元的状态被抑制,故称
将不相似的分离开。
第四章自组织神经网络
4.1.1 基本概念
• 相似性测量_欧式距离法
X X i (X X i)T(X X i)
类1
类2
• •

• •
• T
(a)基于欧式距离的相似性测量
第四章自组织神经网络
• •
(b)基于
类2 • •

的相似性测量
4.1.1 基本概念
• 相似性测量_余弦法
cos XT Xi
19
43.5 -75
20
48.5 -75
第四章自组织神经网络
x5
训练 次数
1
W1
W2
18.43 -180
第四章 自组织神经网络
4.1竞争学习的概念与原理 4.2自组织特征映射神经网络
第四章自组织神经网络
第四章 自组织神经网络
竞争层 输入层
自组织神经网络的典型结构
第四章自组织神经网络
第四章 自组织神经网络
自组织学习(self-organized learning) : 通过自动寻找样本中的内在规律和本
W ˆj*TX ˆj { m 1,2,..m a.},(W x ˆjTX ˆ)
第四章自组织神经网络
竞争学习规则——Winner-Take-All
X ˆ W ˆj* j m 1 ,2 ,.m . .iX ,ˆn W ˆj
X ˆW ˆj* (X ˆW ˆj*)T(X ˆW ˆj*)
X ˆTX ˆ2W ˆT j*X ˆW ˆT j*W ˆT j* 2(1WTj*X ˆ )
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
8
34 -130
w2
w1
9 10
34 -100 44 -100
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -81
16
42
-81
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
7
24 -130
8
34 -130
w2
9
34 -100
10
44 -100
11
40.5 -100
12
40.5 -90
w1
13 14
43 -90 43 -81
15
47.5 -81
16
42
-81
x2
x4
17
42 -80.5
18
43.5 -80.5
Wˆ j
Wˆ m
*

*
第四章自组织神经网络
竞争学习游戏
将一维样本空间的12个样本分为3类
第四章自组织神经网络
竞争学习游戏
o1
o1
o1
w1
w2
w3
x
训练样本集
第四章自组织神经网络
例4.1 用竞争学习算法将下列各模式分为2类:
X1
0.8 0.6
X2
00.1.9783468
X3
00..770077
10
44 -100
11
40.5 -100
12
40.5 -90
13
43 -90
14
43 -81
15
47.5 -811642源自-81x2x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
第四章自组织神经网络
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
W j(t1)W ˆj(t)
jj*
步骤3完成后回到步骤1继续训练,直到学习率 衰减到0。
第四章自组织神经网络
竞争学习的几何意义
☻*
*
*
*
第四章自组织神经网络
竞争学习的几何意义
* Wˆ1

** Wˆ j*
W (t) h(t)[ Xˆ p (t) Wˆ j* (t)]
*
Wˆ j* (t 1)
Xˆ p(t)
x2
x4
17
42 -80.5
18
43.5 -80.5
19
43.5 -75
20
48.5 -75
第四章自组织神经网络
x5
训练 次数
1
W1
W2
18.43 -180
x3
2
-30.8 -180
3
7 -180
x1
4
-32 -180
5
11 -180
6
24 -180
w1
7 8
24 -130 34 -130
w2
9
34 -100
X4
00..3943297
X5
0.6 0.8
解:为作图方便,将上述模式转换成极坐标形式 :
X1136.89o X2180oX314.45X4170oX5153.13o
竞争层设两个权向量,随机初始化为单位向量: W1(0)1010o W2(0)01118o0
第四章自组织神经网络
x5
训练 次数
1
W1
W2
为Winner Take All。
第四章自组织神经网络
竞争学习规则——Winner-Take-All
1.向量归一化 首先将当前输入模式向量X 和竞争层中各神经元对应的内星向量Wj 全 部进行归一化处理; (j=1,2,…,m)

X X
x1
n
x2j
j1
...
T
xn n x2j
j1
第四章自组织神经网络
向量归一化之前
*
*
* *
第四章自组织神经网络
向量归一化之后
* *
*
* *
第四章自组织神经网络
竞争学习原理
竞争学习规则——Winner-Take-All
2.寻找获胜神经元 当网络得到一个输入模式向量时, 竞争层的所有神经元对应的内星权向量均与其进行相 似性比较,并将最相似的内星权向量判为竞争获胜神 经元。 欲使两单位向量最相似,须使其点积最大。即:
质属性,自组织、自适应地改变网络参数 与结构。
自组织网络的自组织功能是通过竞争 学习(competitive learning)实现的。
第四章自组织神经网络
4.1竞争学习的概念与原理
4.1.1 基本概念
分类——分类是在类别知识等导师信号的指 导下,将待识别的输入模式分配到各自的 模式类中去。
聚类——无导师指导的分类称为聚类,聚类 的目的是将相似的模式样本划归一类,而
相关文档
最新文档