半导体激光器原理及应用

合集下载

2微米半导体激光器

2微米半导体激光器

2微米半导体激光器激光技术是一种重要的光学技术,在科学研究、医疗、工业制造等领域都有广泛的应用。

而2微米半导体激光器作为一种新兴的激光器件,具有许多独特的特性和应用潜力。

本文将对2微米半导体激光器的原理、性能、应用以及发展前景进行探讨。

一、2微米半导体激光器的原理2微米半导体激光器是利用半导体材料的能带结构产生激光的器件。

其基本结构包括激光腔、半导体材料和光波导等。

通过注入电流,激发半导体材料中的载流子,使其发生迁移和复合过程,从而产生光子。

利用正反馈和谐振腔效应,实现光子产生和放大,最终形成激光输出。

二、2微米半导体激光器的性能2微米半导体激光器具有很多独特的性能优势。

首先,2微米波段是近红外光谱中的一个重要窗口,具有较好的透明性和低吸收特性,能够穿透水和大部分生物组织。

其次,2微米半导体激光器具有较高的发光效率和较宽的工作温度范围。

此外,它还具有紧凑结构、高光束质量和较低的热失配等优点。

三、2微米半导体激光器的应用由于其独特的性能特点,2微米半导体激光器在许多领域中都有广泛的应用。

首先,医疗领域是2微米激光器的一个重要应用领域。

2微米光具有较强的水吸收能力,能够对水分子进行高效吸收,因此在激光手术、皮肤美容、眼科治疗等方面有着广泛的应用。

其次,2微米激光器还可以应用于光通信领域,实现光信号的传输和处理。

此外,2微米激光器还可以用于材料加工、环境监测以及国防安全等领域。

四、2微米半导体激光器的发展前景随着激光技术的不断发展和应用的不断扩大,2微米半导体激光器作为一种新兴的激光器件,具有巨大的发展潜力。

目前,研究人员正在不断改进半导体材料的性能和制备工艺,提高2微米激光器的效率和可靠性。

同时,针对不同领域的应用需求,开展了一系列的研究和应用探索。

未来,随着相关技术的不断突破和应用场景的不断拓展,2微米半导体激光器有望在更多领域发挥重要作用。

总结2微米半导体激光器作为一种新兴的激光器件,在医疗、光通信、材料加工等领域有着广泛的应用前景。

半导体激光器的工作原理及应用

半导体激光器的工作原理及应用

半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。

由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。

从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。

关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。

As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。

半导体激光器在通讯领域中的应用

半导体激光器在通讯领域中的应用

半导体激光器在通讯领域中的应用近年来,半导体激光器在通讯领域中得到了越来越广泛的应用。

这种先进的激光器设备已经成为现代通讯系统中不可或缺的一部分。

在这篇文章中,我们将讨论半导体激光器在通讯领域中的应用,以及它的优势。

一、半导体激光器的基本原理半导体激光器在通讯领域中的应用离不开它基本原理的支持。

激光器的基本原理是由电子和空穴之间转移的能量所释放的光。

在半导体材料中,存在着多个不同的能带。

当电子激发了一个位于更高能级的能量状态时,空穴会填补上一个位于较低能级的状态,这样电子与空穴之间就形成了一个正负电荷的耦合。

随后,这个耦合状态会因为这个系统释放光而形成激光。

而半导体激光器的核心是p型的半导体和n型半导体之间的p-n结。

通过加上电压或注入电流激发载流子,半导体激光器中的激光被产生和放出。

因此,这种半导体激光器能够在高速率上产生激光,并具有峰值功率之间的高能量转换效率。

二、半导体激光器在通讯领域中的应用由于其高效、小巧、低成本和可定制的设计,半导体激光器已经成为现代通讯系统中不可或缺的一部分,其应用范围包括:1、光纤通讯:光纤通讯是目前最重要的应用。

在这种通讯方式中,激光器被用于激励光纤中的模态,将信号从一端传送到另一端。

半导体激光器的优点是具有较高的峰值功率、不需要大容量的电源,并且体积小巧,容易制造和维护。

2、激光雷达:激光雷达是一种无线感测技术,可用于距离测量和目标识别。

在激光雷达系统中,半导体激光器会定向激发能向远距离传播的光波。

3、光学计算:光学计算是一种基于光子的电子替代技术,半导体激光器在其中扮演着重要的角色,在数据处理和长距离存储方面得到了广泛应用。

4、光学存储器:半导体激光器在光学存储器中的应用,能够进行高速存储及高速检索。

5、生物医学:此领域也是半导体激光器应用的一个领域。

半导体激光器被应用于光治疗、皮肤美容、牙科和眼科等方面。

此外,它也用于医学成像和病理学探讨。

三、半导体激光器的优势与传统激光器相比,半导体激光器有许多优点。

半导体激光的原理和应用

半导体激光的原理和应用

半导体激光的原理和应用引言半导体激光是一种重要的光学器件,具有广泛的应用领域。

本文将介绍半导体激光的工作原理及其在通信、医疗、制造业等领域的应用。

工作原理半导体激光的工作原理基于半导体材料的特性。

当电流通过半导体材料时,会激发出光子并形成发光。

具体工作原理如下:1.pn结构:半导体激光器的基本结构是由p型半导体和n型半导体组成的pn结构。

在pn结构中,p区和n区之间形成空间电荷区,也称为p-n 结。

2.电流注入:当通过pn结施加适当的电压,电子从n区向p区流动,形成电流注入。

这些电子与空穴在p区与n区之间复合,产生光子。

3.光反射:在激光器的两侧,通常会使用反射镜,以确保光子在激光器内部多次反射,增加激射效果。

4.放大效应:在光子多次反射后,激光器中的光子会被放大,形成激光束。

5.激光输出:当光子放大到一定程度时,会通过激光输出端口输出,形成一束聚焦强度高的激光。

应用领域半导体激光广泛应用于下述领域:1. 通信领域•光纤通信:半导体激光器的小体积、高效率和调制速度的优势,使其成为光纤通信中的关键元件。

它们被用于发送和接收信号,实现高速、稳定的数据传输。

•光纤传感器:半导体激光器可以用于光纤传感器中的光源,通过测量光的特性实现温度、压力和应变等参数的监测。

2. 医疗领域•激光眼科手术:半导体激光器可以用于激光眼科手术,如LASIK手术。

它们通过改变角膜的形状来矫正近视、远视和散光等眼科问题。

•激光治疗:半导体激光器可以用于激光治疗,如治疗疱疹病毒感染、减少毛囊炎症等。

3. 制造业领域•材料加工:半导体激光器用于材料加工,如切割、焊接和打孔等。

由于激光束的高能量密度和聚焦性,它们可以实现高精度的材料加工。

•激光制造:半导体激光器可以用于激光制造,如3D打印、激光烧结等。

它们可以实现复杂结构的制造,提高生产效率。

4. 科研领域•光谱分析:半导体激光器可以用于光谱分析,如拉曼光谱和荧光光谱。

它们可以提供高分辨率和高灵敏度的光谱结果,帮助科研人员研究物质的性质。

半导体激光器原理及光纤通信中的应用

半导体激光器原理及光纤通信中的应用

半导体激光器原理及光纤通信中的应用
半导体激光器是一种利用半导体材料的电子和空穴复合产生光子的器件。

它是一种高效、小型化、低成本的光源,被广泛应用于光通信、激光打印、医疗、材料加工等领域。

半导体激光器的工作原理是利用半导体材料的PN结,在外加电压的作用下,电子和空穴在PN结的结界面处复合,产生光子。

这些光子被反射回来,形成光的共振,从而形成激光。

半导体激光器的优点是功率密度高、发射波长可调、寿命长、体积小、功耗低等。

在光纤通信中,半导体激光器是一种重要的光源。

它可以将电信号转换为光信号,通过光纤传输到接收端,再将光信号转换为电信号。

半导体激光器的发射波长与光纤的传输窗口相匹配,可以实现高速、长距离的光纤通信。

同时,半导体激光器的小型化和低功耗也使得光纤通信设备更加紧凑和节能。

除了光纤通信,半导体激光器还被广泛应用于激光打印、医疗、材料加工等领域。

在激光打印中,半导体激光器可以实现高速、高分辨率的打印,同时也可以实现彩色打印。

在医疗领域,半导体激光器可以用于激光治疗、激光手术等,具有精准、无创、无痛等优点。

在材料加工领域,半导体激光器可以用于切割、焊接、打孔等,具有高效、精准、无污染等优点。

半导体激光器是一种重要的光源,被广泛应用于光通信、激光打印、
医疗、材料加工等领域。

随着科技的不断发展,半导体激光器的性能和应用也将不断提升和拓展。

半导体激光器的原理及其应用PPT

半导体激光器的原理及其应用PPT
可靠性
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。

半导体激光器的原理及应用

半导体激光器的原理及应用

半导体激光器的原理及应用半导体激光器是一种能够将电能转化为光能的半导体器件,是现代通信、医疗、工业等领域不可或缺的重要技术之一。

本文将从基础的物理原理出发,介绍半导体激光器的工作原理和应用。

一、半导体材料简介半导体材料是介于导体和绝缘体之间的材料,其原子构型中有少量杂质原子。

半导体材料的特殊之处在于,其导电性质可以通过外加电场、光照等方式来调制。

常见的半导体材料有硅、锗、镓砷化物等。

二、激光原理激光的产生是基于受激辐射现象。

当光子与原子碰撞时,如果能量正好等于原子内部的能级差,那么这个光子就可被原子吸收,能量转移给原子,使原子的电子从低能级跃迁到高能级。

当这个原子内部的电子因外界干扰或碰撞等因素又回到低能级时,它所携带的能量就会被释放出来,以光子的形式向外辐射。

这种辐射同样有可能再次被某个具有相同能级差的原子吸收,并且继续沿着同一方向辐射,这个过程就是受激辐射。

由于这种激光产生的相干性好,可得到非常细致、强度均一的光束,应用十分广泛。

半导体激光器就利用了这一受激辐射的原理。

三、半导体激光器原理半导体激光器的基本结构是一个具有能带gap的半导体PN结,同时植入其内部的杂质原子能够形成PN结中的空穴和电子。

当在PN结中加加适当的电子能使电子从N区向P区运动,空穴则相反,从P区向N区运动。

而正是在PN结中的能带gap出现(即禁带),使得被注入的电子和空穴得以快速复合,从而释放出光子。

可以总结,半导体激光器的工作原理是:激光波长区间内半导体PN结处的电注入使其电子与空穴再组合,释放出一个带有相同相位的相干光束,一旦满足了Revaturer P-N结区的泵浦电压,则可以激发形成稳定的激光器。

四、半导体激光器应用半导体激光器在通信领域得到了广泛的应用,在光纤通信和无线通信领域,它的高速、高效、低功耗等特点被广泛应用。

此外,半导体激光器也可以在医疗方面使用,如眼科、牙科、皮肤科等领域,其精细度高、作用深度均匀等特点让医生在手术中得到了极大的帮助。

半导体激光器应用于光纤通信领域的研究与分析

半导体激光器应用于光纤通信领域的研究与分析

半导体激光器应用于光纤通信领域的研究与分析随着信息时代的发展,高速、大容量的数据传输需求越来越高。

在这样的背景下,光纤通信技术日益被人们所重视。

光纤通信是利用光的物理性质实现的高速数据传输技术,其传输速度远远高于传统有线通信技术,而且信号损耗小、抗干扰性强、安全可靠等特点,使得它具有广泛的应用前景。

半导体激光器是光纤通信技术中的关键组成部分,它可以作为光发射器或光放大器,在光纤通信系统中发挥着极其重要的作用。

本文将重点探讨半导体激光器在光纤通信领域中的研究和应用。

一、半导体激光器的基本原理半导体激光器是一种利用电子与空穴在半导体材料中复合释放能量的器件。

激光产生的基本原理是:当外加电场作用于半导体材料时,电子被可控地激发至导带、空穴被激发至价带,当电子和空穴在一定能量下复合时,会释放处于激发状态的能量,从而激发原子中电子的跃迁,产生与激发单元之间的相位同步、波长一致、光束聚束的激光光束。

半导体激光器因其结构简单、体积小、功耗低等特点,在通信,医学,工业等领域都得到了广泛的应用。

光纤通信系统需要一套完整的发射与接收系统来传输和检测信息。

半导体激光器广泛应用于光纤通信系统的光发射器和光放大器中。

1.光发射器光发射器是光纤通信系统中的关键组成部分,其主要作用是把通过电子方式表示的数字信号转换成光脉冲信号,并将它们输送到光纤中,使得信息能够在光纤中进行高速传输。

半导体激光器作为一种高功率、长寿命的光源,其在光传输中具有广泛的应用前景。

半导体激光器作为光发射器,在光纤通信系统中广泛应用,因其大小小、功率大、结构简单、易得性好而得到了广泛的应用。

2.光放大器光放大器是光纤通信系统的重要装置之一,它的主要作用是增加信号的强度。

由于光信号在光纤传输过程中会受到衰减,一旦强度低于特定阈值,信号就会在光纤中被衰减,影响信息的传输。

半导体激光器在光放大器中也得到的广泛应用。

主要分为两种放大器,即半导体光纤放大器和半导体光放大器。

半导体激光器原理及应用

半导体激光器原理及应用
高斯光速的准直 利用自聚焦透镜准直半导体激光束
激光器的单纵模工作条件
第q阶模与主模功率之比为:
Pq
1
P0 1 (Po / Pqsat )
要想得到近乎单纵模输出,必须使Pq/P0尽可能小。
从图中可以看出短腔长和高腔面反射率,都有利于使 激光器单模工作。
以(P1/P0)≦0.05作为激光器单模工作的判据,由边 模抑制比
1)增益系数 2)载流子的俄歇复合,载流子的界面态和表面态的复合,载流子的吸收引起的
内部损耗 3)热载流子的泄露
半导体激光器的效率
描述激光器电子--光子转换的效率,即电能转换为光能的效率。
分别用功率效率和外微分量子效率描述。
1)功率效率
p

激光器所发射的光功率 激光器所消耗的电功率
Pex IV I 2rs
/ )2
式中,n2和d分别为激光器有缘层的折射率和厚度; n1为限制层的折射率;λ为激射波长
理想的高斯场分布
半导体激光器的光束发散角
显然,当d很小时,可忽略上式分 母中的第二项,有
4.05(n22 n12 )d
可见,ө随d的增加而增加
半导体激光器发散角与有缘层厚度的关系
解决办法:利用自聚焦透镜对出射光进行准直
归一化输出与调制频率的关系
半导体激光器的动态特性
张弛振荡与类谐振现象物理机制不同,但几乎有和共振频率相同的振荡频率, 为了抑制这两类现象,已实践过这两类方法:
1)外部光注入,能有效增加自发发射因子,不但能抑制张弛振荡,还能抑制 多纵模的出现。
2)自反馈注入或采用外部电路。自注入方法是将LD输出的一部分以张弛振荡 周期的0.2~0.3倍的时延再注入到它本身的腔内,能有效抑制张弛振荡。采用 外部LCR滤波电路来分流高频分量,进而抑制类谐振现象。

半导体激光器光放大,粒子数反转及产生激光的条件

半导体激光器光放大,粒子数反转及产生激光的条件

一、概述半导体激光器是一种应用广泛的激光器组件,其工作原理主要基于光放大、粒子数反转和产生激光的条件。

本文将从这三个方面展开探讨,分析半导体激光器在光放大、粒子数反转和激光产生方面的原理和条件,以及其在实际应用中的重要性和发展前景。

二、光放大1. 光放大的原理半导体激光器的光放大原理基于电子和空穴在半导体材料中的复合过程。

当外加电压作用下,电子和空穴通过与材料内部的能带结构相互作用,发生辐射复合,并释放出光子。

这些光子在光波导中不断反射,形成光放大。

2. 光放大的条件光放大的条件主要包括外加电压、半导体材料的能带结构和波导结构等因素。

其中,外加电压的大小决定了电子和空穴的注入浓度,能带结构则决定了光子的发射和吸收过程,波导结构则影响了光子的传播和反射。

三、粒子数反转1. 粒子数反转的概念粒子数反转是指在半导体材料中,处于激发态的粒子数多于处于基态的粒子数,从而形成了非热平衡态。

这种粒子数反转是产生激光的前提条件。

2. 粒子数反转的实现粒子数反转的实现需要通过外界光激发或电子注入的方式,将处于材料的基态的电子或空穴激发到高能级,从而实现处于高能级的粒子数多于基态的粒子数,进而实现粒子数反转。

四、产生激光的条件1. 情况一:光放大条件下的粒子数反转在光放大条件下,外界光激发或电子注入导致了粒子数反转,此时,当光子在材料中反射、被吸收和发射后达到一定数量和分布时,就会产生激光。

2. 情况二:激射阈值条件在光放大条件下,粒子数反转达到一定程度时,即达到了激射阈值,此时将会出现放大因子大于1的现象,从而产生了激射效应。

五、半导体激光器的应用和发展半导体激光器作为一种重要的激光器组件,具有体积小、效率高、响应速度快等优势,广泛应用于通信、医疗、材料加工等领域。

随着半导体材料、器件技术的不断发展,半导体激光器的性能和应用领域也在不断拓展和深化,具有广阔的发展前景。

六、结论半导体激光器的光放大、粒子数反转和激光产生是其实现激光放大的基本原理和条件。

半导体激光器的原理及应用论文

半导体激光器的原理及应用论文

半导体激光器的原理及应用论文半导体激光器是使用半导体材料作为激光活性介质的激光器。

其工作原理主要是通过半导体材料中的电子与空穴的复合过程产生光辐射,然后通过光放大与反射来形成激光输出。

半导体激光器具有小体积、高效率、快速调谐和易集成等特点,广泛应用于光通信、激光雷达、光储存等领域。

半导体激光器的基本结构包括激活区、pn结以及光反射与光增强结构。

激活区是半导体材料的核心部分,通过电流注入产生电子空穴复合过程来产生光辐射。

pn结是半导体激光器的结电阻,通过透明导电薄膜使电流从n区流入p区,进而在激活区形成电子空穴复合。

光反射与光增强结构包括反射镜和波导,用于增加激光器输出的光强度与方向性。

半导体激光器具有广泛的应用领域。

在光通信领域,半导体激光器被广泛用于光纤通信和光纤传感器系统。

半导体激光器通过调制光信号,可以实现高速传输,并且具有高能效和稳定性。

在激光雷达领域,半导体激光器用于提供高亮度、窄线宽和快速调谐的激光源,用于实现高分辨率的距离测量和目标识别。

在光储存领域,半导体激光器用于光盘、蓝光光盘等储存介质的读写操作,具有高速、高信噪比和长寿命等特点。

近年来,半导体激光器的研究重点主要是提高其性能和功能。

例如,通过调制技术可以实现高速调制,将半导体激光器应用于光通信的需要;通过外腔技术可以实现单纵模输出,提高激光的空间一致性和色散特性,扩展其应用领域;通过量子阱技术可以实现更高的量子效率和辐射效率,提高激光器的功率和效能。

总之,半导体激光器作为一种重要的激光器件,在光通信、激光雷达、光储存等领域具有广泛的应用前景。

随着相关技术的不断发展与进步,半导体激光器的性能与功能将得到进一步的提升,为相关领域的应用带来更多的机遇和挑战。

半导体激光器技术的原理与应用

半导体激光器技术的原理与应用

半导体激光器技术的原理与应用随着科技的发展,人们对于半导体激光器技术的应用越来越广泛。

它不仅可以用于通信领域,也可以用于医疗、工业等多个领域。

那么,半导体激光器的原理是什么呢?它有哪些应用呢?下面,我们一一探究。

一、半导体激光器的原理在介绍半导体激光器的原理之前,我们需要先了解一下半导体材料的性质。

半导体材料的电子结构介于导体和绝缘体之间,具有特殊的电学性质。

当半导体材料处于某些特殊条件下时,它可以发出光。

半导体激光器的核心是半导体材料。

半导体激光器通常是由三层结构组成的,即P型半导体、N型半导体和单个具有限制深度的P型区域。

在静态方面,引入P-N结可以产生光,但这种光是非相干的,因此无法应用到实际中。

为消除这种光的缺陷,需要在半导体器件中建立一个光谱反馈系统,在这个系统中,引入反射式器件和光放大器件,这种消除的光不仅是相干的,而且其特征是单色的。

简单地说,半导体激光器是利用半导体材料的能带结构,通过注入电子和空穴,使其在中间的限制深度P型区域中产生光的器件。

半导体激光器的主要特点是其输出光束的方向性极好、频率稳定、发光波长单一、功率密度高、尺寸小和驱动电流小。

这使得它成为一种理想的光源,被广泛应用于通信、医疗、检测等多个领域。

二、半导体激光器的应用1. 通信领域半导体激光器在通信领域的应用非常广泛,主要用于光通信和光存储。

在半导体激光器的帮助下,光通信可以实现高速率和远距离传输,比起传统通信手段,速度更快,带宽更大。

另外,半导体激光器也可以应用于光存储,供给红外激光腰窝部分在信息储存的离子或质子中形成微小斑点,以此来储存数据。

2. 医疗领域半导体激光器也在医疗领域得到了广泛的应用。

利用半导体激光器的高功率密度,可以将其应用于皮肤治疗、牙齿美容和减肥。

同时,在医疗领域,它还可以用于光动力学治疗、光疗等方面。

例如,通过特殊的荧光化合物对癌细胞进行标记,以此可以在癌细胞的位置照射高密度的光束,从而达到杀死癌细胞的效果。

半导体激光器的原理

半导体激光器的原理

半导体激光器的原理
半导体激光器是一种基于半导体材料的激光发射器件,它利用半导体材料的特殊性质,通过有源区的电子与空穴复合放出能量,并通过反馈机制实现激光放大,最终产生高度定向、单色、高亮度的激光光束。

半导体激光器具有体积小、功耗低、效率高、寿命长等优点,广泛应用于通信、医疗、激光显示、光存储等领域。

1.载流子注入:半导体材料中,通过向有源区施加正向电流,将电子从N型区注入到P型区,同时也将空穴从P型区注入到N型区。

这样,在P-N结附近的区域形成了一个载流子密度梯度,使电子和空穴在这个区域中保持对流运动。

2.电流与光的转换:在载流子注入过程中,由于电子和空穴在有源区发生复合,使得已被注入的能量以光子的形式释放出来。

这个释放过程是一个自发辐射过程,即电子和空穴转变为更低能级的状态,并以光子的形式释放出能量。

3.光放大:通过在有源区搭建一个光学谐振腔,即在有源区两端分别加上高反射率和低反射率的镜片,可以实现光的反复放大。

光子在谐振腔内来回反射,与有源区的载流子发生相互作用,使得激光得以不断放大。

4.光反馈:为了增强激光放大效果,通常还需要在谐振腔之外加入一个光学元件,如光纤光栅或光栅耦合镜,用于反馈一部分放大的光。

这种反馈机制可以抑制非激光模式的增长,只放大所需的激光模式,从而增加光的一致性和亮度。

总结起来,半导体激光器的原理可以概括为:通过正向电流使电子和空穴注入有源区,在注入的过程中电子和空穴发生复合,释放能量以光子
的形式;通过谐振腔和光反馈机制,实现激光的放大和增强。

这样,半导体激光器就能产生高亮度、高单色性和高定向性的激光束,具有广泛的应用前景。

半导体激光器的基础原理与应用

半导体激光器的基础原理与应用

半导体激光器的基础原理与应用激光器是一种能够产生高度聚焦的强光束的设备,被广泛应用于医学、制造工业、通讯等领域。

半导体激光器是一种使用半导体材料作为激光介质的激光器,其具有体积小、能耗低、寿命长等优势,因此被广泛应用于光通讯、显示、光储存、激光打印等领域。

本文将介绍半导体激光器的基本原理、种类和应用及其面临的发展挑战。

一、半导体激光器的基本原理半导体激光器是一种利用半导体材料在电子激发下能够产生激光的器件。

其工作原理基于半导体材料的可控载流子注入和电子-空穴复合过程,从而激发弛豫辐射,通过光学谐振腔放大反馈,产生激光。

这里弛豫辐射是指电子在介质中受到激发,向低势能态跃迁时,会发出能量等于两个势能带间隙差的光子,因此在半导体激光器中,电子被激励进入情况下的能级低于导带底部,空穴状态的能级高于价带顶部。

所以当电子和空穴跃迁至同一能量级上时,电子从导带开始不断的跃升,直到与空穴发生复合为止,这样就会释放出一定的放射能量。

由于该激光的波长在可见光或近红外范围内,所以由该激光器产生的光具有良好的穿透力和衍射能力,可被广泛应用于通讯、制造、医学等领域。

二、半导体激光器的种类半导体激光器的种类众多,根据不同的工作原理和结构差别,主要可分为正比反应激光器、双极激光器、VCSEL激光器和EEL激光器等。

1、权利威转化激光器:是一种直接利用物质的电性质量转化产生光的激光器,常被称为注入激光器,能量转换效率高。

2、双极激光器:由PN结组成,工作时需要在正电压下通过该PN结。

3、VCSEL激光器:由一对反射镜形成,能够垂直地产生光束,具有比较小的单色性和方向性,广泛应用于数据传输和检测设备。

4、EEL激光器:由异质结构组成,能够在较低的注入电流下产生较高的光输出。

三、半导体激光器的应用半导体激光器的应用广泛,其中代表性的应用领域为光通讯、制造和医学。

1、光通讯:半导体激光器可以用于数据传输,光纤通讯等领域。

其中VCSEL激光器是一种被广泛应用于短距离通讯设备的激光器,如电脑键盘,音频设备,近距离通讯等领域。

半导体激光器的原理和应用

半导体激光器的原理和应用

半导体激光器的原理和应用简介•半导体激光器是一种基于半导体材料制造的激光发射器件。

它具有小体积、低功耗、高效率等特点,被广泛应用于光通信、光存储、医疗设备等领域。

原理•半导体激光器的工作原理是利用半导体材料的能带结构来实现光放大和放射。

•当半导体激光器正向偏置时,载流子从p区注入n区,发生复合过程,产生光子。

这些光子在具有多边反射结构的激光腔内来回反射,逐渐增强并形成激光。

•半导体激光器的激光波长与半导体材料的能带结构、材料组分等相关。

分类按材料•目前常见的半导体激光器主要有以下几种类型:1.GaAs激光器:使用III-V族化合物半导体GaAs作为材料。

2.InP激光器:使用III-V族化合物半导体InP作为材料。

3.GaN激光器:使用III-IV族氮化物半导体GaN作为材料。

按结构•半导体激光器的结构主要包括以下几种类型:1.边发射激光器:激光从半导体材料的边缘发射。

2.表面发射激光器:激光从半导体材料的表面垂直发射。

3.VCSEL激光器:采用垂直腔面发射的设计,适用于光纤通信等应用。

应用•半导体激光器由于其小体积、低功耗等特点,被广泛应用于以下几个领域: ### 光通信•半导体激光器已成为光通信领域中主要的光源设备,用于光纤通信、光纤传感等。

•半导体激光器的优势在于其尺寸小、功耗低,而且具备高效率、长寿命、波长可调节等特性,非常适合光通信应用。

光存储•半导体激光器在光存储器件中有重要的应用。

例如,DVD、蓝光光驱等设备就采用了半导体激光器作为读写光源。

•半导体激光器的小尺寸、低功耗和高速度的特点使其成为光存储设备的理想选择。

医疗设备•半导体激光器在医疗设备中也有广泛应用。

例如,激光手术刀、激光疗法等。

•半导体激光器能够以高精度、高效率地输出激光功率,用于进行精确的医疗操作,减少损伤和恢复时间。

发展趋势•随着科技的进步,半导体激光器在性能和应用方面不断发展。

发展趋势包括以下几个方面: ### 波长范围•半导体激光器的波长范围正在不断扩展,从可见光到红外光,甚至到紫外光。

半导体激光器的原理及其应用

半导体激光器的原理及其应用

增益系数和粒子数反转的关系也取决于谐振腔内的工作物质
n c2 A21 n c 2 Gν f ν f ν 8 2ν2 8 2ν2t复合
c 2 f ν J 2 2 nLwd I 8 ν ed t复合 e 1 lnr1r2 G a内 2 2 2L n c A21 n c G ν f ν f ν 2 2 2 2 f ( ν ) ν 8 ν 8 ν t复合 2 2 1 8 ed J阈 a内 ln r1r2 2L c2 G ν
§12.4 半导体激光器
姓名:xxx 学号:xxxxx
本章主要内容
1.激光器 2.半导体 3.半导体激光器
§ 1. 激光器 什么是激光器?
使入射光 得到放大, 是核心
泵浦源
光抽运
供给工作 物质能量
工作介质
激光束
只让与反射镜轴向平行的光束能在激活介质中来回地 反射,连锁式地放大。最后形成稳定的激光输出。
图 激光束的空间分布示意图
※ 3.4半导体激光器工作的阀值条件
◆ 要实现电子数的反转,输入电流要很高。当电流较小时,此时只发出 普通光,当电流增大到某一值时,开始发射出激光,此电流即是阀值电流。 激光器产生激光的前提条件除了粒子数发生反转还需要满足阈值条件
G a内 1 lnr1 r2 2L
能否产生振荡,取决于增益与损耗的大小。对光学谐振腔, 要获得光自激 振荡, 须令光在腔内来回一次所获增益,至少可补偿传播中的损耗。
激光振荡阈值是腔内辐射由自发辐射(荧光)向受激辐射(激光)转变的转折 点。
※ 1.3 激光器的增益和损耗
(一) 激光器的增益
增益:在注入电流的作用下,激活区受激辐射不断增强。 增益系数的定义: 光强随距离的变化:

半导体激光器的原理及其应用

半导体激光器的原理及其应用

半导体激光器的原理及其应用半导体激光器(Semiconductor Laser)是一种利用半导体材料产生激光的器件。

它与其他激光器相比具有体积小、功耗低、效率高、寿命长、可靠性好等优点,因此被广泛应用于通信、信息存储、医学、材料加工等领域。

半导体激光器的原理主要基于固体电子与固体电子、固体电子与固体空穴之间的复合辐射。

具体来说,半导体材料中由于电子处于价带,固体材料中充满着空穴。

当外部电压作用下,电子从价带跃迁到导带,形成“感受区”,空穴也从导带跃迁到价带,形成“底区”。

这样,电子和空穴在感受区和底区之间弛豫辐射产生光子,即激光。

具体而言,半导体激光器主要包括激活区、支撑区和掺杂层。

激活区是半导体材料与外界能量交互的主要区域,能量传输和辐射发生在这里。

支撑区主要负责提供电子与空穴之间的复合激发和维持激活区的稳定。

掺杂层通过在材料中引入掺杂剂,使半导体材料具有n型或p型导电性。

半导体激光器主要有两种类型:直接泵浦型和间接泵浦型。

直接泵浦型激光器通过直接通过电流注入来激励半导体材料,实现电子与空穴之间的复合辐射。

间接泵浦型激光器则是通过激光二极管或其他激光器来激发半导体材料。

半导体激光器具有广泛的应用。

其中最主要的应用是在光通信领域。

由于半导体激光器的小尺寸、低功耗和高效率,使其成为光纤通信中主要的发光源。

半导体激光器作为激光器二极管的核心元器件,可以发出具有高同步速率、高频带宽的调制光信号,用于光纤通信中的调制、放大和解调等。

此外,在激光打印机、激光显示器和激光扫描仪等光学设备中,半导体激光器也起到了至关重要的作用。

除了通信领域,半导体激光器还在其他领域得到了广泛应用。

在医学领域,半导体激光器用于激光手术、医学成像和激光诊断等。

在材料加工领域,半导体激光器用于激光切割、激光钻孔和激光焊接等。

在信息存储领域,半导体激光器用于光盘读取、光盘写入和数据存储等。

总之,半导体激光器凭借其小尺寸、低功耗、高效率等优点,在光通信、医学、材料加工和信息存储等领域得到了广泛应用。

808nm激光器说明

808nm激光器说明

808nm激光器说明808nm激光器是一种常见的激光器类型,其波长为808纳米。

本文将对808nm激光器进行详细说明,包括其原理、应用领域以及特点。

一、激光器原理808nm激光器是一种半导体激光器,其工作原理基于半导体材料的电子能级结构。

当外加电流通过半导体材料时,电子会从低能级跃迁到高能级,形成电子空穴对。

当这些电子和空穴重新结合时,会释放出光子能量,产生激光。

二、应用领域808nm激光器在医疗、工业和科研领域有广泛的应用。

1. 医疗应用:808nm激光器被广泛应用于医疗美容领域,用于脱毛、皮肤再生和血管治疗等。

其波长能够被黑色素吸收,可以有效地破坏毛囊和血管,达到治疗的效果。

2. 工业应用:808nm激光器在工业领域主要用于材料加工,如激光焊接、激光切割和激光打标等。

其高能量密度和较高的光束质量使其成为高效、精确的加工工具。

3. 科研应用:808nm激光器在科研领域被广泛用于光谱分析、光学测量和实验研究等。

其稳定的输出功率和较窄的光谱线宽使其成为研究人员进行精确实验的理想选择。

三、特点808nm激光器具有以下特点:1. 高效能:808nm激光器的电光转换效率较高,能够将大部分电能转化为激光能量,具有较高的能量利用率。

2. 窄线宽:808nm激光器的光谱线宽较窄,能够提供较高的光束质量和较好的光学性能。

3. 长寿命:808nm激光器采用半导体材料作为激光介质,具有较长的使用寿命和稳定性。

4. 易于控制:808nm激光器的输出功率和频率可以通过调节电流和温度等参数进行精确控制,具有较好的可调性。

5. 安全性高:808nm激光器的波长处于近红外区域,对人体组织的穿透性较强,但对眼睛的损伤较小,使用时需要注意眼睛的防护。

808nm激光器是一种重要的激光器类型,具有广泛的应用领域和独特的特点。

随着科技的不断进步,808nm激光器在各个领域的应用将会更加广泛,为人们的生活和工作带来更多便利和创新。

半导体激光器的原理及应用

半导体激光器的原理及应用

半导体激光器的原理及应用半导体激光器的原理半导体激光器是由半导体材料制成的激光器,其工作原理基于半导体材料的特性。

半导体材料具有直接带隙结构,当施加电流或光照时,可以发射具有高能量、单色性、相干性的光。

半导体激光器的原理主要包括以下几个方面:1.泵浦:半导体激光器通过将电流注入材料内部来进行泵浦。

载流子在半导体材料中定向流动,具有高能量的载流子可以激发其他材料的原子发射光子。

2.电子-空穴复合:在半导体材料中,由于施加电流或光照,会产生自由电子和空穴。

这些载流子会经过一系列的过程,与其他载流子相遇并发生复合,发射出能量相对较高的光子。

3.反向偏置:半导体激光器工作时,需要将其极性设置为反向偏置,即正极高于负极。

反向偏置可以形成激发载流子所需的电场,并改变带隙结构,使得激发载流子的能量较低,从而促进光子的发射。

4.光反射:在半导体材料的两侧,通常会添加高反射率的反射镜。

这样一来,激发的光子会来回多次穿过半导体材料,增强光子的能量,最终形成激光。

半导体激光器的应用由于半导体激光器具有小型化、高效能、低成本等优点,因此在许多领域都有广泛的应用。

通信领域半导体激光器在通信领域中起到了至关重要的作用。

光纤通信系统中,激光器作为光源,主要用于发送和接收信号。

半导体激光器的小型化和高效能使得光纤通信系统能够实现高速传输和远距离传输。

医疗领域在医疗领域,半导体激光器被广泛应用于激光手术、激光治疗和医学成像等方面。

例如,激光手术使用的三极管激光器可以精确控制激光的功率和焦点大小,从而实现高精度手术操作。

另外,激光治疗可以用于皮肤治疗、眼科治疗和癌症治疗等。

而在医学成像方面,激光器常用于光学相干断层扫描(OCT)和激光共聚焦显微镜(CLSM)等设备中,提供高分辨率的图像。

工业应用在工业应用中,半导体激光器被广泛用于激光切割、激光打标和激光焊接等过程。

半导体激光器的高能量和高效能使得它可以快速切割和打标各种材料,如金属、塑料和纸张等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(IEg
Pex / e) I 2rs
外微分量子效率
外微分量子效率定义为输出光子数随注入的电子数增加的比率,
考虑到hv=Eg=eVb,有
D

dP / hv dI / e

dP dI
1 Vb
而其中的 s ( dP / dI) 定义为斜率效率:
s

(I
Pex Ith )Vb
在实际测量中,s 由下式得出
半导体激光器等效电路
半导体激光器的热特性
引发机制: 在半导体激光器中,由于不可避免的存在着各种非辐射复合损耗、自由载流子吸 收等损耗机制,使外微分量子效率只能达到20%~30%,意味着相当部分注入的 电功率转换为了热量,引起激光器的升温。这会导致LD的阈值电流增大、发射波 长红移、模式不稳定、增加内部缺陷,严重影响器件的寿命。 解决办法:
与工作在直流状况的半导体激光器不同,在直接高速调制情况下会出现一些有 害的效应,成为限制半导体激光器调制带宽能力的主要因素。
一、张弛振荡与类谐振现象 数字信息(以0或1编码)直接调制的半导体激光器,如果电流突然上升到
高电平,在电流脉冲前沿与被其激励的光之间会有一个时延,所产出的光需经 一个张弛过程才能达到稳态。
(b)受激辐射:受激发射出的光子频率,相位和方向都与入射光子h 相同。 (c)受激吸收:原子接收辐射能 h 从基态能级E1越入受激能级E2。 产生激光的必要条件:受激辐射与外界作用无关。各原子的辐射都是独立地进行。因而所发光子的频 率、初相、偏振态、传播方向等都不同。不同光波列是不相干的。
阈值特性
阈值是所有激光器的属性,标志着增益与损耗的平衡点。
阈值常用电流密度Jth或者电流I表示。

影响激光器阈值特性的主要因素:
1)器件结构
2)有源区材料
3)器件工作温度
有源区材料的影响:有源区的材料必须选用直接带隙材料,材料的组分变化将 会引起直接带隙和间接带隙跃迁的比率发生变化,从而改变辐射频率的波长。
半导体激光器通过光激励或正向PN结注入等,来实现载流子的粒子束反 转。
谐振腔
为使发射光具有激光的特点,必须使其产 生谐振。能使光产生共振的装置即为谐振 腔。
只有与轴线平行的辐射光子产生共振现象 而被增强,不在这个方向上的将被反射出 腔外。
两相反方向的光波,只有叠加形成驻波时, 才能形成稳定的振荡。驻波条件:
可见,若要选频,就要控制温度,要稳定功率输出, 也要选择恒温控制
半导体激光器的光束发散角
半导体激光器的远场并非严格的高斯光束,有较大 的且在横向和侧向不对称光束发散角。由于半导体 激光器有缘层较薄,因而在横向有较大的发散角ө


1
4.05(n22 n12 )d / 4.05(n22 n12 ) /1.2 (d
E2
hv
E1
E2
hv
hv
E1
受激辐射示意图
粒子数反转
在热平衡状态下,粒子数按能态的分布遵循玻耳兹曼分布律:
N2 N1

g2 g1
exp[ (E2
E1)kT]
k为玻耳兹曼常数,N2、g2和N1、g1分别为高能态E2和低能态E1的粒子数 和统计权重。由于E2>E1,T>0,故N1>N2 ,即高能态上的粒子总少于低 能态上的粒子数。于是原子系统的受激吸收过程总占优势。采用适当的激励, 破坏热平衡状态,使高能态粒子数多于低能态粒子数,即为粒子束反转。
上述两种方式下激光器寿命的延续过程是一种性能退化过程,最终导致其失效。 造成激光器退化有多种原因,有环境因素,人为的因素,根本原因还是激光器本 身内部的因素。
二、半导体激光器
1962年,美国,同质结GaAs半导体激光器,液氮温度下脉冲工作。 1967年,液相外延的方法制成单异质结激光器,实现了在室温下脉冲工作。 1970年,美国的贝尔实验室制成了双异质结半导体激光器,实现了室温连续工作。 70年代以后。量子阱技术、MBE、MOCVD新型外延技术---量子阱激光器(阈值电流密度低、
归一化输出与调制频率的关系
半导体激光器的动态特性
张弛振荡与类谐振现象物理机制不同,但几乎有和共振频率相同的振荡频率, 为了抑制这两类现象,已实践过这两类方法:
1)外部光注入,能有效增加自发发射因子,不但能抑制张弛振荡,还能抑制 多纵模的出现。
2)自反馈注入或采用外部电路。自注入方法是将LD输出的一部分以张弛振荡 周期的0.2~0.3倍的时延再注入到它本身的腔内,能有效抑制张弛振荡。采用 外部LCR滤波电路来分流高频分量,进而抑制类谐振现象。
半导体激光器的动态特性
由电子与光子相互作用的动力学过程所产生的时延,可通过求解他们的速率方
程得到:
td
th ln
I
I Ith
式中,τth为在阈值处的载流子寿命(一般为2~5ns)。显然,在高速调制下,
td将产生调制畸变。减少td最简单的方法是在激光器上再加上一个接近阈值电
流Ith的偏流Ib,这时有
半导体激光器的线宽比其他类型的激光器宽很多,主要有以下原因: 1)LD的腔长短、腔面反射率低,因而品质因素Q值低; 2)有源区内载流子密度的变化引起折射率变化,增加了激光输出 相位的随机起伏
半导体激光器的线宽
上面曲线给出了LD线宽与1/P之间的关系、和温度对线宽的影响
半导体激光器的动态特性
半导体激光器有别于其它激光器的最重要特点之一在于它有被交变信号直接调 制的能力,这在信息技术中具有重要的意义。
L m( )
2n
纵模:共振腔内沿腔轴方向形成的各种可 能的驻波称为谐振腔的纵模
激光器稳定工作的条件
稳定工作时,平面波在腔内往返一次强度E0保持不变,有:
E0 exp(gL) R1R2 exp(int L)exp(i2KL) E0
g为功率增益系数,L为腔长,K=nw/c为平面波的波数,αint为腔内总损耗率
1)增益系数 2)载流子的俄歇复合,载流子的界面态和表面态的复合,载流子的吸收引起的
内部损耗 3)热载流子的泄露
半导体激光器的效率
描述激光器电子--光子转换的效率,即电能转换为光能的效率。
分别用功率效率和外微分量子效率描述。
1)功率效率
p

激光器所发射的光功率 激光器所消耗的电功率
Pex IV I 2rs
3)窄条半导体激光器。条宽减窄能减少载流子扩散的影响,稳定横模,也能 抑制张弛振荡和类谐振现象。
寄生电容和电感
图中是一个π型低通滤波LCR电路与LD的等效 电路并联。其中C1和rs分别是半导体激光器的 寄生电容(<1pF)和串联电阻(一般为数欧 姆,在正向偏置下有源区的电阻<1欧姆),L1 为引线电感Cs为旁路电容,选择并控制Cs和 L1可明显抑制类谐振现象。
锁模相当于使谱线的振幅及相位相关。锁模的分类: 主动锁模:周期性调制谐振腔的损耗或光程n 被动锁模:利用可饱和吸收体的非线性吸收特性,对腔内激光 的吸收是随光场强度而变化的 自锁模:激活介质本身的非线性效应能够保持各个纵模频率的 等间隔分布,并有确定的初相位关系 同步泵浦锁模:周期性调制谐振腔的增益
半导体激光器原理及应用
姓名:徐钦锋 学号:20164208084
CONTENTS
目 录
1 半导体激光器工作原理 2 半导体激光器的主要性能 3 密集波分复用半导体激光器 4 半导体激光器的应用
自发辐射与受激辐射
(a)自发辐射:hv E2 E1 特点:独立、杂乱无章的非相干光、寿命取决于半 导体禁带宽度及复合中心密度等,一般为10-9~10-3 量级
例如霓虹灯管内充有低压惰性气体,在管两端加上高电压来激发气体原子,当 它们从激发态跃迁返回基态时,便放出五颜六色的光彩。
受激辐射
激发态的原子,受到某一外来光子的作用,而且外来光子
的能量恰好满足hv=E2-E1,原子就有可能从激发态E2跃迁 至低能态E1,同时放出一个与外来光子具有完全相同状态 的光子。这一过程被称为受激辐射
将等式两边的振幅和相位分别相等,得:
g

int

1 2L
ln(
1 R1R2
)
2KL 2m
v vm mc / 2nL
两个公式前者规定了增益和电流的最小值,后者规定激光器的振荡频 率——纵向模式,其与光学谐振腔有关
法布里-珀罗光学谐振腔
激光器稳定工作条件
激光器纵模分布及增益曲线
激光束的锁模: 锁模技术就是采用一定的调制方法,使激光振荡不同频率各纵 模之间有确定的相位关系,即各纵模相邻频率间隔相等。在一 般谐振腔内,处于激光介质的增益大于谐振腔损耗频率范围内 的纵模有几百个。在频域范畴内,激光辐射由许多纵模间隔为 C/2L 的谱线组成。这些模彼此互不相关地进行振荡,其相位随 机地分布在一π 到十π 之间。其时域输出特征类似热噪声。但 是,如果迫使振荡模彼此之间的相位关系保持固定,那么激光 输出将以完全确定的形式变化。此时,我们说激光是锁模或锁 相的。
/ )2
式中,n2和d分别为激光器有缘层的折射率和厚度; n1为限制层的折射率;λ为激射波长
理想的高斯场分布
半导体激光器的光束发散角
显然,当d很小时,可忽略上式分 母中的第二项,有
4.05(n22 n12 )d
可见,ө随d的增加而增加
半导体激光器发散角与有缘层厚度的关系
解决办法:利用自聚焦透镜对出射光进行准直
P0 P1sat
10 * log(Po / P1 1)
可以得出,激光器单纵模工作时,应使P0超过P1sat至少
12.8dB。
半导体激光器的线宽
表征半导体激光器时间相干性的光谱纯度,定义为光谱曲线半峰值处 的全宽。一般的,在阈值以下的谱线宽度约为60nm左右,在阈值以上 的谱线宽度大约在2—3nm或更小。
相关文档
最新文档