材料力学性能14

合集下载

材料力学性能第14章-材料的老化与稳定性能

材料力学性能第14章-材料的老化与稳定性能
材料科学与工程学院
5
热降解) (1)Thermal degradation(热降解 ) 热降解
指聚合物在单纯热的作用下发生的降解反应, 指聚合物在单纯热的作用下发生的降解反应,可有三种类 单纯热的作用下发生的降解反应 型: a. Random chain scission(无规断链反应 : 无规断链反应): 无规断链反应 在这类降解反应中, 在这类降解反应中,高分子链从其分子组成的弱键发生断 裂,分子链断裂成数条聚合度减小的分子链。分子量下降 分子链断裂成数条聚合度减小的分子链。 迅速,但产物是仍具有一定分子量的低聚物,难以挥发, 迅速,但产物是仍具有一定分子量的低聚物,难以挥发, 因此重量损失较慢。如聚乙烯的热降解: 因此重量损失较慢。如聚乙烯的热降解:
CH3 CH3 C CH2 C COOCH 3 COOCH 3 CH3 C + COOCH 3 CH3 C COOCH 3
CH2
CH2
CH2
解聚反应主要发生于1,1-二取代单体所得的聚合物。 二取代单体所得的聚合物。 解聚反应主要发生于 二取代单体所得的聚合物
材料科学与工程学院
7
c. Removal of lateral group (侧基脱除 热降解:聚合物热降 侧基脱除)热降解 侧基脱除 热降解: 解时主要以侧基脱除为主,并不发生主链断裂。典型的如 解时主要以侧基脱除为主, 不发生主链断裂。 侧基脱除为主 聚氯乙烯的脱HCl、聚醋酸乙烯酯的脱酸反应: 、聚醋酸乙烯酯的脱酸反应: 聚氯乙烯的脱
材料科学与工程学院
9
链终止:各种自由基发生偶合或歧化反应。 链终止:各种自由基发生偶合或歧化反应。 在高温条件或光照条件下,还将发生过氧化氢的分解、 在高温条件或光照条件下,还将发生过氧化氢的分解、主 链断裂等反应: 链断裂等反应:

2021年材料力学性能及名词解释

2021年材料力学性能及名词解释

Encounters are always caught off guard, and parting is mostly planned for a long time. There will always be some people who will slowly fade out of your life. You have to learn to accept rather than miss.通用参考模板(WORD文档/A4打印/可编辑/页眉可删)材料力学性能及名词解释1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。

设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。

3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。

它表示钢材抵抗断裂的能力大小。

与抗拉强度相应的还有抗压强度、抗弯强度等。

设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。

5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。

屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。

6.硬度硬度表示材料抵抗硬物体压入其表面的能力。

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
1材料力学性能
材料力学性能是指材料受外力作用时产生的结构变形以及产生的变形所抵抗的力之间的相互关系。

材料力学性能决定着物体能够承受多大载荷,从而保证物体的安全和稳定性,也是应用工程材料的重要考量标准。

材料力学性能的分类:
1.1弹性性能
弹性性能是指材料受外力作用时能够承受的恢复力的大小,是衡量材料的强度的重要指标。

包括屈服强度、抗拉强度、抗压强度和断裂强度等级。

若外力作用则材料发生变形,材料结构恢复后变形越小,弹性性能越好。

1.2理论性能
理论性能是指材料在不受外力作用时产生的固有属性,一般包括形状、尺寸、密度、抗剪强度、压缩性能等。

这些性能判断材料的加工性能。

1.3定向性能
定向性能是指材料在特定方向受外力作用时,所产生的变形程度以及抵抗力的大小,一般包括抗断裂性能、抗拉伸性能、抗压缩性能以及特殊材料(如硅胶、聚氨酯)的韧性,用来测试其在特定应用场合时的表现。

1.4加工性能
加工性能是指材料加工时机械性能指标,一般包括热处理性能、热变形性能、焊接性能以及表面质量等。

1.5材料寿命性能
材料寿命性能是指材料受到温度、湿度、外力等作用时的抗老化性能,是材料用途的重要考量标准,一般包括热稳定性、导热性能、环境老化性能、化学稳定性等。

以上就是材料的力学性能的分类及指标,它们的测试可以反映出一种材料的强度、稳定性、耐久性及环境效应等状况。

选择合适的材料并使之满足应用要求,需要对材料力学性能做出合理评估。

什么是材料的力学性能

什么是材料的力学性能

什么是材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等。

这些性能对材料的使用和应用起着至关重要的作用,因此对于材料的力学性能的了解和掌握是非常必要的。

首先,强度是材料抵抗外力破坏的能力。

通常来说,强度越高的材料,其抗破
坏能力越强。

在工程实践中,我们常常需要根据实际情况选择材料的强度,以确保其在使用过程中不会发生破坏。

其次,韧性是材料抵抗断裂的能力。

一个具有良好韧性的材料在受到外力作用
时能够延展变形而不会立即断裂,这对于一些需要承受冲击或挤压的材料来说尤为重要。

另外,硬度是材料抵抗划痕或穿刺的能力。

硬度高的材料通常具有较强的耐磨
性和耐划性,适合用于一些需要长时间使用的场合。

最后,塑性是材料在受到外力作用时能够发生形变而不会立即断裂的能力。


性好的材料在加工和成形过程中能够更容易地进行加工和成形,因此在一些需要进行复杂成型的场合使用较为广泛。

总的来说,材料的力学性能直接影响着材料的使用和应用。

在工程实践中,我
们需要根据材料的具体要求来选择具有相应力学性能的材料,以确保其在使用过程中能够发挥出最佳的性能。

因此,对于材料的力学性能的了解和掌握是非常必要的。

材料力学性能知到章节答案智慧树2023年西安工业大学

材料力学性能知到章节答案智慧树2023年西安工业大学
34.在循环应力加载过程中,如果材料出现的应力集中越明显,则应力集中处的贝纹线间距()。
参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:

37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:

26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:

29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:

59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。

材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。

下面就常见的材料力学性能进行简要介绍。

1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。

强度是材料力学性能中最基本和重要的指标之一。

常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。

2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。

韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。

高韧性的材料具有良好的抗冲击和抗断裂性能。

3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。

材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。

常见的塑性材料有金属材料和塑料材料。

4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。

刚性材料具有较高的弹性模量和抗弯刚度。

常见的刚性材料有钢材和铝合金等。

5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。

弹性材料具有较高的弹性模量和较小的应变率。

常见的弹性材料有弹簧钢和橡胶等。

6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。

硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。

硬度高的材料具有较好的抗划伤和抗磨损性能。

7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。

耐磨性可以通过磨损试验来评价。

高耐磨性的材料具有较长的使用寿命。

总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。

在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。

材料力学性能课后习题 (1)

材料力学性能课后习题 (1)

材料力学性能课后习题第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。

⑧解理断裂:解理断裂是在正应力达到一定的数值后沿一定的晶体学平面产生的晶体学断裂。

2.解释下列力学性能指标的意义(1)E( 弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(规定残余伸长率为0.2%的应力);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率)3.金属的弹性模量取决于什么?为什么说他是一个对结构不敏感的力学性能?取决于金属原子本性和晶格类型。

因为合金化、热处理、冷塑性变形对弹性模量的影响较小。

4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。

答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。

试分析这两种故障的本质及改变措施。

常用材料力学性能.

常用材料力学性能.
11-14
480-560 640-720 560-640
1
表2材料的力学性能
材料名称/牌号屈服强度s
σ
MPa
抗拉强度b
σ
MPa
伸长率
5
δ
%
备注
铝合金LY12 35-500
274
100-550
412
1-45
19硬铝
黄铜青铜
铸铁(拉伸HT150 HT250 120-290 69-480
150
250
0-1
岩石(压
花岗岩、大理石、石英石石灰石、沙石40-100
20-70
0.2-0.3
0.2-0.3
2600-2900
2000-2900
5-9
橡胶130-200沙、土壤、砂砾

高强钢不锈钢结构钢190-210
0.27-0.30
7850
10-18 14 17 12
钛合金钨木材(弯曲
杉木橡木松木11-13
11-12
345
530
510
18
21
15锰钒16锰
合金钢
20Cr 40Cr 540
785
835
980
10
9
20铬40铬2
30铬锰硅铸钢
ZG200-400 ZG270-500 200
270
400
500
25 18
钢线钛合金钨木材(弯曲
杉木橡木松木30-50
30-40
30-50
40-70 30-50 40-70
3
235
255
275
335~450
375~500
410~550
490~630

材料力学性能试题及答案

材料力学性能试题及答案

材料力学性能试题及答案一、单项选择题(每题2分,共20分)1. 材料在拉伸过程中,当应力达到某一点时,应力不再增加而应变继续增加,这种现象称为()。

A. 弹性变形B. 塑性变形C. 蠕变D. 断裂答案:B2. 材料的屈服强度是指()。

A. 材料开始发生塑性变形时的应力B. 材料发生断裂时的应力C. 材料发生弹性变形时的应力D. 材料发生蠕变时的应力答案:A3. 材料的硬度是指()。

A. 材料抵抗外力作用的能力B. 材料抵抗塑性变形的能力C. 材料抵抗弹性变形的能力D. 材料抵抗断裂的能力答案:B4. 材料的疲劳是指()。

A. 材料在循环应力作用下逐渐产生裂纹并最终断裂的现象B. 材料在恒定应力作用下逐渐产生裂纹并最终断裂的现象C. 材料在高温下逐渐产生裂纹并最终断裂的现象D. 材料在低温下逐渐产生裂纹并最终断裂的现象答案:A5. 材料的冲击韧性是指()。

A. 材料在冲击载荷作用下吸收能量的能力B. 材料在拉伸载荷作用下吸收能量的能力C. 材料在压缩载荷作用下吸收能量的能力D. 材料在剪切载荷作用下吸收能量的能力答案:A6. 材料的断裂韧性是指()。

A. 材料在拉伸载荷作用下吸收能量的能力B. 材料在压缩载荷作用下吸收能量的能力C. 材料在冲击载荷作用下吸收能量的能力D. 材料在断裂过程中吸收能量的能力答案:D7. 材料的疲劳强度是指()。

A. 材料在循环应力作用下发生断裂时的应力B. 材料在拉伸载荷作用下发生断裂时的应力C. 材料在压缩载荷作用下发生断裂时的应力D. 材料在冲击载荷作用下发生断裂时的应力答案:A8. 材料的蠕变是指()。

A. 材料在循环应力作用下逐渐产生裂纹并最终断裂的现象B. 材料在恒定应力作用下逐渐产生裂纹并最终断裂的现象C. 材料在高温下逐渐产生裂纹并最终断裂的现象D. 材料在低温下逐渐产生裂纹并最终断裂的现象答案:B9. 材料的弹性模量是指()。

A. 材料在拉伸载荷作用下吸收能量的能力B. 材料在压缩载荷作用下吸收能量的能力C. 材料在拉伸或压缩载荷作用下应力与应变的比值D. 材料在剪切载荷作用下吸收能量的能力答案:C10. 材料的泊松比是指()。

《材料的力学性能》西北工业大学出版社--复习资料

《材料的力学性能》西北工业大学出版社--复习资料

《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。

2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。

拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。

试验机记录的是拉伸图。

3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。

右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。

脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。

4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。

左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。

右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。

5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。

第一章 材料的力学性能

第一章  材料的力学性能

第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。

2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。

3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。

4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。

5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。

6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。

7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。

8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。

9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。

10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。

11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。

用于测定没有明显屈服现象的材料的屈服强度。

12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。

13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。

14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。

15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。

16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。

17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。

材料的力学性能指标

材料的力学性能指标

材料的力学性能指标材料的力学性能指标是评价材料力学性能的重要标准,它直接影响着材料的使用性能和工程应用。

力学性能指标包括强度、韧性、硬度、塑性、疲劳性能等多个方面,下面将逐一介绍这些指标。

首先,强度是材料抵抗外部力量破坏的能力。

常见的强度指标包括拉伸强度、屈服强度、抗压强度等。

拉伸强度是材料在拉伸状态下抵抗破坏的能力,屈服强度是材料在受力到一定程度时开始产生塑性变形的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。

强度指标直接反映了材料的抗破坏能力,是衡量材料质量的重要标准之一。

其次,韧性是材料抵抗断裂的能力。

韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是材料在受力作用下抵抗破坏的能力,冲击韧性是材料在受到冲击载荷时不发生破坏的能力。

韧性指标直接反映了材料的抗断裂能力,对于承受外部冲击载荷的材料尤为重要。

再次,硬度是材料抵抗局部变形的能力。

硬度指标包括洛氏硬度、巴氏硬度、维氏硬度等。

硬度指标直接反映了材料的抗变形能力,对于承受局部载荷的材料尤为重要。

此外,塑性是材料在受力作用下发生形变的能力。

塑性指标包括延伸率、收缩率、冷弯性等。

塑性指标直接反映了材料的可加工性和成型性,对于需要进行加工和成型的材料尤为重要。

最后,疲劳性能是材料在受到交变载荷作用下不发生破坏的能力。

疲劳性能指标包括疲劳极限、疲劳寿命等。

疲劳性能直接影响着材料在实际工程应用中的使用寿命,是衡量材料耐久性的重要标准之一。

综上所述,材料的力学性能指标是评价材料力学性能的重要标准,它直接影响着材料的使用性能和工程应用。

强度、韧性、硬度、塑性、疲劳性能等指标相互联系、相互影响,综合考虑这些指标可以全面评价材料的力学性能,为材料的选择和设计提供重要依据。

材料力学性能

材料力学性能

一.名词解释粘着磨损(咬合磨损):因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。

解理断裂:金属材料在一定条件下,当外加正应力达到一定数值时,以极快速率沿一定的晶体学平面产生的穿晶断裂。

应力腐蚀:金属材料在拉应力和特定化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及合金,在试验温度低于某一温度时,会由韧性状态变成脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变成穿晶解理型,断口特征由纤维状变成结晶状。

疲劳:金属机构或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。

应力状态软系数:最大切应力τ与最大正应力б的比值表示它们的相对大小,记为α。

氢脆:由于氢和应力的共同作用导致金属材料产生脆性断裂的现象。

高周疲劳:金属在循环载荷作用下,疲劳寿命为大于10 次的疲劳断裂。

缺口效应:由于缺口的存在,在静载荷的作用下,缺口截面上的应力状态将发生变化,从而影响金属材料的力学性能。

磨粒磨损:当摩擦副一方表面存在坚硬的细微突起,或者在接触面之间存在着硬质粒子时所产生的一种磨损。

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加:反向加载,规定残余伸长应力降低的现象。

疲劳裂纹门槛值:是疲劳裂纹不扩展的的临界值,表示材料阻止疲劳裂纹开始扩展的性能,越大,阻止裂纹扩展的能力越强,材料越好。

穿晶断裂:裂纹穿过晶粒内部扩展,既是宏观塑性断裂,也是宏观脆性断裂,包括纯剪切和微孔聚合型断裂。

冲击吸收功:指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。

弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

二.解释下列指标的名称和物理意义。

Ψ:(断面收缩率)是试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积的百分比。

材料力学性能课后题,参考看下

材料力学性能课后题,参考看下

第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。

2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。

倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。

(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。

5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。

6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。

7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。

9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。

10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。

韧性材料——连续屑,脆性材料——断屑。

⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。

⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。

11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。

机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。

倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。

材料的力学性能重点总结

材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收塑性变形功的能力。

3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。

材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。

本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。

一、强度强度是指材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。

抗压强度是指材料在受压力作用下,抗压破坏的能力。

抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。

强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。

材料的强度往往与其成分、结构和加工工艺有关。

例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。

在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。

二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。

常见的刚度指标包括弹性模量、切变模量等。

弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。

刚度的测试方法主要包括拉伸试验、扭转试验等。

材料的刚度与其物理性质和结构密切相关。

高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。

在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。

三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。

常见的韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是指材料在断裂前所能吸收的能量。

冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。

韧性的测试方法主要包括冲击试验、拉伸试验等。

材料的韧性与其断裂机制和微观结构有关。

例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。

材料力学性能复习资料

材料力学性能复习资料

一、说明下列力学性能指标的意义 1) P σ 比例极限 2) e σ 弹性极限 3) b σ抗拉强度 4) s τ扭转屈服强度 5) bb σ抗弯强度6) HBW 压头为硬质合金球时的布氏硬度7) HK 显微努氏硬度8) HRC 压头为顶角120︒金刚石圆锥体、总试验力为1500N 的洛氏硬度 9) KV A 冲击韧性 10) K IC 平面应变断裂韧性 11) R σ应力比为R 下的疲劳极限 12) ∆K th 疲劳裂纹扩展的门槛值13) ISCC K 应力腐蚀破裂的临界应力强度因子14) /Tt εσ给定温度T 下,规定试验时间t 内产生一定的蠕变伸长率δ的蠕变极限 15) T t σ给定温度T 下,规定试验时间t 内发生断裂的持久极限二、单向选择题1)在缺口试样的冲击实验中,缺口越尖锐,试样的冲击韧性( b )。

a ) 越大; b) 越小;c ) 不变;d) 无规律2)包申格效应是指经过预先加载变形,然后再反向加载变形时材料的弹性极限( b )的现象。

a ) 升高 ;b ) 降低 ;c ) 不变;d ) 无规律可循3)为使材料获得较高的韧性,对材料的强度和塑性需要( c )的组合。

a ) 高强度、低塑性 ;b) 高塑性、低强度 ;c) 中等强度、中等塑性;d ) 低强度、低塑性4)下述断口哪一种是延性断口(d )。

a) 穿晶断口;b ) 沿晶断口;c) 河流花样 ;d ) 韧窝断口 5) 5)HRC 是( d )的一种表示方法.a) 维氏硬度;b ) 努氏硬度;c ) 肖氏硬度;d ) 洛氏硬度6)I 型(张开型)裂纹的外加应力与裂纹面(b );而II 型(滑开型)裂纹的外加应力与裂纹面( )。

a) 平行、垂直;b) 垂直、平行;c) 成450角、垂直;d) 平行、成450角 7)K ISCC 表示材料的( c )。

a) 断裂韧性; b) 冲击韧性;c ) 应力腐蚀破裂门槛值;d ) 应力场强度因子 8)蠕变是指材料在( B )的长期作用下发生的塑性变形现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但不完全符合 其他情况下,不如第一强度理论
《结论》
除了1 ,还有2 ,3 的参与,似乎有理,但是
实验通不过——好看未必正确
3、莫尔强度理论 第1-4强度理论都是同 [ t ](拉伸)比较,能否 把 [ c(] 压缩)考虑进去? 1773年,Coulomb提出 1882年到1900年 Mohr 用应力圆形式提出
由于材料的许用拉、压应力不等,宜采用摩尔强度理论。
(3)塑性材料(除三轴拉伸外),宜采用形状改变比能理论 (第四强度理论)和最大剪应力理论(第三强度理论)。
(4)三轴压缩状态下,无论是塑性和脆性材料,均采用形状 改变比能理论。
5.联合强度理论: 力学状态图
联合强度理论: 不同材料的力学状态图
第五章 材料的脆性与脆化因素
的失效方程画在 1 3坐标系中
• 只要主应力 1, 3点落在区域内就是安全的
• 最大拉应 力理论
bc
• 莫尔理论
3 b
b 1 bc
各种强度理论的适用范围
(1)不论是脆性或塑性材料,在三轴拉伸应力状态下,均会
发生脆性断裂,宜采用最大拉应力理论(第一强度理论)。
(2)脆性材料:在二轴拉伸应力状态下,应采用最大拉应力 理论;在复杂应力状态的最大、最小拉应力分别为拉、压时,
2、最大正应变理论
1682年,Mariote提出 《失效准则》
最大伸长线应变 1 是引起材料断裂的原因
具体说: 无论材料处于什么应力状态 只要构件内有一点处的最大正应变达到了 单向拉伸的应变极限, 就发生断裂破坏
《推导》
• 失效方程(或极限条件)
1

b
E
即 1 ( 2 3 ) b
弱化 热应力作用 环境因素:晶间腐蚀、高温蠕变 晶界无析出区:沿晶微孔集聚断裂
陶瓷材料的沿晶断裂强度 ——气孔率的影响
f 0 exp( np)
式中, n为常数,一般为4~7;0为没有气孔时的强度。
Al2O3陶瓷断裂强度与气孔率关系
陶瓷材料的沿晶断裂强度 ——晶粒尺寸的影响
晶界偏析与弱化:
晶界偏析与弱化:
低合金钢涡轮叶片服役27年后沿晶脆断俄歇原位分析
弱化晶界的夹杂物: 晶界上球状硫化锰铁夹杂物导致脆性沿晶断口
晶界弱化与晶界脆化
网状脆性相与沿晶断裂
T12高碳钢热处理过热 网状渗碳体
GCr15轴承钢过热沿晶断口
低合金超高强度钢的应力腐蚀敏感性
淬火态和低温回火态
S5-1 概述
脆性: 宏观脆性: 本质脆性: 脆化: 脆化因素:
S5-2 缺口脆性
缺口效应: 应力集中
缺口效应: 应力集中系数
缺口效应: 多向应力状态
缺口效应: 多向应力状态的形成
缺口效应: 缺口处应力分布
缺口效应: 缺口顶端小范围屈服时应力分布
等效屈服
应力y
1 y 2 z
失效方程(或极限条件)1 = b 此时断裂
强度条件
1

b
n

此时不断裂
《评价》
二向时:当 1 2 > 0 该理论与实验基本一致
三向时:当1 2 3 > 0 同上
主应力中有压应力时,只要 3 1 同上
主应力中有压应力时,只要 3 1 误差较大
三向压应力不适用
E
E
或 1 ( 2 3 ) b
•强度条件
eq 1 ( 2 3 ) b / n [ ]
注意:
(1) eq 为相当应力 equivalent stress
(2) 适用条件:直至断裂,一直服从虎克定律
《评价》
主应力有压应力时,当 3 1 ,理论接近实验
3.对比多晶体塑性变形、解理、沿晶断裂中晶界的作用? 4.原子结合能与弹性模量和强度之间关系? 5.对比多晶体解理与沿晶断裂过程的异同点? 6.材料中一点的力学状态如何表示?有何特点? 7.力学状态图中如何表示材料简单加载力学行为? 8.力学状态图反映出材料力学行为有何特点?
9.联合强度理论有何局限性?
由两个边界条件 b b / bc
于是
1

b bc
3

b

1

b /n bc / n
3

b
/
n

1

[ [
t c
] ]

3

[ t
]
《评价》
1

[ t ] [ c ]
3

[
t
]
[ t ] [ c ] 类似于最大剪应力理论,但为剪切断裂
高温回火态
微量元素S和B对高纯铁热塑性的影响
973K拉伸断口(B0)
973K拉伸断口(B50)
晶界无析出区(PFZ)与沿晶断裂
Al-Cu-Mg系2056铝合金T6态 慢应变速率拉伸断口与相应PFZ形态
沿晶断裂机制: 晶界脆性相变形不协调开裂
沿晶断裂机制: 晶界位错塞积导致弱化晶界开裂
S4-6 断裂宏观强度理论
第四章 材料断裂行为
S4-4 沿晶断裂
裂纹在晶界上形成并沿晶界扩展
沿晶断裂: 沿晶脆性断口形貌 沿晶断口(冰糖花样)
不锈钢晶间腐蚀沿晶断口
烧结钼材的沿晶断口
ZrO2陶瓷沿晶断口
沿晶断裂: 沿晶韧窝断口形貌
沿晶断裂原因:
晶界上存在气孔、微裂纹等缺陷 晶界上存在有脆性夹杂物 晶界连续网状第二相 杂质和合金元素在晶界偏析,致使晶界
3 0与 1 0 分别为单向拉伸、单向压缩失效
同时有拉、压主应力的情况,同实验结果相当吻合验结果,其实 不对,也是基于假定的理论
不少书中从Mohr圆中推出(历史的本来面目) 其实上面的讲法最为简便
4、脆断极限应力图
• 平面应力状态,把最大拉应力理论与莫尔理论
3 x
SIII y x s
y s x
平面应力变
缺口效应: 全面屈服时应力分布
习题五:试应用联合强度理论描述不同应力状 态下材料的力学行为,并简要分析其变形与断 裂过程及微观机制。
思考题:
1.试比较单晶体与多晶体解理断裂强度?
2.常温下材料强度通常晶界>晶内,如何理解?
1、最大拉应力(第一强度)理论 (Maximum Tensile-Stress Criterion) Galileo 1638年提出 原因是砖石(以后的铸铁)强度的需求
《失效准则》
最大拉应力1是引起材料断裂的原因
具体说:无论材料处于什么应力状态,
只要微元内的最大拉应力1 达到了单向拉伸 的强度极限b ,就发生断裂破坏
《失效准则》 平面应力状态的拉应力 1 与压应力 3 的线性组合是脆性破坏的原因
平面应力状态只要构件内有一点处 1 与 3 的线性组合, 满足简单拉伸与简单压缩两个边界条件 的失效方程,就发生断裂破坏
《推导》
1 3
3 0 时 1 b (单向拉伸失效) 1 0 时 3 bc (单向压缩失效)
材料力学性能
哈尔滨工业大学材料学院 朱景川
思考题:
1.比较宏观脆性断裂与微观脆性断裂? 2.比较宏观塑性断裂与微观塑性断裂? 3.正断与脆性断裂的关系? 4.切断与塑性断裂的关系? 5.若断口观察到韧窝就是塑性断裂吗? 6.韧窝产生条件? 7.塑性变形可缓和应力集中、抵抗过载、吸收能量,为何
存在延性断裂? 8.何种条件下产生杯锥状断口? 9.发生解理的微观结构条件? 10.为何某些金属也会产生解理断裂? 11.解理是解理面上所有化学键被整体拉断吗?
k d
1 2
f
0
1
综合考虑晶粒尺寸和气孔率的影响
k d e
1 2 nP
f
0
1
晶界偏析与弱化:
如钢中晶界上存在P、S、As、Sb、Sn等元 素。有害元素沿晶界富集,降低了晶界处表 面能,使脆性转变温度向高温推移,明显提 高了材料对温度和加载速率的敏感性,在低 温或动载条件下发生沿晶脆断。
相关文档
最新文档