机械原理课程设计(牛头刨床)
《机械原理》课程设计_牛头刨床

牛头刨床设计一、工作原理牛头刨床是一种靠刀具的往复直线运动及工作台的间歇运动来完成工件的平面切削加工的机床。
图1为其参考示意。
电动机经过减速传动装置(带和齿轮传动)带动执行机构(导杆机构和凸轮机构),完成刨刀的往复运动和间歇移动。
刨床工作时,刨头6由曲柄2带动右行,刨刀进行切削,称为工作行程。
在切削行程H中,前、后各有一段0.05H的空刀距离,工作阻力F为常数;刨刀左行时,即为空回行程,此行程无工作阻力。
在刨刀空回行程时,凸轮8通过四杆机构带动棘轮机构,棘轮机构带动螺旋机构使工作台连同工件在垂直纸面方向上做一次进给运动,以便刨刀继续切削。
图1 牛头刨床二、设计要求电动机轴与曲柄轴2平行,刨刀刀刃点E与铰链点C的垂直距离为50mm,使用寿命10年,每日一班制工作,载荷有轻微冲击。
允许曲柄2转速偏差为土5%。
要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件9的升、回程运动规律均为等加速、等减速运动。
执行构件的传动效率按0.95计算,系统有过载保护。
按小批量生产规模设计。
三、设计数据表1 设计数据四、设计内容及工作量(1)根据牛头刨床的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。
(2)根据给定的数据确定机构的运动尺寸。
要求用图解法设计,并将设计结果和步骤写在设计说明书中。
(3)导杆机构的运动分析。
将导杆机构放在直角坐标系下,建立数学模型。
(4)凸轮机构设计。
根据给定的已知参数,确定凸轮的基本尺寸(基圆半径r o、机架l o2o9和滚子半径r r)和实际轮廓,并将运算结果写在说明书中(可选)。
(5)编写设计计算说明书。
机械原理课程设计——牛头刨床.

一:课程设计题目、内容及其目的课题:牛头刨床内容1.对机构进行运动分析已知:曲柄每分钟转数错误!未找到引用源。
,各构件尺寸及质心位置。
作机构1~2个位置的速度多边形和加速度多边形,作滑块的运动线图,以上内容与后面动态静力分析一起画在1号图纸上。
2.对机构进行动态静力分析已知:各构件的重量G(曲柄1、滑块2、和连杆5的重量都可以忽略不计),导杆3的转动惯量错误!未找到引用源。
及切削力错误!未找到引用源。
变化规律如下图。
确定构件一个位置的各运动副反力及应加于曲柄上的平衡力矩。
3、用UG进行模拟运动仿真校核机构运动分析和动态静力分析的结果4、电动机功率的确定与型号的选择5、齿轮减速机构设计目的:1:学会机械运动见图设计的步骤和方法;2:巩固所学的理论知识,掌握机构分析与综合的基本方法;3:培养学生使用技术资料,计算作图及分析与综合能力;4:培养学生进行机械创新的能力。
二:牛头刨床简介和机构的要求1:牛头刨床简介牛头刨床是一种用于平面切削加工的机床,如图1。
电动机经皮带和齿轮传动,经过减速机构减速从而带动曲柄1。
刨床工作时,由导杆3 经过连杆4 带动刨刀5 作往复运动。
刨头左行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头右行时,刨刀不切削,称空行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,通过棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H 的空刀距离),而空回行程中只有摩擦阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。
2:机构的要求牛头刨床的主传动的从动机构是刨头,在设计主传动机构时,要满足所设计的机构要能使牛头刨床正常的运转,同时设计的主传动机构的行程要有急回运动的特性,刨削速度尽可能为匀速运动,以及很好的动力特性。
机械原理课程设计——牛头刨床

机械能变化曲线:
飞轮设计:
V
A4
=
A2 A4 A2
速度图解法:
V1A+V12=V 2A VF+VFB=V 2B V2B=βV 2A Β为常数比
加速度图解分析: a4An+a4Ar+a24Ar+ak24A =a2A 大小 方向
a4b+aF4Br=aF a4A=βV 4B
进给凸轮机构设计
主体机构设计
牛头刨床主体机构
主体结构设计
设计要求
(1)刨刀工作行程要求速度比较平稳,空回行程时 刨刀快速退回,机构行程速比系数在1.4左右。 (2)刨刀行程H=300mm或H=150mm。曲柄转速、 切削力、许用传动角等见表1,每人选取其中一组数据。 (3)切削力P大小及变化规律如图1所示,在切削行 程的两端留出一点空程。具体数据如下:
主体机构
电机转速n(r/mi n)
切削力P(N)
75
许用传动角[γ]
H=150mm
4500N
45°
刨刀行程:H=150 速比系数:K=1.4
主体机构(方案一)
方案一: 摆动导杆机构与摇杆滑块机构组合机构
机构简图:
计算机构的自由度 F=3×5-2×7=1
主体机构(方案一)
机构尺寸的计算:
在满足压力角条件确定基圆半径,摆杆中心间的中心距。
• 推程许用压力角为[α]= 38°; • 回程许用压力角为[α’]= 65°; • 试凑法:对照摆杆长度为L,赋值基圆半径, 中心距a=90,r0=50;经试验符合要求
滚子半径rf:rf<ρ mi n -3(mm)及rf<0.8ρ mi n(mm) 方法1用图解法确定凸轮理论廓线上某点A的曲率半径R: 以A点位圆心,任选较小的半径r 作圆交于廓线上,在圆A 两边分别以理论廓线上的B、C为圆心,以同样的半径r 画圆,三个小圆分别交于E、F、H、M四个点处。过E、 F H、M O点 O点近似为凸轮廓线上A OA。并且曲率中心肯定在曲线过A 点的法线上。可以通 过法线与直线EF或HM的交点求曲率中心。
牛头刨床(机械原理课程设计)完整版

机械原理课程设计题目:牛头刨床作者:***机械原理设计数据 (2)1、概述1.1 牛头刨床简介 (4)1.2 运动方案分析与选择 (5)2、导杆机构的运动分析2.1 位置2的速度分析 (6)2.4 位置2的加速度分析 (7)2.3 位置4的速度分析 (10)2.4 位置4的加速度分析 (11)3、导杆机构的动态静力分析3.1 位置2的惯性力计算 (12)3.2 杆组5,6的动态静力分析 (12)3.3 杆组3.4的动态静力分析 (13)3.4 平衡力矩的计算 (14)概述一、机构机械原理课程设计的目的:机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
其基本目的在于:(1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。
(2)使学生对于机械运动学和动力学的分析设计有一较完整的概念。
(3)使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。
(4)通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
二、机械原理课程设计的任务:机械原理课程设计的任务是对机械的主体机构(连杆机构、凸轮机构、齿轮机构以及其他机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮;或对各机构进行运动分析。
要求学生根据设计任务,绘制必要的图纸,编写说明书。
三、械原理课程设计的方法:机械原理课程设计的方法大致可分为图解法和解析法两种。
图解法几何概念较清晰、直观;解析法精度较高。
根据教学大纲的要求,本设计主要应用图解法进行设计。
牛头刨床的简介一.机构简介:机构简图如下所示:牛头刨床是一种用于平面切削加工的机床,主要由齿轮机构,导杆机构和凸轮机构等组成,如图所示。
电动机经过减速装置(图中只画出了齿轮z1,z2)使曲柄2转动,再通过导杆机构2-3-4-5-6带动刨头6和刨刀作往复切削运动。
机械原理课程设计——牛头刨床

项目
刨刀冲程 H( mm)
刨刀越程量 ΔS( mm)
刨削平均速度 Vm( mm/s)
极位夹角 θ( ° )
行程速比系数 K
机器运转速度许用不均匀系
数[δ]
参数
320 16
1211.4
30
1.4
0.05
Page 11
八 、机构运动循环图
机构工艺动作分解
牛头刨床的主运动为: 电动机 →变速机构→摇杆机构 →滑枕往复运动; 牛头刨床的进给运动为: 电动机 →变速机构→棘轮进给 机构 →工作台横向进给运动。
Page 12
九 、主机构尺度综合及运动特性评定
机构位置划分图
以 7号和 14 号位置 作运动分析
Page 13
十 、 电动机功率与型号的确定
电动机的选择
传动比分配与 减速机构设计
确定电动机功率 总传动比
采用展开式二级圆柱齿轮减速器
工作台进给方案
Page 14
工作台横向进给运动 工作台垂直进给运动
其中 ,刨刀向左为工作行程 ,速度平稳 ,运动行 程大; 向右为工作回程,速度快,具有快速返回的 特性。
Page 8
六 、对方案二的பைடு நூலகம்能分析
(2)传递性能和动力性能分析
杆 1、2、3、6 所组成的曲柄摇杆机构中 ,传动 角是不断变化传动性能最好的时候出现在 A ,B, C ,D 四点共线与机构处于极位时两者传动角相等 该机构中不存在高副 , 只有回转副和滑动副 ,故能 承受较大的载荷 , 有较强的承载能力 , 可以传动 较大的载荷 。当其最小传动角和最大传动角相差不 大时 ,该机构的运转就很平稳 ,不论是震动还是冲 击都不会很大 。从而使机械又一定的稳定性和精确 度。
机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计机械原理课程设计牛头刨床设计随着科技不断的发展,机械英才的培养已受到各界的高度重视。
机械原理作为机械类专业的重点课程之一,对于学生的综合素质和能力的培养有着至关重要的作用。
为了提高学生的实践能力和专业技能,我在接受机械原理课程设计任务时,选择了一项具有挑战性和实用性的牛头刨床设计任务。
一、课程设计目标通过本次课程设计,主要目标如下:1.让学生了解牛头刨床的基本工作原理及其结构特点;2.提高学生的机械设计和制造能力;3.培养学生的合作精神和创新能力;4.促进学生的动手操作和实验能力的提高。
二、课程设计步骤1.课程设计前期准备在进行具体设计之前,我对牛头刨床的相关资料进行了大量的研究和归纳,学生们也需要认真学习刨床的相关知识。
同时,我还组织了互动的讲座和课堂讨论,以便于学生能够更加深入地理解牛头刨床的工作原理和结构特点。
2.机械设计在机械设计过程中,我们采取的是课堂授课和实际组装相结合的方法,进一步提高了学生的实践能力和设计能力。
课堂授课的内容主要包括刨床的设计思路、工作原理、传动方式等内容,通过实际操作和模拟实验,让学生从多个角度全面了解牛头刨床的结构和特点。
同时,我们还根据实际情况,对课程内容进行了针对性的调整和完善。
3.装配测试在机械设计完成后,我们对刨床进行了装配测试。
通过实际的组装和测试,提高了学生的实验能力和操作技能。
在测试过程中,我们严格按照安全操作规程进行操作,避免了误操作和安全事故的发生。
4.实践操作在实践操作中,我们对刨床的使用方法进行了详细的讲解和演示,让学生可以熟练地操作和使用刨床。
同时,我们组织了一些实践操作题目,让学生能够更好地理解和应用所学的知识。
三、收获通过本次课程设计,学生们都获得了很大的收获。
首先,他们对机械设计的基本原理和方法有了更深入的了解,同时也提高了他们的实践能力和实验能力。
其次,在团队协作方面,学生们也得到了很好的锻炼,提高了他们的合作精神和创新能力。
机械原理牛头刨床课程设计说明书

机械原理牛头刨床课程设计说明书【课程设计说明书】机械原理牛头刨床一、设计要求设计一台工业用牛头刨床,实现对工件的加工和修整。
具体要求如下:1. 切削平面尺度:500mm×300mm;2.设计应符合牛头刨床机床的常见设计规范,确保机床的稳定性和可靠性;3.确定合适的传动方式,保证工作台的运动平稳、精度高;4.配备适用于牛头刨床的刀具,并设计合理的刀具固定装置;5.设计合适的工作台升降装置,以便对工件进行修整和加工;6.需要制作完整的设计图纸,包括总装图、零件图、工艺图、总体尺寸图等。
二、设计方案1.结构设计:本设计采用C型床身结构,床身采用优质铸铁材料,具有足够的刚性和稳定性。
设计采用铸造床身而非焊接结构,以确保床身的牢固性和寿命。
2.传动方式:采用液压传动和滚珠丝杠传动相结合的方式,保证牛头刨床的刨削平稳性和精确度。
使用液压缸控制工作台的下行速度,滚珠丝杠传动确保工作台的升降精度。
3.刀具固定装置:设计使用可调节的夹具和刀架装置,以便进行不同尺寸工件的加工。
采用刀架的固定方式,提高切削精度和稳定性。
4.工作台调整装置:使用螺杆和手柄的组合进行工作台的调整和锁定,确保工作台的位置在切削过程中保持稳定。
三、关键技术分析1.床身结构设计:床身是整个牛头刨床的基础,需要具备足够的刚性和稳定性。
采用C型床身结构可以有效避免因切削过程中产生的振动对加工质量的影响。
2.传动系统设计:液压传动和滚珠丝杠传动结合,确保切削平稳和升降精度。
液压系统可根据切削要求调节下行速度,滚珠丝杠传动可以精确控制工作台的升降位置。
3.刀具固定方式设计:可调节的夹具和刀架结合,使得牛头刨床可以适应不同尺寸工件的加工。
刀架的固定方式可以提高切削精度和稳定性。
4.工作台调整装置设计:使用螺杆和手柄的组合进行工作台的调整和锁定,使得工作台的位置在切削过程中保持稳定。
确保工件加工精度和切削平面的平整。
四、设计结果经过详细设计和计算,本课程设计的机械原理牛头刨床满足设计要求,具备较高的稳定性、精确度和操作性。
机械原理牛头刨床课程设计

机械原理牛头刨床课程设计牛头刨床课程设计本课程的目的是使学生理解牛头刨床的原理,掌握正确的操作方法,安全而且高效的操作机床,为以后的实验、制作做准备。
一、总述牛头刨床,是用来进行切铣或者刨削加工的机床,主要用于打凹槽、打丁、刨槽、切断、挤出、切透等工作。
由于它精度高,准确性好,可以用来在机械加工行业中制作同样形状的零件,因此十分流行。
二、物理原理牛头刨床是一种摩擦式加工机床,其工作原理是将工件把其用牛头刨刃进行切削,产生摩擦动力发生滑动现象,从而实现对工件的加工加工非常有效率。
它特点体现在机床的构造,通常由一个垂直的刨花杆,一个活动的刨刃和一个垂直的工件夹紧装置组成。
三、机床结构牛头刨床,基本包括:主轴系统,分度齿轮系统,臂节系统,工件夹紧系统,床身系统和润滑系统等结构。
主轴系统由主轴、轴夹等组成,分度齿轮系统由主齿轮、主动齿轮、位移齿轮和分度齿轮组成,臂节系统由夹紧臂、轨道臂、杠杆调整臂、弹簧臂和臂轮组成,工件夹紧系统由夹紧框、夹紧杆、紧固螺栓及液压夹紧装置组成,润滑系统由油箱、油泵和油管组成。
四、机床操作1、在夹紧上就好紧固螺丝杆调整压力,根据工艺要求选择合适锥度的刨刃,按照顺序从大到小的刨;2、翻转夹件夹紧装置夹紧工件,使其与机床的定位位置一致;3、调整切削深度,即调整刨刃夹紧臂的位置,当刨刃完全进入工件时,开机进行加工;4、加工中要注意机床及工件的热量,使其保持在一定范围内;5、加工完成后,去除刨刃,清理刨花,进行刀具检查,并更换新的刀具。
五、课程内容1、讲解物理原理及机床结构;2、讨论加工工艺;3、实操演示加工技术;4、实验室测试本课程学习的技能;5、指导并完成机床制作机械部件的实际操作。
六、学习成果1、理解牛头刨床的原理,掌握机床的结构及各部件;2、熟悉牛头刨床内所有工艺加工流程及其步骤;3、掌握各种加工技术,能够正确熟练地操作机床;4、能够正确配置工艺,以满足加工的要求。
(完整版)机械原理课程设计说明书牛头刨床

(完整版)机械原理课程设计说明书牛头刨床机械原理课程设计说明书牛头刨床一、设计背景随着工业化的发展,对于木材加工的需求越来越大。
牛头刨床作为一种常用的机械设备,用于将木材刨平、刨直,从而得到平整的木材表面。
本课程设计旨在设计一台具有稳定性、高效性和安全性的牛头刨床。
二、设计要求1. 刨床的工作台面积不小于500mm×300mm,且能承受一定的负荷;2. 刨床刨削深度可调节,最大刨削深度不小于8mm;3. 刨床的工作速度可调节,最大工作速度不小于8m/min;4. 刨床的刨刀具具有良好的刨削效果,并可更换;5. 刨床具有必要的保护装置,以确保操作者的安全;6. 刨床的整体结构紧凑、操作简便,外观美观。
三、设计思路1. 结构设计:(1) 床身结构:采用铸铁材质,以确保刨床的稳定性和刚性;(2) 工作台设计:采用铝合金材质,具有较好的耐磨性和导热性;(3) 刨刀具设计:采用高速钢材质,设计成可更换式,以提高使用寿命和刨削效果;(4) 传动系统设计:采用电动驱动方式,通过变频器调节工作速度和刨削深度。
2. 控制系统设计:(1) 刨床配备触摸屏控制面板,方便操作者实时监控工作状态;(2) 刨床配备紧急停止按钮和安全防护装置,以确保操作者的安全;(3) 刨床具备自动换刀功能,提高操作效率;(4) 刨床配备故障自诊断系统,能够快速判断故障并进行维修。
四、技术参数1. 工作台面积:600mm×400mm;2. 最大刨削深度:10mm;3. 最大工作速度:12m/min;4. 刨刀具材质:高速钢;5. 电源:交流220V,50Hz;6. 功率:2.2kW。
五、安全措施1. 刨床配备紧急停止按钮,操作者在发生紧急情况时,可以立即停止刨床的工作;2. 刨床工作过程中,操作者必须戴上防护手套和护目镜,以避免刨削过程中的飞溅伤害;3. 刨床的开关箱设有防护罩,以防止误碰开关引发事故;4. 刨床配备故障自诊断系统,能够及时发现故障并进行维修。
机械原理 课程设计---牛头刨床设计

机械原理课程设计---牛头刨床设计1.设计目的本设计旨在设计一台能够切削各种金属材料的牛头刨床。
该牛头刨床应具备高效率、高稳定性、切削精度高的特点,便于操作和维护。
2.设计原理牛头刨床是一种高速旋转的加工设备。
其主要原理是通过旋转锯齿式的切削工具,将工件表面上的金属材料逐渐削除,使得工件表面变得更加平整,并且加工出所需的形状和尺寸。
牛头刨床是一种中等负荷,高精度的机床。
牛头刨床通常由牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头刨床的加工过程是由电机驱动削刀旋转,刀架在滑轨的带动下来回作直线摆动,使牛头刨床作工件表面直线切削运动,从而切出工件所需的形状和尺寸。
3.设计要求3.1工件加工精度应达到5μm。
3.2牛头刨床的加工速度应达到1000mm/min。
3.3牛头刨床的集成度要高,结构紧凑,使用方便,易于维护。
3.4牛头刨床应能满足加工各种金属材料的需求。
3.5牛头刨床应具有高稳定性,能够保证工件加工的精度和表面质量。
4.设计方案4.1结构设计根据以上的设计要求,本设计方案选择使用牛头床身、床身导轨、剪刀手柄、剪刀架、加工刀具等组成。
牛头床身是整个牛头刨床的主要支撑结构,可以承受切削力和副作用力,保持机床的稳定性。
床身导轨主要用于支撑剪刀架和平台,保证刀架的平直移动。
剪刀手柄和剪刀架负责牛头刨床的切削过程,加工刀具可根据需要更换。
4.2电气控制设计本设计方案使用单片机控制系统,实现对牛头刨床的控制。
单片机通过输入脉冲信号,控制螺旋传动装置,从而改变刀具的进给量,达到精确控制切削深度和速度的目的。
4.3软件设计本设计方案采用Unigraphics NX软件进行电脑辅助设计。
对机床各零件进行三维建模,并进行机床的装配和结构分析。
5.结论通过本次牛头刨床的设计,可以使得产生出一款结构紧凑、使用便捷、高效率和高精度的机床。
在未来的制造业中,牛头刨床的应用前景非常广阔。
机械原理课程设计牛头刨床设计

机械原理课程设计实习报告一、设计任务二、牛头刨床简介及工作原理三、原始参数四、导杆机构的运动综合五、用解析法作导杆机构的运动分析六、导杆机构的动态静力分析七、Matlab编程并绘图八、行星轮系设计九、变位齿轮设计十、课程设计总结十一、参考文献十二、粉末成型压机方案设想一、设计任务1牛头刨床刀杆机构的运动综合、运动分析和动态静力分析; 2对牛头刨床传动装置中行星轮机构、齿轮机构进行综合。
二、牛头刨床简介及工作原理牛头刨床是用于加工中小尺寸的平面或直槽的金属切削机床,多用于单件或小批量生产。
为了适用不同材料和不同尺寸工件的粗、精加工,要求主执行构件—刨刀能以数种不同速度、不同行程和不同起始位置作水平往复直线移动,且切削时刨刀的移动速度低于空行程速度,即刨刀具有急回现象。
刨刀可随小刀架作不同进给量的垂直进给;安装工件的工作台应具有不同进给量的横向进给,以完成平面的加工,工作台还应具有升降功能,以适应不同高度的工件加工。
牛头刨床是一种用于平面切削加工的机床,电动机经行星轮系和齿轮Z 4、 Z 5减速带动曲柄2转动。
刨床工作时,由导杆机构2-3-4-5-6带动刨头和刨刀作往复运动。
刨头向左时,刨刀进行切削,这个行程称工作行程,刨头受到较大的切削力。
刨头右行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产力。
图1牛头刨床外形图三、原始参数H :刨头行程 ; K :行程速比系数; Fc 切削阻力 ; m 4 m 5 m 6分别为导杆、连杆及刨头的质量;J 4、J 5分别分别为导杆4及导杆5绕各自质心的转动惯量;m 1、m H 分别为行星减速器中心轮及齿轮4、5的模数;Z 4,Z 5为齿轮4及5的齿数;n 1:电机转速;n 2:曲柄2及齿轮5的转速;k :行星轮个数。
kg m 2四、导杆机构的运动综合设L O3B =L 3 L BF =L 4 L O3D =L '6 L O2A =L 1 L O3O2=L 6 L O3A =S 3 L DE =S E 1、导杆的摆角ψ K=1.8180k 51.43180-︒+ψ=⇒ψ=︒︒ψ2、导杆的长度L 33H/2H 600mm L 691.4mm sin /2=⇒==ψ3、连杆的长度L 443L 0.3L 207.4mm =⨯=4、刨头导路中心线xx 至O3点的垂直距离L '6O3E 3L L cos 2622.9mm =⨯ψ=根据已知xx 被认为通过圆弧BB ’的绕度ME 的中点D 知O E'33O3M DM 63L L L L L L 657.2mm 2-=-=-=5、曲柄的长度L 1616L 370mm L L sin /2160.5mm =⇒=⨯ψ=6、切削越程长度0.05H ,如图所示则切削越程长度为0.05H=0.05×600=30mm7、机构运动简图8、计算机构的自由度 F=3×5-2×7=1五、用解析法作导杆机构的运动分析如图所示,先建立一直角坐标系,并标出各杆矢量及其方位角。
牛头刨床机械原理课程设计c语言

牛头刨床机械原理课程设计c语言牛头刨床是一种常见的工业机械设备,常用于对木材进行刨削和修整。
它的工作原理是通过刨刀的旋转和推进机构的运动,实现对木材的刨削。
本篇文章将详细介绍牛头刨床的机械原理,并对其进行课程设计,使用C语言实现。
1.机械原理牛头刨床的主要机械原理包括刨刀的旋转和推进机构的运动。
1.1刨刀的旋转刨刀的旋转是牛头刨床刨削木材的关键过程。
刨刀通过电机驱动的皮带轮和齿轮传动实现旋转。
电机带动皮带轮转动,再通过齿轮传动将动力传递给装配在主轴上的刨刀。
刨刀的转速一般为几百到几千转/分,可以根据需要调整。
1.2推进机构的运动推进机构的运动是牛头刨床的另一个重要过程。
推进机构通常由电机、皮带传动和导轨组成。
电机通过皮带传动带动牛头在导轨上前后摆动,实现对木材的推进。
推进速度可以根据需要进行调节。
2.课程设计根据牛头刨床的机械原理,我们可以进行以下课程设计,使用C语言对其进行实现。
2.1刨刀旋转实现首先,我们可以使用C语言编写一个函数,实现刨刀的旋转。
函数包括以下步骤:-初始化电机-设置转速-通过电机控制皮带轮的转动-通过齿轮传动将动力传递给刨刀-控制刨刀的旋转具体代码如下:```cvoid rotate_cutterint motor_speed = 1000; // 设置电机转速int belt_wheel_rotation; // 计算皮带轮转动角度int gear_rotation; // 计算齿轮转动角度int cutter_rotation; // 计算刨刀转动角度//初始化电机init_motor(;//控制电机转速control_motor_speed(motor_speed);//通过电机控制皮带轮转动belt_wheel_rotation =calculate_belt_wheel_rotation(motor_speed);move_belt_wheel(belt_wheel_rotation);//通过齿轮传动将动力传递给刨刀gear_rotation = calculate_gear_rotation(belt_wheel_rotation);move_gear(gear_rotation);//控制刨刀的旋转cutter_rotation = calculate_cutter_rotation(gear_rotation);move_cutter(cutter_rotation);```2.2推进机构运动实现其次,我们可以使用C语言编写另一个函数,实现推进机构的运动。
机械原理牛头刨床课程设计说明书

机械原理牛头刨床课程设计说明书机械原理牛头刨床课程设计说明书1. 介绍在机械工程专业的课程设计中,机械原理牛头刨床是一个重要的实验项目。
本文将针对机械原理牛头刨床的课程设计进行全面评估和撰写,旨在帮助您深入理解这一主题。
2. 牛头刨床的工作原理2.1 主轴传动装置机械原理牛头刨床的工作原理首先涉及到主轴传动装置。
主轴传动装置是牛头刨床中最基本的部件之一,它负责将电机的旋转运动传递给牛头刨床的切削刀具,从而实现工件的加工。
2.2 工作台而牛头刨床的工作台则是用来支撑工件并进行切削加工的。
工作台的设计和调整对于牛头刨床的加工精度和效率有着非常重要的影响。
3. 课程设计内容在进行机械原理牛头刨床的课程设计时,我们需要重点关注以下内容:3.1 设计原理要对牛头刨床的工作原理进行深入的研究和理解,并结合课程中所学到的机械原理知识,设计出符合工程要求的传动装置和工作台结构。
3.2 零部件选型我们需要对牛头刨床的零部件进行选型和优化,确保牛头刨床在正常工作状态下具有稳定的性能和工作精度。
3.3 结构设计在课程设计中,我们还需要对牛头刨床的整体结构进行设计和分析,包括主轴传动装置、工作台、床身结构等,保证各部件之间的协调和配合。
3.4 控制系统设计我们还需要考虑牛头刨床的控制系统设计,包括电气控制装置、数控系统等,以实现牛头刨床的自动化加工。
4. 个人观点和总结在完成这份课程设计说明书之后,我对机械原理牛头刨床有了更深入的理解。
通过对牛头刨床的工作原理、课程设计内容的研究和总结,我认识到牛头刨床作为一种重要的机械加工工具,在工程实践中具有着重要的应用和推广价值。
机械原理牛头刨床的课程设计是一项非常有挑战性和意义的任务,在其中我们需要充分发挥自己的理论知识和实践能力,才能够设计出符合工程要求的牛头刨床结构和性能。
希望通过这篇文章的撰写,能够对您的课程设计工作有所帮助。
以上就是对机械原理牛头刨床课程设计的全面评估和撰写,希望能够对您有所启发。
牛头刨床机械原理课程设计

牛头刨床机械原理课程设计牛头刨床是一种机械设备,用于加工木材、塑料、金属等材料。
其工作原理是通过刀具在物体表面上上下移动,达到切削的目的。
其中涉及到的原理主要包括:1. 刨床工作原理刨床是一种重型机械工具,由主驱动机构、横移机构、上下升降机构、切削机构、进给机构等组成。
切削机构包括刀架、刀柄和刀具。
当工件在夹具上夹紧稳固后,驱动机构带动横移机构和上下升降机构保持平衡,使得刀具与工件接触,并在横向和上下方向移动,实现对工件的切削。
2. 刨床刀具原理刨床刀具主要包括刨刀、电磁刨刀和金刚石刨刀。
刨刀是最常见的一种刀具,其切削面呈V型或直径尖角,用于刨削较大的平面表面。
电磁刨刀是利用磁场通过电流改变切削面积的大小,实现对工件的切削。
金刚石刨刀则是利用其硬度高、耐磨性强的特性,用于加工硬度较高的材料。
3. 刨床进给机构原理刨床进给机构主要通过变速器和变步进电机驱动筒齿轮,再通过传动带牵引杠杆调整进刀量。
刨床的进给速度和进给量应根据工件的材料性质、大小和工件表面的要求等因素进行合理的调整。
4. 刨床的冷却原理在刨床加工过程中,由于切削摩擦会使工件表面温度升高,容易导致切削工具变形或失去切削性能。
因此在刨床加工中需要进行冷却处理。
使用冷却液进行冷却可以有效减少摩擦热量,并清洗切削面,保证加工质量。
常用的冷却液有水、油、溶液等。
基于以上原理,我们可以开展牛头刨床机械原理课程设计,并考虑以下几个方面:1. 设计刨床的操作界面通过自主设计刨床的操作界面,可以使得操作更加方便和快捷。
操作界面应设置开机按钮、急停按钮、刨床刀具的进给速度和进给量调节、冷却液的喷洒控制等。
2. 模拟刨床工作的过程通过建立数学模型,模拟刨床的加工过程,可以让学生更好地理解和熟悉刨床的工作原理和加工过程。
模型可以分成驱动机构、横移机构、上下升降机构、切削机构、进给机构和冷却液系统等模块,通过计算机程序实现模拟加工。
3. 实验设计设计刨床加工实验,让学生实际操作刨床进行加工,从而更深入了解刨床的工作原理和加工过程。
机械原理牛头刨床课程设计

机械原理课程设计牛头刨床一、机构简介与设计数据1.机构简介牛头刨床是一种用于平面切削加工的机床,如图4-1。
电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。
刨床工作时,有倒杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量。
刨头左行时,刨刀不切削,称空回行程。
此时要求速度较高,以提高生产率。
为此刨床采用急回作用的导杆机构。
刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。
刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H的空刀距离,见图1b),而空回行程中则没有切削阻力。
因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转.故需安装飞轮来减小主轴的速度波动,以提高切削质量和减少电动机容量。
a) b)图1 牛头刨床机构简图及阻力曲线图2、设计数据,见表1。
表1 设计数据二.设计内容1.导杆机构的运动分析已知 曲柄每分钟转数2n ,各机构尺寸及重心位置,且刨头导路x-x 位于导杆端点B 所作圆弧高的平分线上(见图2)。
要求 作机构的运动简图,并作机构两个位置的速度、加速度多边形以 图2 曲柄位置图 及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上(参考图例1)。
曲柄位置图的作法为(图2)取1和为工作行程起点和终点所对应的曲柄位置,和为切削起点和终点所对应的曲柄位置,其余2、3〃〃〃12等,是由位置1起,顺方向将曲柄圆周作12等分的位置。
2.导杆机构的动态静力分析已知 各机构的重量G (曲柄2、滑块3和连杆5的重量都可以忽略不计),导杆4绕重心的转动惯量及切削力P 的变化规律(图1b )。
表2 机构位置分配表要求按表4-2所分配的第二行的一个位置,求各运动副中反作用力及曲柄上所需的平衡力矩。
机械原理课程设计-牛头刨床

2 调整进给机构
控制工件的进给速度,影响加工精度。
3 保养和维护
定期保养设备,确保其正常工作状态。
牛头刨床的操作规程
1. 检查刨床的各项功能是否正常。 2. 确认工件尺寸和切削深度。 3. 调整刀具和工件的位置。 4. 打开刨床电源,开始加工。 5. 完成加工后,关闭刨床电源。
通过进给机构控制工件的进给速度。
牛头刨床的主要零部件
主轴
带动刀具旋转。
进给机构
控制工件的进给速度。
切削机构
完成切削过程。
牛头刨床的工作过程
工件放置
切削过程
将待加工工件放置在工作台上。 切削机构对工件进行切削。
加工完成
获得平整的加工面。
牛头刨床的加工精度控制
1 刀具的选用
选择合适的刀具,保证加工质量。
刨削原理
通过旋转刀具对工件进行切削。
结构
由底座、进给机构、主机等组成。
牛头刨床的分类
按切削方式分类
有手动、半自动和全自动刨床。
按机床结构分类
有卧式、立式和特种刨床。
按加工对象分类
有木工刨床和金属刨床。
牛头刨床的工作原理
1
压板下压
压紧工件,保证加工过程中的稳定性。
2
主轴旋转
带动刀具进行切削。
3
工件进给
机械原理课程设计-牛头 刨床
牛头刨床是一种常见的木工加工设备,具有广泛的应用领域。本课程设计将 介绍牛头刨床的原理、结构、工作过程以及其在工业生产中的重要性。
课程设计背景和意义
1 背景
现代工业对高精度、高效率的加工需求不断增加。
2 意义
通过对牛头刨床的学习和设计,提高学生的机械原理和加工能力。
牛头刨床的原理和结构
机械原理课程设计说明书-牛头刨床的运动分析与设计

机械原理课程设计说明书-牛头刨床的运动分析与设计一、设计目标本机械原理课程设计的目标是对牛头刨床进行运动分析与设计,通过分析刨床的运动原理和结构特点,设计出合理的刨床结构,确保刨床的运动稳定性和工作效率。
二、刨床的运动分析1. 刨床的基本运动牛头刨床的基本运动包括主轴转动、工作台进给运动和刀架进给运动。
主轴转动通过电动机驱动刨刀进行旋转,实现刨削工作。
工作台进给运动使工件在水平平面上进行进给运动,供刀架进行刨削。
刀架进给运动使刀架在垂直于工作台的方向上进行进给,并在工件刨削时左右平移,调整刨削的位置。
2. 刨床的运动传动刨床的运动传动主要通过齿轮传动和导轨传动实现。
主轴转动通过电动机通过齿轮传动带动主轴实现。
工作台进给运动通过齿轮和导轨的组合实现,工作台在导轨上进行水平移动。
刀架进给运动通过螺杆和导轨的组合实现,螺杆带动刀架进行垂直平移,并在导轨上进行水平移动。
三、刨床结构设计基于上述运动分析,对牛头刨床进行结构设计如下:1. 主轴结构:主轴采用直径大、刚度高的优质轴承,保证刨床的稳定性和工作效率。
主轴和电动机通过齿轮传动连接,确保刨床主轴的转动平稳。
2. 工作台结构:工作台采用结实的铸铁材料,设计为可拆卸结构,方便工件的放置和取出。
工作台通过导轨和齿轮传动实现水平进给运动,导轨和齿轮选用耐磨材料,减小运动阻力。
3. 刀架结构:刀架采用铸铁材料,设计为可调节结构,方便调整刨削位置。
刀架通过螺杆和导轨的组合实现垂直进给运动和水平进给运动,确保刀具与工件的接触面平整。
四、设计流程1. 进行刨床的运动分析,确定刨床的基本运动和运动传动方式。
2. 根据运动分析结果,进行刨床的结构设计,包括主轴结构、工作台结构和刀架结构。
3. 设计刨床各部件的尺寸和连接方式,确保结构的牢固性和可拆卸性。
4. 进行刨床的总体装配和调试,确保刨床的运动平稳和工作效率。
5. 测试刨床的性能和稳定性,进行必要的调整和改进。
五、安全注意事项1. 在使用刨床时,应仔细阅读操作指南,并按照操作规程进行操作。
牛头刨床机械原理课程设计

牛头刨床机械原理课程设计牛头刨床是一种用于金属切削加工的机械设备,它具有较长的历史和广泛的应用。
牛头刨床的机械原理课程设计是机械类专业的重要教学内容之一,通过课程设计可以帮助学生更深入地了解和掌握机械系统的工作原理、设计方法和技能。
一、设计目的牛头刨床机械原理课程设计的目的是通过对牛头刨床的机构、零部件和控制系统等进行设计和分析,使学生掌握以下知识和技能:1.机构和零部件的设计和计算方法;2.常用金属材料和润滑剂的选用;3.机械系统的调整和测试技术;4.控制系统的工作原理和设计方法;5.加工精度和生产效率的分析和优化。
二、设计内容1.机构类型和运动分析牛头刨床是一种典型的曲柄滑块机构,其基本运动为往复直线运动和旋转运动。
机构类型和运动分析的主要内容包括:机构简图和运动分析图的绘制,机构自由度的计算,机构运动特性的分析和计算等。
2.机构零部件设计和计算牛头刨床的机构零部件包括机身、滑块、导轨、连杆、摇臂等。
机构零部件设计和计算的主要内容包括:零部件的结构形式和材料的选择,零部件的强度和刚度计算,导轨和连杆的润滑和防尘等。
3.控制系统设计和分析牛头刨床的控制系统包括电动机、变速器、离合器、制动器和操纵系统等。
控制系统设计和分析的主要内容包括:电动机的选择和计算,变速器的设计和计算,离合器和制动器的选用和调整,操纵系统的设计和调试等。
4.机械系统调整和测试机械系统调整和测试的主要内容包括:机构零部件的装配和调整,机构间隙和干涉的调整,滑块和摇臂的平衡调整,机械性能试验和运动精度检测等。
5.经济技术分析经济技术分析的主要内容包括:成本核算、经济效益分析、社会效益评估和技术可行性分析等。
学生应在设计过程中进行全面的经济技术分析,以确定设计方案的经济合理性和技术可行性。
三、设计步骤1.明确设计任务和要求;2.进行机构类型和运动分析,确定机构简图和运动分析图;3.进行机构零部件设计和计算,制定材料选用、结构形式、润滑和防尘等方面的方案;4.进行控制系统设计和分析,选用合适的电动机、变速器、离合器、制动器和操纵系统等;5.进行机械系统调整和测试,确保机构装配和运转的可靠性;6.进行经济技术分析,制定设计方案的经济合理性和技术可行性评估报告;7.编写设计说明书和使用维护说明书。
机械原理牛头刨床课程设计

机械原理牛头刨床课程设计机械原理牛头刨床课程设计一、课程背景与目的牛头刨床作为机械加工中的一种重要设备,广泛应用于金属切削加工领域。
本课程旨在通过深入学习机械原理和牛头刨床的结构、工作原理,掌握其使用方法,并能够进行实际操作和维护,提高学生对机械加工的实际应用能力和技能。
二、课程内容1. 机械原理基础知识(1)力学基础概念、力的分类、作用力分解(2)切削力、主动力和被动力等概念(3)动力学基础概念,运动学方程和动力学方程。
2. 牛头刨床结构与工作原理(1)牛头刨床的组成结构、各部件的作用、工作原理(2)用牛头刨床加工零件时操作规范3. 牛头刨床操作技能(1)机床的操作和维护(2)手动装夹、机动装夹的区别和操作方法(3)牛头刨床的各种加工方法和工艺流程。
4. 牛头刨床的检修与维护(1)机床加工时常见的故障处理方法(2)机床的日常保养和定期维护(3)了解机床维修保养中的一些常见问题及解决办法。
三、实验内容1. 牛头刨床操作实验(1)牛头刨床各种加工方法的实操(2)手动/机动装夹的实操及技巧(3)机床加工时常见问题的解决方案的实操。
2. 牛头刨床检修实验(1)机床日常保养和检修实操(2)机床常见故障的排除实操(3)机床维修保养常见问题的解决实操。
四、课程设计要点1. 确定课程基础并引导学生逐步理解机械原理。
2. 着重讲解牛头刨床的组成结构、工作原理,并教授牛头刨床操作技能。
3. 将理论和实践紧密结合,让学生更好的理解和掌握知识。
4. 提倡学生自主思考和创新实践,培养其独立解决问题的能力。
五、课程评估方式1. 考试评估(1)理论知识考试(2)机床操作技能考试(3)检修实操和故障排除考试。
2. 实验评估(1)机床操作考核实验(2)机床检修实验。
3. 课堂表现评估(1)课堂参与度(2)课程作业、报告的完成情况。
综合以上评估方式,通过平时和期末综合评估计算出学生的总评成绩。
机械原理课程设计牛头刨床

机械原理课程设计:牛头刨床1. 引言牛头刨床是一种常见的传统机床,主要用于对工件表面进行刨削加工。
本文将介绍牛头刨床的原理、结构和工作方式,并通过一个机械原理课程设计的案例来详细阐述。
2. 牛头刨床的原理和结构牛头刨床主要由床身、工作台、主轴箱、横板、横臂、滑枕、刀架、送料机构、弹簧加载机构等组成。
床身是牛头刨床的基础部件,承载整个刨床的重量。
工作台是工件安装和固定的平台,通常可沿床身移动。
主轴箱负责提供刨床的切削力和刨削转矩,通过主轴箱内的减速齿轮将电机的转速转化为切削运动。
横板和横臂构成刨削机构,横板可以沿床身滑动,横臂带动滑枕和刀架进行刨削运动。
送料机构负责推动工件在刨床上进行进给运动。
弹簧加载机构用于对刀架进行加载,使刀具保持稳定的切削力。
3. 牛头刨床的工作方式牛头刨床的工作方式主要包括工件装夹、刨削运动和进给运动。
首先,将待加工的工件安装在工作台上,使用夹具进行固定,保证工件不会在加工过程中移动。
然后,通过启动电机,主轴箱将转速转化为切削运动,带动刀架进行垂直方向的往复运动,实现工件表面的刨削加工。
同时,送料机构会推动工件在工作台上进行进给运动,保持刀具和工件之间的一定切削速度,从而达到理想的加工效果。
4. 机械原理课程设计案例:牛头刨床设计与制造为了更好地理解和应用牛头刨床的原理和结构,我们进行了一个机械原理课程设计案例——牛头刨床的设计与制造。
在该设计中,我们首先进行了对牛头刨床的结构和功能的分析,明确了所需的刨床尺寸、切削范围等参数。
接下来,我们进行了刨床的结构设计,包括床身、工作台、主轴箱、横板、横臂、滑枕等部件的设计和选材。
然后,我们进行了整体装配设计,考虑了各部件之间的协调性和连接方式,确保了刨床的正常运转和稳定性。
最后,我们进行了刨床的制造过程,包括零部件的加工、装配和调试,最终完成了一台功能完备的牛头刨床。
5. 结论通过本文的介绍和机械原理课程设计案例,我们了解了牛头刨床的原理、结构和工作方式,并通过设计与制造实例深入理解了牛头刨床的设计过程和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理课程设计学生姓名:xxx指导教师:xxx学院:xxx专业班级:xxx学号xxx2018年1月前言机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。
是培养学生机械运动方案设计、创新设计以及应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。
其基本目的在于:(1)进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。
(2)使学生对于机械运动学和动力学的分析设计有一较完整的概念。
(3)使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。
(4)通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。
(5)培养学生综合运用所学知识,理论联系实际,独立思考与分析问题能力和创新能力。
机械原理课程设计的任务是对机械的主体机构(连杆机构、飞轮机构凸轮机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮、飞轮等。
目录1、课程设计任务书 (3)(1)工作原理及工艺动作过程 (3)(2)原始数据及设计要求 (4)2、设计(计算)说明书 (5)(1)画机构的运动简图 (5)(2)机构运动分析 (7)对位置120°点进行速度分析和加速度分析 (7)(3)对位置120°点进行动态静力分析 (11)3、摆动滚子从动件盘形凸轮机构的设计 (14)4、齿轮的设计 (17)5、参考文献 (18)6、心得体会 (19)7、附件 (19)一、课程设计任务书1. 工作原理及工艺动作过程牛头刨床是一种用于平面切削加工的机床。
刨床工作时,如图(1-1)所示,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。
刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀;刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。
为此刨床采用有急回作用的导杆机构。
刨头在工作行程中,受到很大的切削阻力,而空回行程中则没有切削阻力。
切削阻力如图(b)所示。
Y图(1-1)(b)2.原始数据及设计要求已知曲柄每分钟转数n2,各构件尺寸及重心位置,且刨头导路x-x位于导杆端点B所作圆弧高的平分线上。
要求作机构的运动简图,并作机构两个位置的速度、加速度多边形以及刨头的运动线图。
以上内容与后面动态静力分析一起画在1号图纸上。
二、设计说明书(详情见A2图纸)1.画机构的运动简图1、以O4为原点定出坐标系,根据尺寸分别定出O2点,B点,C点。
确定机构运动时的左右极限位置。
曲柄位置图的作法为:取1和8’为工作行程起点和终点所对应的曲柄位置,1’和7’为切削起点和终点所对应的曲柄位置,其余2、3…12等,是由位置1起,顺ω2方向将曲柄圆作12等分的位置(如下图)。
取第Ⅱ方案的120°位置(如下图)。
2、机构运动分析(1)曲柄位置“120°”速度分析,加速度分析(列矢量方程,画速度图,加速度图)取曲柄位置“120°”进行速度分析。
因构件2和3在A处的转动副相连,故V A2=V A3,其大小等于W2l O2A,方向垂直于O2 A线,指向与ω2一致。
ω2=2πn2/60 rad/s=6.702rad/sυA3=υA2=ω2·l O2A=6.702×0.09m/s=0.603m/s(⊥O2A)取构件3和4的重合点A进行速度分析。
列速度矢量方程,得υA4=υA3+υA4A3大小? √?方向⊥O4B⊥O2A ∥O4B取速度极点P,速度比例尺µv=0.02(m/s)/mm ,作速度多边形如图1-2图1-2取5构件作为研究对象,列速度矢量方程,得υC=υB+υCB大小? √?方向∥XX(向左)⊥O4B ⊥BC取速度极点P,速度比例尺μv=0.02(m/s)/mm, 作速度多边形如图1-2。
Pb=P a4·O4B/ O4A=14.5 mm则由图1-2知,υC=PC·μv=0.28m/s加速度分析:取曲柄位置“120°”进行加速度分析。
因构件2和3在A点处的转动副相连,故a n A2=a n A3,其大小等于ω22l O2A,方向由A指向O2。
ω2=6.702rad/s, a n A3=a n A2=ω22·l O2A=6.7022×0.09 m/s2=4.04 m/s2取3、4构件重合点A为研究对象,列加速度矢量方程得:a A4 =a n A4+ a A4τ=a A3n + a A4A3K + a A4A3v大小:? ω42l O4A? √ 2ω4υA4A3?方向:? B→A ⊥O4B A→O2⊥O4B(向右)∥O4B(沿导路)取加速度极点为P',加速度比例尺µa=0.10(m/s2)/mm,a n A4=ω42l O4A=0.5082×0.3148 m/s2=0.08 m/s2a A4A3K=2ω4υA4A3=0.59 m/s2a A3n=4.04 m/s2作加速度多边形如图1-3所示,则由比例得a A4=4.48m/s2a B=8.25m/s2α4=a A4÷l O4A×1000=14.23rad/s2(逆)图1—3则由图1-3知, 取5构件为研究对象,列加速度矢量方程,得a c=a B+a cB n+a cBτ大小? √√?方向∥导轨√ C→B ⊥BC由其加速度多边形如图1─3所示,有a c =p c·μa =8.13m/s23、机构动态静力分析取“120°”点为研究对象,F14=-(G4/g)×a S4 =-(220/9.8)×4.13=-92.714NM14=α4J S4=14.23×1.2=17.076N·mL h4=M14÷F14=184mm取5、6基本杆组进行运动静力分析,作示力体如图1─4所示。
图1—4已知G6=800N,又a c= 8.13m/s2,可以计算F16=-(G6/g)×a c =-(800/9.8)×8.13=-663.673N又ΣF=F R16+ F16+ G6+ F R56=0大小? √√?方向⊥xx ∥xx ⊥xx ∥BC作为多边行如图1-5所示,µN=100N/mm。
图1-5由图1-7力多边形可得:F R16 =768.279NF R56 =664.431N取构件3、4基本杆组为示力体(如图1-6所示)ΣM O4=0F R54×l h1+F14×(l h2+l h4)+G4×l h3-F R34×l O2A=0FR34=(664.4*567.35+92.714*(289.95+184)+220*71.80)÷314.80 =1387.23NΣF=0 F R54+G4+F14+F R34+F R14=0F R14=594.33N图1-6作力的多边形如图1-7所示,µN=100N/mm。
图1-7对曲柄2进行运动静力分析,作曲柄平衡力矩如图1-8所示,图1-8ΣM O2=0 F R32×l h-M b=0M b=1387.29×24.30÷1000N·m=33.71N·m三、摆动滚子从动件盘形凸轮机构的设计(详情见A2图纸)1.由方案二数据得知:摆杆长度l O9D为135mm,最大摆角Ψmax为15°,许用压力角[α]为38°,推程运动角Φ为70°,远休止角ΦS,回程运动角Φ’为70°,近休止角ΦS’为210°。
摆杆9为等加速等减速规律,所以加速度为常数,所以位移是角度的二次函数。
2.运动的划分:设升程为摆杆摆动15°末端滑块运动的弧长h=l O9D ∙2π·15°360°=35.34mm按照等加速等减速运动规律,摆杆前7.5°作匀加速运动,后7.5°作匀减速运动,将整个行程分为10段,每段运动时间占总时间的十分之一。
3.基圆半径的确定:当凸轮转过70°时,滚子中心以等加速等减速规律经过的弧长为35.34mm,限定最大压力角αmax=[α]=38°,所以将凸轮转角70°对应上半圆周的点与最大压力角38°对应下半圆周的点以直线相连,交等加速等减速运动标尺于0.7处,于是根据诺模图,h/r0≈0.7;由于h=35.34mm,所以基圆半径r0≈50.5mm。
图1 诺模图4.理论轮廓线的绘制:1)设凸轮角度为0°时的压力角为20°,测量出l O9O2=159.50mm2)以O2为圆心,l O9O2为半径画圆,此圆即为摆杆支座O9相对于凸轮中心的运动轨迹3)以O2为起点作射线,设此射线为y轴,对应凸轮的0°,以顺时针方向为正方向,每隔7°作一条射线,一共十一条射线4)在每条射线上分别取一个点D i,在O9轨迹圆上取其对应点O9i使两点距离始终为135mm5)此两点连线D i O9i与O9i O2之间夹角∠O2O9i D i的大小位于上表中第五行,于是可确定D i在各条射线上的径向位置6)将各D i连接成平滑曲线即凸轮的理论轮廓线5.滚子半径的确定:实际轮廓线则根据滚子的大小确定,为了避免摆杆与凸轮发生运动干涉,取滚子半径为7mm6.实际轮廓线的绘制:1)以各个D’为圆心画滚子,滚子靠近凸轮一侧的包络线即为升程的实际轮廓线2)以l D11O2为远休止圆半径,远休止角为10°画圆弧3)回程理论轮廓线与升程对称4)近休止圆半径为基圆半径减去滚子半径等于43.50mm,近休止角为210°7.压力角的校核:当凸轮转过的角度约为35°时达到最大压力角αm ax≈30°<[α]=38°,所以符合要求。
图2 凸轮实际轮廓线四、齿轮的设计(详情见A2图纸)齿数的确定:总传动比io’o2=1440/64=22.5io’o2=(do”z1’z2)/(do’zo”z1)22.5=300×40×z2/(100×16×13)得z2=39因为zo”=16<17,z1=13<17,为了防止根切,对两对齿轮进行变位,小齿轮正变位,大齿轮负变位,采用等变位。
变位系数的运用公式x min=ha*(z min-z)/z min(其中z min=17)来选择,以下是表格:五、参考文献1、机械原理/孙恒,陈作模,葛文杰主编——8版——北京2013.42、理论力学Ⅰ/哈尔滨工业大学理论力学研究室编——7版——北京2009.73、机械原理课程设计实例与题目/中南大学机电工程学院机械学教研室——2004.54、刘毅. 机械原理课程设计[M]. 3版. 武汉:华中科技大学出版社,2017.5、机械原理课程设计(牛头刨床)/百度文库六、心得体会通过本次课程设计,加深了我对机械原理这门课程的理解,同时我也对机械运动学和动力学的分析与设计有了一个较完整的概念,培养了我的表达,归纳总结的能力。