高三数学寒假作业冲刺培训班之历年真题汇编复习实战1997

合集下载

高三数学寒假作业冲刺培训班之历年真题汇编复习实战16967

高三数学寒假作业冲刺培训班之历年真题汇编复习实战16967

数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{}|24x A x =≤,集合{}|lg(1)B x y x ==-,则A B 等于( )(A )(1,2)(B ) (1,2](C ) [1,2)(D ) [1,2](2)在复平面内,复数11i i++所对应的点位于( ) (A )第一象限(B )第二象限(C )第三象限(D )第四象限(3)已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率等于( )(A )3(B )2(C )5(D )6(4)已知两个非零单位向量12,e e 的夹角为θ,则下列结论不正确的是( ) (A )1e 在2e 方向上的投影为cos θ (B )2212e e = (C )()()1212e e e e +⊥-(D )121e e ⋅=(5)一个三棱锥的三视图是三个直角三角形,如图所示, 则该三棱锥的外接球表面积( ) (A )29π(B )30π(C )292π(D )216π (6)惠州市某机构对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[)20,45岁之间,根据调查结果俯视图主视图侧视图342得出司机的年龄情况残缺的频率分布直方图如右图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( ) (A )31.6岁 (B )32.6岁 (C )33.6岁 (D )36.6岁(7)函数()()sin f x A x ωϕ=+(其中0,2A πϕ><)的图像如图所示,为了得到()cos 22g x x π⎛⎫=- ⎪⎝⎭的图像,只需将()f x 的图像( )(A )向左平移3π个长度单位 (B )向右平移3π个长度单位 (C )向左平移6π个长度单位 (D )向右平移6π个长度单位(8)若函数()xxf x k a a-=⋅-(a >0且1a ≠)在(),-∞+∞上既是奇函数又是增函数,则()log ()a g x x k =+的图像是( )(A ) (B ) (C ) (D )(9)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数有( )(A )144个 (B )120个 (C )96个 (D )72个(10)已知变量,x y 满足240220x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩,则3x y ++的取值范围是( )(A )52,2⎡⎤⎢⎥⎣⎦(B )55,42⎡⎤⎢⎥⎣⎦(C )45,52⎡⎤⎢⎥⎣⎦(D )5,24⎡⎤⎢⎥⎣⎦(11)由等式4324321234123(1)(1)(1)(1)x a x a x a x a x b x b x b x ++++=+++++++4b +,xy O 12xyO 12xyO1-2xyO1-2π7πx定义映射43214321),,,(b b b b a a a a f +++→,则→)1,2,3,4(f ( ) (A )0 (B )10 (C )15 (D )16(12)如图,正五边形ABCDE 的边长为2,甲同学在ABC ∆中用余弦定理解得88cos108AC =-,乙同学在Rt ACH ∆中解得1cos 72AC =,据此可得cos 72的值所在区间为( )(A )()0.1,0.2 (B )()0.2,0.3(C )()0.3,0.4(D )()0.4,0.5第Ⅱ卷本卷包括必考题和选考题两部分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战76097

高三数学寒假作业冲刺培训班之历年真题汇编复习实战76097

第五章 平面向量第一节 平面向量的概念及线性运算班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1.【原创题】 四边形OABC 中,OA CB 21=,若a OA =,b OC =,则=AB ( ) A .b a 21- B .b a -21 C .b a +21 D .b a +21-2. 【湛江第一中学高一下学期期末】下列说法正确的是( ). A .方向相同或相反的向量是平行向量 B .零向量是0C .长度相等的向量叫做相等向量D .共线向量是在一条直线上的向量3.【慈溪市、余姚市高三上学期期中联考数学文试题】在ABC ∆中,设三边,,AB BC CA 的中点分别为,,E F D ,则EC FA +=( )A .BDB .12BD C .AC D .12AC 4.【孝感高中高三十月阶段性考试,文3】已知下面四个命题:① 0=+BA AB ;②AC C =+B AB ;③AB AC BC =-;④00=⋅AB . 其中正确的个数为( ) A .1个B .2个C .3个D .4个5. 【全国普通高等学校招生统一考试文科数学(福建卷)】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( ) A.OM B.2OM C.3OM D.4OM6. 【天水一中高一下学期】在ABCD 中,错误的式子是( )A.AD AB BD -=B.AD AB DB -=C.AC BC AB =+D.AC AB AD =+7.【高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )A.20B.15C.9D.68. 【湛江第一中学高一下学期期末】在ABC ∆中,点P 是BC 上的点,PC BP 2=,AC AB AP μλ+=,则( )A.2,1λμ==B.1,2λμ==C.12,33λμ== D.21,33λμ== 9.【惠安一中、养正中学、安溪一中高三上学期期中联合考试数学(文)科试卷】如图,梯形ABCD 中,//AB CD ,且2AB CD =,对角线AC ,DB 相交于点O ,若,,AD a AB b OC ===( )A.36a b - B.36a b+ C.233a b +D.233a b- 10.【鹰潭市高三第二次模拟考试文科】设,,,A B C D 是平面直角坐标系中不同的四点,若(),AC AB R λλ=∈(),AD AB R μμ=∈且112λμ+=,则称,C D 是关于,A B 的“好点对”.已知,M N是关于,A B 的“好点对”, 则下面说法正确的是( ) A .M 可能是线段AB 的中点B .,M N 可能同时在线段BA 延长线上C .,M N 可能同时在线段AB 上D .,M N 不可能同时在线段AB 的延长线上11.【淄博实验中学高三第一学期第一次诊断考试试题,文10】在ABC ∆中,点,M N 分别是,AB AC 上,且32,5AM MB AN AC ==,线段CM 与BM 相交于点P ,且,AB a Ac b ==,则AP 用a 和b 表示为( )A .4193AP a b =+ B .4293AP a b =+ C .2493AP a b =+ D .4377AP a b =+12. 【东莞市高三第二次模拟考试】如图所示,A 、B 、C 是圆O 上的三点,CO 的延长线与线段AB 交于圆内一点D ,若OC =xOA yOB +,则() A.01x y <+< B.1x y +> C.1x y +<- D.10x y -<+<二、填空题(本大题共4小题,每小题5分,共20分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战9787

高三数学寒假作业冲刺培训班之历年真题汇编复习实战9787

理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-=A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A 、B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()2P K k≥0.0500.0100.001k 3.841 6.63510.82819.(12分)如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C、D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.20.(12分)已知斜率为k的直线l与椭圆22143x yC+=:交于A、B两点,线段AB的中点为()()10M m m>,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA 、FP 、FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2)若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(02,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b+≤,求a b +的最小值.注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战51397

高三数学寒假作业冲刺培训班之历年真题汇编复习实战51397

【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2. 答案 (1)D(2)2【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战53397

高三数学寒假作业冲刺培训班之历年真题汇编复习实战53397

本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上大题无效。

满分150分。

考试时间120分钟。

考试结束后,将本试题卷和答题卡上一并交回。

第Ⅰ卷(选择题共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合{1,2,3}A =,集合{2,2}B =-,则A B =()(A )∅(B ){2}(C ){2,2}-(D ){2,1,2,3}- 【答案】B【考点定位】本题考查用列举法表示的集合的交运算.【名师点睛】对集合运算问题,首项要确定集合类型,其次确定集合中元素的特征,先化简集合,若元素是离散集合,紧扣集合运算定义求解,若是连续数集,常结合数轴进行集合运算,若是抽象集合,常用文氏图法,本题是考查元素是离散的集合交集运算,是基础题. 2、一个几何体的三视图如图所示,则该几何体可以是() (A )棱柱(B )棱台 (C )圆柱(D )圆台【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力. 3、如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()(A )A (B )B (C )C (D )D【名师点睛】本题主要考查复平面与复数的对应关系、几何意义以及复数的共轭,把握住复数的特点即可。

4、设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题p :x A ∀∈,2x B ∈,则() (A ):,2p x A x B ⌝∃∈∈(B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∃∈∉(D ):,2p x A x B ⌝∀∉∉ 【答案】C【考点定位】本题考查全称命题的否定,注意:“任意”的否定是“存在”,“属于”的否定是“不属于”. 【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.5、抛物线28y x =的焦点到直线30x y -=的距离是() (A )23(B )2 (C )3(D )1【名师点睛】代入点到直线的距离公式时,需注意的是直线一定是一般形式. 6、函数()2sin()f x x ωϕ=+(0,22ππωϕ>-<<)的部分图象如图所示,则ω,ϕ的值分别是()(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π性质,难点是确定初相ϕ的值,关键是理解“五点法”作图.【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线0x x =对称,则()0f x A =或()0f x A =-.7、某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38497

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38497

一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ) .1A y x =+2.(1)B y x =-.2x C y -=0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ) .7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4,则k 的值为( ).2A .2B -1.2C 1.2D - 7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n项和最大.13. 把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,学科 网求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论) 17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;13.若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值. 19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数, 19.对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).普通高等学校招生全国统一考试 数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -=2y x =± (12)8 (13)36 (14)π 三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45197

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45197

本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题两部分).考生作答时,将第Ⅰ卷的选择题答案填涂在答题卷的答题卡上(答题注意事项见答题卡),将第Ⅱ卷的必考题(13题 21题)和选考题(22、23、24)答在答题卷上.考试结束后,将答题卷交回.第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为U=R,集合M={x|x2﹣2x﹣3≤0},N={y|y=x2+1},则M∩(CUN)为A. {x|-1≤x<1} B. {x|-1≤x≤1} C.{x|1≤x≤3} D. {x|1<x≤3}2. 已知t ∈R,i为虚数单位,复数z1= 3 + 4i,z2= t + i,且z1·z2是实数,则实数t等于A.34B.43C.4-3D.-343.高一9班参加社会实践活动的48名学生编号分别为:1,2,3,…48,现采用系统抽样的方法抽取一个容量为4的样本,已知5号,29号,41号学生在样本中,则样本中还有一名学生的编号是A. 15B. 17C.20D.214.已知数列{an}满足3an+1+an=0,a2=-43,则{an}的前10项和等于A.-6(1-3-10) B.19(1-3-10) C.3(1-3-10) D.3(1+3-10)5.若点A(a,﹣1)在函数f(x)=0<<1lg,1x,xx x的图象上,则a =A. 1 B. 10 C.10 D.1 106.若某几何体的三视图如图所示,则此几何体的体积等于A. 30 B. 24 C. 12 D. 47.若a,b>0,直线l:ax+by+1=0始终平分圆M:x2+y2 +4x+2y+1=0的周长,则21a b的最小值为A. B. 3 C. 5 D. 98.执行如图所示的程序框图,输出的S值为A. 1 B. 0C.-1D.-29.函数xxayx(a > 1)的图象的大致形状是A. B. C. D.10.已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC= 2,则顶点S到底面ABC的距离为A.34B.234C.233D.26311.过双曲线22221x ya b(a>0,b>0)左焦点F1,倾斜角为30°的直线交双曲线右支于点P,若线段PF1的中点在y轴上,则此双曲线的离心为A3.5. 3 D.3 312.已知a∈R,若函数f(x)= 12x2-|x-2a|有三个或者四个零点,则函数g(x)=ax2+4x+1的零点个数为A. 1或2 B. 2 C. 1或0 D.0或1或2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13.若指数函数f(x)的图象过点(-2,4),则不等式f(x)+f(-x)<52的解集为.14.若y x ,满足⎪⎪⎩⎪⎪⎨⎧-≥-≤-≥+≤+1315y x y x y x y x ,则目标函数S= 3x -2y 取最大值时=x . 15.若)(13N n x x n∈⎪⎭⎫ ⎝⎛-的展开式中第3项为常数项,则展开式中二项式系数最大的是第项.16.已知数列{an}的前n 项和为Sn ,满足Sn +1n S +2=an (n≥2),a1= -23, 则Sn=.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量m =(2cos2x ,3),n =(1,sin2x ),函数f (x )= m ·n -1. (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=2,c=1,ab=2,且a >b ,求a ,b 的值.18.(本小题满分12分)某校为了比较“传统式教学法”与“五步式教学法”的教学效果.共选100名学生随机分成两个班进行实验,每班50名学生,其中一班采取“传统式教学法”,二班实行“五步式教学法”(Ⅰ)若全校共有学生2000名,其中男生1100名,现抽取100名学生对两种教学方式的受欢迎程度进行问卷调查,应抽取多少名女生?(Ⅱ)下表为实行“传统式教学”与“五步式教学”后的两个班级的数学成绩:完成下面2×2列联表,并回答是否有99%的把握认为这两种教学法有差异.参考公式:22()()()()()n ad bc K ab c d a c bd,其中n = a +b +c +d参考数据:19.(本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD= 60°,Q为AD的中点.(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD= 2,点M在线段PC上,试确定点M的位置,使二面角M﹣BQ﹣C大小为60°,并求出PMPC的值.20.(本小题满分12分)已知椭圆C:22221x ya b(a>b>0)经过点M(﹣2,﹣1),离心率为22.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.(Ⅰ)求椭圆C的方程;(Ⅱ)讨论直线PQ的斜率是否为定值,若是,求出该定值,若不是请说明理由;并判断∠PMQ能否为直角?21.(本小题满分12分)已知函数f (x )= ex ﹣ax ,其中e 为自然对数的底数,a 为常数. (Ⅰ)若函数f (x )存在极小值,且极小值为0,求a 的值; (Ⅱ)若对任意[0,]2πx ,不等式f (x )≥ex (1﹣sin x )恒成立,求a 的取值范围.四.选考题:本小题满分10分,请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分22.(本小题满分10分)选修41:几何证明选讲如图,在△ABC 中,CD 是∠ACB 的角平分线,△ADC 的外接圆交BC 于点E ,AB = 2AC(Ⅰ)求证:BE = 2AD ;(Ⅱ)当AC=3,EC=6时,求AD 的长.23.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为32cos42sinxy(θ为参数).(Ⅰ)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(Ⅱ)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.24.(本小题满分10分)选修45:不等式选讲设函数f(x)=|x+1|+|x﹣4|﹣a.(Ⅰ)当a=1时,求函数f(x)的最小值;(Ⅱ)若f(x)≥4a+1对任意的实数x恒成立,求实数a的取值范围.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42597

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42597

本试题卷分选择题和非选择题两部分。

全卷共6页,选择题部分2至3页, 非选择题部分3至6页。

满分150分, 考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径. 柱体的体积公式Sh V =,其中S 表示柱体的底面积,h 表示柱体的高.锥体的体积公式Sh V 31=, 其中S 表示锥体的底面积,h 表示锥体的高.台体的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示台体的上、下底面积,h 表示台体的高.选择题部分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知),2(ππα∈,54sin =α,则=α2sin A .2524-B .257-C .257D .25242.已知∈x R , “1>x ”是“11<x”的 A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设等比数列{}n a 的前n 项和为n S ,下列结论一定成立的是A .2312a a a ≥+B .2312a a a ≤+C .031>S aD .031<S a4.命题“0)()(≠∈∀x g x f x R,”的否定是A .0)(=∈∀x f x R,且0)(=x gB .0)(=∈∀x f x R,或0)(=x gC .0)(00=∈∃x f x R,且0)(0=x gD .0)(00=∈∃x f x R,或0)(0=x g5.已知实数x ,y 满足条件⎪⎩⎪⎨⎧≤-≤+-≥-,,,0241y x y x y x 若使y ax z +=取到最大值的最优解有无数个,则实数=a A .1-B .1C .1±D .21-6.函数()sin 2f x x =和函数()g x 的部分图象如图所示,则函数()g x 的解析式可以是A .()sin(2)3g x x π=-B .2()sin(2)3g x x π=+C .5()cos(2)6g x x π=+(第6题)D .()cos(2)6g x x π=-7.已知平面向量a ,b ,c 满足|a |=|b |=1,|b a -|=|c a -|=|c b -|,则|c |的最大值为A .32B .2C .3D .18.已知双曲线C :12222=-by a x ()0,0>>b a 的左焦点为F ,右顶点为A ,虚轴的上端点为B ,线段AB 与渐近线交于点M ,若FM 平分BFA ∠,则该双曲线的离心率e = A .31+B .21+C .3D .2非选择题部分二、 填空题(本大题共7小题,9~12小题每题6分,其它小题每题4分,共36分) 9.设全集U =R ,集合P {|2}x x|>=,Q =}034{2<+-x x x ,则P Q = ▲ , (∁UP) Q= ▲ .10.已知圆C :01222=--+y y x ,直线m x y l +=:,则C 的圆心坐标为 ▲ , 若l 与C 相切,则=m ▲ .11.某几何体的三视图如图所示,则该几何体的体积为 ▲ ,表面积为 ▲ .12.已知函数132log 1()241,>⎧⎪=⎨⎪--+≤⎩x x f x x x x ,,,则=))3((f f ▲ ; )(x f 的单调递减区间是 ▲ .13.已知正三角形ABC 的顶点C B ,在平面α内,顶点A 在平面α上的射影为'A ,若BC A '∆为锐角三角形,则二面角'A BC A --大小的余弦值的取值范围是 ▲ .3正视图俯视图侧视图(第11题)14.已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 ▲ .15.记min {}⎩⎨⎧<≥=)(,)(,,b a a b a b b a ,若函数b ax x x f ++=2)(在(0,1)上有两个零点,则min {}(0),(1)f f 的取值范围是 ▲ . 三、解答题(本大题共5小题,共74分)16.(本题满分14分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知b a Bc -=2cos 2.(Ⅰ)求角C 的大小; (Ⅱ)若3=c ,1=-a b ,求ABC ∆的面积.17.(本题满分15分)在公差不为零的等差数列}{n a 中,其前n 项和为n S ,已知53=a ,且521a ,a ,a 成等比数列.(Ⅰ)求n a 和n S ; (Ⅱ)记13221111+++=n n n a a a a a a T ,若kn n S T +≥9对任意正整数n 恒成立, 求正整数k 的最小值.18.(本题满分15分)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD ,//A D BC ,CD D A ⊥,PA 2=,=AD 1,2=C B ,CD 3=,N M ,分别为PC AB ,的中点.(Ⅰ)求证:MN ⊥平面PCD ;(Ⅱ)求直线PC 与平面PAB 所成角的大小. 19.(本题满分15分)如图,已知抛物线C :y x 42=,直线l 1与C 相交于B ,A 两点,线段AB 与它的中垂线l 2交于点G )1,(a )0(≠a .(Ⅰ)求证:直线l 2过定点,并求出该定点坐标;(Ⅱ)设l 2分别交x 轴,y 轴于点N M ,,是否存在实数a ,使得N B M A ,,,四点在同一个圆上,若存在,求出a 的值;若不存在,请说明理由.20.(本题满分15分)已知函数)(=x f (Ⅰ)当1=a 时,解不等式1)(>x f ;(Ⅱ)对任意的)1,0(∈b ,当)2,1(∈x 一、选择题 1.A 2.A 3.C 4.二、填空题9.)3,2(;]2,1(; 10.)1,0(;1-或3 11.312+;π+38 12.5;),1[+∞-13.]133,(14.222+15.)41,0( 三、解答题16.(1)由b a B c -=2cos 2得:b a ac b c a c-=-+222222…………….2分 ∴ab c b a =-+222∴212cos 222=-+=ab c b a C ,又),0(π∈C ……………………………4分 ∴3π=C …………………………………………………………………….6分(2) 3π=C ,3=c∴322=-+ab b a ………………………………………………..8分又 1+=a b∴022=-+a a ∴1=a 或2-=a (舍去)∴1=a ,2=b ,3=c ,………………………………………….12分∴23=∆ABC S …………………………………………………………..14分 17.(1)设{}n a 的公差为d ,则 (第19题)⎩⎨⎧+=+=+)4()(5211211d a a d a d a ∴⎩⎨⎧==211d a ………………………………………………………………3分 ∴12-=n a n …………………………………………………………….5分2n S n =……………………………………………………..…….7分(2)12)1211215131311(21+=+--++-+-=n nn n T n …………9分 ∴2)(912k n n n +≥+ ∴)12(9)(2n k n +≥+n nk -+≥∴123……………..…….12分 n nn -+=123c 记, 则{}n c 是递减数列 1331-=≥∴c k5min =∴k ……………………………………………………………….15分18.取CD 的中点E ,连结ME ,NE 因为PA CD ⊥,AD CD ⊥所以D PA CD 面⊥,易证D ||MEN PA 面面所以MEN CD 面⊥所以CD MN ⊥……………………………….3分 又经计算3==MC PM ,N 是PC 中点 所以PC MN ⊥………………………………6分 所以D PC MN 面⊥………………………….7分 (2)经计算AC B C AB ==,M 是AB 中点所以AB C ⊥M …………………………….9分又ABCD PA 面⊥所以CM PA ⊥…………………………….11分 所以PAB CM 面⊥所以CPM ∠就是PC 与平面PA B 所成的角,……………………….13分又MC PM = 所以︒=∠45CPM所以PC 与平面PA B 所成的角为︒45………………………………..15分 19.(1)设),(11y x A ,),(22y x B ,则⎪⎩⎪⎨⎧==22212144y x y x )(4))((212121y y x x x x -=-+∴ ∴2421ax x k AB =+=, ∴22=-l k a …………………………3分∴22:()1=--+y x a a l∴22:3=-+l y x a 过定点)3,0(………………………………………7分(2)22:3=-+l y x a过)0,23(aM ,)3,0(N ……………………….9分N B M A ,,,四点在同一圆上⇔︒=∠90MAN ⇔||||||2NG MG AG =21:()124⎫=-+⎪⇒⎬⎪=⎭a y x a x y l 042222=-+-a ax x所以2241641||a a AB -+=||41|2|41||||22a aa a NG MG ++==24122a a ⎪⎭⎫ ⎝⎛+所以)4(21)4)(41(222+=-+a a a 所以22=a , 所以2±=a ………………………………….15分20.(1)11|1|)(2>++=x x x f ⇔|1|12+<+x x ⇔⎩⎨⎧+<+≥+11012x x x 或⎩⎨⎧+-<+<+)1(1012x x x ⇔10<<x ……………………………….6分(2)xbx a x x f >++=1||)(2⇔)1(||x x b a x +>+⇔)1(x x b a x +>+或)1(x x b a x +-<+⇔x b x b a +->)1(或])1[(xbx b a ++-< 对任意)2,1(∈x 恒成立…10分所以12-≥b a 或)225(+-≤b a ,对任意)1,0(∈b 恒成立……………….13分所以1≥a 或29-≤a …………………………………………………………15分一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“s inx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45097

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45097

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}250x x x M =->,{}2,3,4,5,6N =,则MN =( )A .{}2,3,4B .{}2,3,4,5C .{}3,4D .{}5,62、已知复数z 满足()135i z i -=+,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知点()3,4P ,()Q 2,6,向量()F 1,λE =-.若Q//F P E ,则实数λ的值为( )A .12B .2C .12-D .2- 4、“5m <”是“5m <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5、下列函数既是奇函数又是()0,1上的增函数的是( ) A .y x =-B .2y x =C .sin y x =D .cos y x =6、某几何体的正(主)视图和侧(左)视图如图所示,则该几何体的体积不可能是( )A .13B .6πC .23D .1 7、已知圆222410x y x y +-++=和两坐标轴的公共点分别为A ,B ,C ,则C ∆AB 的面积为( )A .4B .2C .23D .38、执行下面的程序框图,则输出的m 的值为( ) A .9B .7C .5D .119、已知函数()()2cos f x x ωϕ=+(0ω>,2πϕ<)的部分图象如下图所示,其中12,3y ⎛⎫⎪⎝⎭与220,3y ⎛⎫⎪⎝⎭分别为函数()f x 图象的一个最高点和最低点,则函数()f x 的一个单调增区间为( )A .1420,33⎛⎫⎪⎝⎭B .10,03⎛⎫- ⎪⎝⎭C .40,3⎛⎫ ⎪⎝⎭D .1610,33⎛⎫-- ⎪⎝⎭10、已知()621x a x x ⎛⎫+- ⎪⎝⎭(R a ∈)的展开式中常数项为5,则该展开式中2x 的系数为( )A .252-B .5-C .252D .5 11、已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为2F ,()00,x y M (00x >,00y >)是双曲线C 上的点,()00,x y N --.连接2F M 并延长2F M 交双曲线C 于P ,连接2F N ,PN ,若2F ∆N P 是以2F ∠N P 为顶角的等腰直角三角形,则双曲线C 的渐近线方程为( )A .2y x =±B .4y x =±C .62y x =±D .102y x =± 12、已知函数()f x 的图象在点()()00,x f x 处的切线方程为:l ()y g x =,若函数()f x 满足x ∀∈I (其中I 为函数()f x 的定义域),当0x x ≠时,()()()00f x g x x x --<⎡⎤⎣⎦恒成立,则称0x x =为函数()f x 的“分界点”.已知函数()f x 满足()15f =,()462f x x x'=--,则函数()f x 的“分界点”的个数为( ) A .0个 B .1个 C .2个 D .无数个 二、填空题(本大题共4小题,每小题5分,共20分.) 13、某健康协会从某地区睡前看手机的居民中随机选取了270人进行调查,得到如右图所示的频率分布直方图,则可以估计睡前看手机在4050分钟的人数为.14、若实数x ,y 满足约束条件4210440y x x y x y ≤-⎧⎪-+≥⎨⎪--≤⎩,则2z x y=-的最大值是.15、已知六棱柱111111CD F C D F AB E -A B E 的底面是正六边形,侧棱与底面垂直,若该六棱柱的侧面积为48,底面积为123,则该六棱柱外接球的表面积等于. 16、如图,空间四边形CD AB 中,C D 45∠A =,15cos C 5∠A B =,C 1510A =+,D 25A =,C 6B =.若点E 在线段C A 上运动,则D EB +E 的最小值为.高三理科数学小题狂做(3)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCBCDDADACB13、81 14、4 15、32π 16、7一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战27897

高三数学寒假作业冲刺培训班之历年真题汇编复习实战27897

数 学(理科)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)注意事项:1.答题前,考生务必将自己的姓名、考号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人员将答题卡收回。

一、选择题:(本大题10个小题,每小题5分,共50分)各题答案必须答在答题卡上。

1.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2B .2C .4D .42.下列命题正确的是( )A .若22,a b > 则a b >B .若11,a b> 则a b < C .若,ac bc > 则a b >D .若,a b < 则a b < 3.设全集U 是实数集,R 22{|4},{|1},1M x x N x x =>=≥-则图中阴影部分所表示的集合是 ( )A .{|21}x x -≤<B .{|22}x x -≤≤C .{|12}x x <≤D .{|2}x x <4.设,,x y R ∈ 则“0xy >”是“||||||x y x y +=+”成立的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分又不必要条件5.如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234,e e e e 、、、其大小关系为( )A .1234e e e e <<<B .2134e e e e <<<C .1243e e e e <<<D .2143e e e e <<<6.已知直线1:10l ax y a ++-=不经过第一象限,且12,l l ⊥ 则直线2l 的倾斜角的取值范围是( ) A .3(,]24ππB .(0,]4πC .[0,]4πD .3[,]24ππ7.已知函数()sin()(0,0)f x A x A ωϕω=+>>的图象在y 轴右侧的第一个最高点为(2,2),M 与x 轴在原点右侧的第一个交点为(5,0),N 则函数()f x 的解析式为( )x④ ③o① y ②A .2sin()66x ππ+B .2sin()36x ππ- C .2sin()66x ππ-D .2sin()36x ππ+ 8.已知0,ab ≠ 点(,)M a b 是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2,ax by r += 则下面正确的是( ) A .//,m l 且l 与圆相交 B .,m l ⊥且l 与圆相切 C .//,m l 且l 与圆相离D .,m l ⊥且l 与圆相离9.设双曲线222:1,x M y a-= 过点(0,1)C 且斜率为1的直线交双曲线的两渐近线于点.A B 、若2,BC AC = 则双曲线的离心率为( )A 5105D 1010.已知420102()cos (11),20101x x f x x x x ⋅+=+-≤≤+ 设函数()f x 的最大值是,M 最小值是,N 则( )A .8M N +=B .8M N -=C .6M N +=D .6M N -=第Ⅱ卷(非选择题,共100分)二、填空题:(本大题5个小题,每小题5分,共25分)各题答案必须填写在答题卡上(只填结果,不要过程)11.若函数2()log (42),xf x =- 则1(1)f-=_____________.12.已知12F F 、是椭圆221916x y +=的两个焦点,过2F 的直线交椭圆于点.A B 、 若||5,AB = 则11||||AF BF +的值为_____________.13.已知||2,||2,a b ==a 与b 的夹角为45°,若||10,a b λ+< 则实数λ的取值范围是_____.14.已知数列{}n a 对于任意的*,,p q N ∈ 有.p q p q a a a +=⋅ 若12,a = 则18a =_______________.15.已知双曲线2222:1x y C a b-=(,a b 为大于0的常数),过第一象限内双曲线上任意一点P 作切线,l 过原点作l 的平行线交1PF 于,M 则||MP =______(用,a b 表示)三、解答题:(本大题6个小题,共75分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)16.(13分)已知抛物线2:2(0),C y px p => 焦点F 到准线l 的距离为2. (1)求p 的值;(2)过点F 作直线交抛物线于点,A B 、 交l 于点.M 若点M 的纵坐标为2,求||.AB 17.(13分)已知函数()sin(),f x x ωϕ=+ 其中0,||.2πωϕ><(1)若3coscos sinsin 0,44ππϕϕ-= 求ϕ的值; (2)在(1)的条件下,若函数()f x 的图象的相邻两条对称轴之间的距离等于,3π 求最小的正实数,m使得函数的图象向左平移m 个单位后所对应的函数是偶函数。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19979

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19979

第一试一、选择题(每小题5分,共50分)1.a,b 为实数,集合{,1},{,0},:b M P a f x x a==→表示把集合M 中的元素x 映射到集合 P 中仍为x ,则a+b 的值等于( )A .-1B .0C .1D .1±2.若函数()f x 满足22()log ||||f x x x x =+,则()f x 的解析式是 ( )A .2log xB .2log x -C .2x -D 2x -3.若关于x 的方程323()25xaa+=-有负数根,则实数a 的取值范围为 ( )A .2(,)(5,)3-∞-+∞B .3(,)(5,)4-∞-+∞C .2(,5)3-D .23(,)34-4.已知数列{}{}n n a b 、的前n 项和分别为n A ,n B 记(1)n n n n n n n C a B b A a b n =⋅+⋅-⋅> 则数列{n C }的前10项和为( )A .1010AB +B .10102A B + C .1010A B ⋅ D .1010A B ⋅5.如图1,设P 为△ABC 内一点,且2155AP AB AC =+, 则△ABP 的面积与△ABC 的面积之比为( ) A .15 B .25C .14D .136.若33sin cos cos sin ,02θθθθθπ-≥-≤< 则角θ的取值范围是( )A .[0,]4π B .[,]4ππ C .5[,]44ππD .3[,)42ππ7.袋中装有m 个红球和n 个白球,m>n≥4.现从中任取两球,若取出的两个球是同色的概 率等于取出的两个球是异色的概率,则满足关系m+n≤40的数组(m,n )的个数为( ) A .3 B .4 C .5 D .68.已知实系数一元二次方程2(1)10x a x a b +++++=的两个实根为12,x x 且1201,1x x <<>则ba的取值范围是( )A .1(1,]2--B .1(1,)2--C .1(2,]2--D .1(2,)2--9.如图2,在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l , 使l 与平面ABCD 和平面AB 11C D 均成030角,则这样的直线l 的条数为 ( )A .1B .2C .3D .410.如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -与b a -的大小关系为( )A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定二、填空题(每十题6分,共30分) 11.已知θ为锐角,且cos31cos 3θθ=,则sin 3sin θθ= 12.用6根等长的细铁棒焊接成一个正四面体形框架,铁棒的粗细和焊接误差不计设此框架能容纳得下的最大球的半径为1R ,能包容此框架的最小球的半径为2R ,则12R R 等于 13.设()f x 是以2为周期的奇函数,且2()35f -=,若5sin α=则(4cos 2)f α的值是 14.若a ,b ,c 成等差数列,则直线ax+by+c = 0被椭圆22128x y +=截得线段的中点的轨迹方程为15.设)}8(log ,log ,2min{log ,1,122x y S y x y x =>>则S 的最大值为第二试一、(50分)设123(,)(,)(2,)P x a y Q x y r a y ++、、是函数()2xf x a =+的反函数图象上三个不同点,且满足1322y y y +=的实数x 有且只有一个,试求实数a 的取值范围. 二、(20分)已知x 、y 、z 均为正数 (1)求证:111;x y z yz zx xy x y z++≥++ (2)若x y z xyz ++≥,求x y zu yz zx xy=++的最小值 三、(20分)已知sin(2)3sin αββ+=,设tan ,tan x y αβ==,记()y f x = (1)求()f x 的表达式; (2)定义正数数列2*111{};,2()()2n n n n a a a a f a n N +==⋅∈。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19974

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19974

一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.参考答案及评分标准一、填空题(每小题8分,共64分)1、如果2014是一个正整数等差数列的第八项,那么该数列首项的最小值是 5 . 解:设数列首项为a ,公差为d ,则,a d 为正整数,为使a 最小,当使d 最大, 而由20147a d =-,得20145287777a d d =-=+-,所以287,5d a ==. 2、已知sin cos αα+=,则44sin cos αα+=78. 解:将条件式平方得11+2sin cos =2αα,所以1sin cos 4αα=-,由此, ()()2244227sin cos sin cos 2sin cos 8αααααα+=+-=.3、将1,2,3,4,5,6,7,8,9,10这十个数排成一个数列,使得每相邻两项之和皆是质数,并且首尾两项之和也是质数,你的填法是:(1,2,3,8,5,6,7,10,9,4).(答案不唯一,例如()1,6,7,4,3,2,5,8,9,10所排成的数列也可).4、已知P 是椭圆221259x y +=上一点,1F 是其左焦点,Q 在1PF 上且满足112OQ OP OF →→→⎛⎫=+ ⎪⎝⎭,3OQ →=,则点P 到该椭圆左准线的距离为 5 .解:11,2OQ OP OF Q →→→⎛⎫=+∴ ⎪⎝⎭为1F P 中点,设椭圆右焦点为2F ,连接2PF ,则221=3 =62OQ PF PF =⇒.14,PF ∴=设P到左准线距离为d ,则144,5455PF c e d d a ====∴==5、正三棱锥D ABC -的底面边长为1,侧棱长为2,过点A作截面与侧棱,BD CD 分别相交与点,E F ,当AEF ∆的周长最小时,AEF ∆.解:将三棱锥沿侧棱DA 剪开,展平为一个五边形,然后计算。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战39797

高三数学寒假作业冲刺培训班之历年真题汇编复习实战39797

姓名:__________班级:__________考号:__________ 题号 一 二 三 总分得分一 、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.这些几何形体是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤2.如图为一平面图形的直观图,则此平面图形可能是( )3.已知某几何体的三视图如图所示,则该几何体的表面积等于( )A.3160B. 160C. 23264+D.2888+4.若,a b 为两条不同的直线,αβ,为两个不同的平面,则下列命题正确的是()A.若a α∥,b α∥,则a b ∥B.若a α∥,a b ∥,则b α∥C.若a α∥,β⊂a ,b αβ=,则a b ∥D.若a β⊥,b αβ=,a b ⊥,则a α⊥5.设m.n 是两条不同的直线,α.β是两个不同的平面,A.若m ∥α,n ∥α,则m ∥nB.若m ∥α,m ∥β,则α∥βC.若m ∥n ,m ⊥α,则n ⊥αD.若m ∥α,α⊥β,则m ⊥β6.正方体1111ABCD A B C D -中,P.Q.E.F 分别是AB .AD .11B C .11C D 的中点,则正方体的过P.Q.E.F 的截面图形的形状是( )A.正方形B.平行四边形C.正五边形D.正六边形7.如图,已知圆柱的底面半径为2,高为4,从A 点绕着圆柱转两圈到B 点,则最短的路线长是( )A.2414π+B.2214π+C.2412π+D.2212π+8.向高为H 水瓶中注水,注满为止.如果注水体积V 与水深h 的函数关系如图,那么水瓶的形状是图中的( ) 9.已知菱形ABCD 的边长为4,0051ABC =∠,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率( ) A.81π- B.61π- C.8π D.6π 10.一个四棱锥的侧棱长都相等,底面是正方形, 其正(主)视图如右图所示,则该四棱锥侧面积和体积分别是 (A)45,8 (B) 845,3 (C) 84(51),3+ (D) 8,8 11.如图,设AB ⊥平面α,CD ⊥平面α,垂足分别为,B D ,且AB CD ≠.EF 是平面α与平面β的交线,如果增加一个条件就能推出BD EF ⊥,给出四个条件不可能是 ⊥①AC 平面β;AC EF ⊥②;AC ③与BD 在平面β内的射影在同一条直线上; AC ④与BD 在平面β内的射影所在的直线交于一点. 那么这个条件不可能是( ) A.①② B.②③ C.③ D.④ 12.在三棱锥A BCD 中,已知AB ⊥平面BCD ,∠BCD=90°, AB =a ,BC =b ,CD =c ,a2 +b2 +c2 =4,则三棱锥A BCD 的外接球的表面积为( ) A .43π B .83π C .4π D .16π 二 、填空题(本大题共4小题,每小题5分,共20分) 13.过正方体1111ABCD A B C D -的任意两条棱的中点作直线,其中与平面11BDD B 平行的直线有对. 14.若正三棱锥的正视图与俯视图如图所示(单位:cm), 则它的侧视图的面积为2cm . 15.一个正三棱柱的侧棱长和底面边长相等,体积为23它的三视图的俯视图如图,左视图是一个矩形,则矩形的面积是 (第14题图) (第15题图) (第16题图) 已知一个三棱锥的三视图如图2所示, 16.角为120的等腰三角形,则该其中俯视图是顶三棱锥的外接球体积为 三 、解答题(本大题共6小题,第一题10分,其余每题12分,共70分) 17.如图在三棱锥A BOC -中,AO ⊥平面COB ,,2,2,6OAB OAC AB AC BC π∠=∠====D .E 分别为AB .OB 的中点. (1)求证:CO ⊥平面AOB ;(2)在线段CB 上是否存在一点F ,使得平面DEF ∥平面AOC ,若 存在,试确定F 的位置;若不存在。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战32197

高三数学寒假作业冲刺培训班之历年真题汇编复习实战32197

本试卷分选择题和非选择题两部分,共6页,24小题,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案填在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回. 参考公式:锥体的体积公式是:13V S h =•锥体底,其中S 底是锥体的底面积,h 是锥体的高. 第一部分 选择题(共60分)一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{1,2,5}A =,{}1,3,5U C B =,则A B =( )A .{5}B .{2}C .{1,2,4,5}D .{3,4,5}2.已知Z=ii+12 (i 为虚数单位),则Z 的共轭复数在复平面内对应的点位于() A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知非零向量()21,1a m m =-+与向量()1,2b =-平行,则实数m 的值为( )A .1-或21B .1或21- C .1-D .214.执行如图所示的程序框图,输出的S 值为( ) A .1B .23C .1321D .6109875.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,21sin =A ,且b c <,则=B ( )A .6πB .3πC .2πD .32π6.设数列}{n a 是等差数列,n S 为其前n 项和.若368S S =,853=-a a ,则20a =( )A .4B.36 C.74- D.80334俯视图侧视图正视图第10题图7.设函数⎩⎨⎧≥<-+=-)1(,3)1(),2(log 1)(13x x x x f x ,则=+-)12(log )7(3f f ( ) A .7B.9 C.11D.138.已知命题p ⌝:存在x ∈(1,2)使得0xe a ->,若p 是真命题,则实数a 的取值范围为( )A. (∞,e )B. (∞, e ]C. (2e ,+∞) D. [2e ,+∞)9. 已知函数()()sin f x A ωx φ=+002πA ωφ⎛⎫>>< ⎪⎝⎭,,的部分图象如图所示,若将()f x 图像上的所有点向右平移12π个单位得到函数()g x 的图像, 则函数()g x 的单调递增区间为( )A .[,]36k k ππππ-+,k Z ∈B .2[+,]63k k ππππ+,k Z ∈ C .[,]1212k k ππππ-+,k Z ∈D .7[,]1212k k ππππ--,k Z ∈10.如图为某几何体的三视图,则该几何体的外接球的表面积为( )A .31πB . 32πC . 34πD .36π11.《算数书》是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为( ) A .227B .258C .15750D .35511312.已知抛物线24y x =的焦点为F ,A 、B 为抛物线上两点,若3AF FB =,O 为坐标原点,则△AOB 的面积为() A .3B .833C .43D .23 第二部分 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则直线l 的方程为.第9题图14.实数,x y 满足1030330x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则1++=y x Z 的最大值为.15.设△ABC 的内角为A ,B ,C ,所对的边分别是a ,b ,c .若ab c b a c b a =++-+))((,则角C=__________.16.设函数)('x f 是奇函数()()f x x R ∈的导函数,0)1(=-f ,当0x >时,0)()('<-x f x xf ,则使得()0f x >成立的x 的取值范围是.三、解答题:本大题共 8小题,满分 70 分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38397

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38397

DABCD 1(第6题图) 数学试卷(理科) 命题人:高雄略 王飞龙 审题人:卢萍 郑惠群本卷分第Ⅰ卷和第Ⅱ卷两部分。

考试时间为120分钟,试卷总分为150分。

请考生将所有试题的答案涂、写在答题纸上。

第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.平行直线l1:3x+4y12=0与l2:6x+8y15=0之间的距离为( ▲ ) A .310B .910C .35D .952.命题“∃α∈[0,+∞),sinα>α”的否定形式是( ▲ ) A .∀α∈[0,+∞),sinα≤αB .∃α∈[0,+∞),sinα≤α C .∀α∈(∞,0),sinα≤αD .∃α∈(∞,0),sinα>α3.某几何体的三视图如图所示(单位:cm ),则该几何 体的体积等于( ▲ )cm3 A .4+23πB .4+32πC.6+23πD.6+32π4.设抛物线C :y2=2px(p>0)的焦点为F.若过F 的直线l 交C 于点A ,B ,且|AB|=3p ,则线段AB 的中点M 到y 轴的距离是( ▲ )A.p 2B.pC.3p2D.2p 5.已知φ是实数,f(x)=cosx ﹒cos(x+π3),则“φ=π3”是“函数f(x)向左平移φ个单位后关于y 轴对称”的( ▲ ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.如图,将四边形ABCD 中△ADC 沿着AC 翻折到AD1C , 则翻折过程中线段DB 中点M 的轨迹是( ▲ ) A.椭圆的一段B.抛物线的一段 C.一段圆弧 D.双曲线的一段7.已知双曲线C:x2a2y2b2=1(a,b>0)虚轴上的端点B(0,b),右焦点F ,若以B 为圆心的圆与C 的一条渐近线相切于点P ,且PF BP //,则该双曲线的离心率为( ▲ ) A.5B.2C.1+32 D.1+52(第3题图)俯视图正视图侧视图8.已知非零正实数x1,x2, x3依次构成公差不为零的等差数列.设函数f(x)=xα,α∈{1,12,2,3},并记M={1,12,2,3}.下列说法正确的是( ▲ )A .存在α∈M,使得f(x1), f(x2), f(x3)依次成等差数列B .存在α∈M,使得f(x1), f(x2), f(x3)依次成等比数列C .当α=2时,存在正数λ,使得f(x1), f(x2), f(x3) λ依次成等差数列D .任意α∈M ,都存在正数λ>1,使得λf(x1), f(x2), f(x3)依次成等比数列第Ⅱ卷二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.设集合A={x ∈N|6x+1∈N},B={x|y=ln(x1)},则A=▲,B=▲,)(B C A R =▲.10.设函数f(x)=Asin(2x+φ),其中角φ的终边经过点P(1,1),且0<φ<π,f(π2)=2.则φ=▲,A=▲,f(x)在[π2,π2]上的单调减区间为▲.11.设a>0且a ≠1,函数f(x)=⎩⎨⎧ax+12,x ≤0,g(x), x>0为奇函数,则a=▲,g(f(2))=▲.12.如图,在直三棱柱ABCA1B1C1中,AB=BC=CC1=2,AC=23,M 是AC 的中点,则异面直线CB1与C1M 所成角的余弦值为▲.13.设实数x,y 满足x+yxy≥2,则|x2y|的最小值为▲.14.已知非零平面向量a,b,c 满足a▪c= b▪c=3,|ab|=|c|=2,则向量a 在向量c 方向上的投影为▲,a▪b 的最小值为▲.15.设f(x)=4x+1+a▪2x+b(a,b ∈R),若对于∀x ∈[0,1],| f(x)|≤12都成立,则=b ▲.三、解答题:本大题共5小题,共74分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战44897

高三数学寒假作业冲刺培训班之历年真题汇编复习实战44897

一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.5.(5分)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=()A.ex+1B.ex﹣1C.e﹣x+1D.e﹣x﹣16.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2xB.C.D.7.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A. B.2 C. D.8.(5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A. B. C. D.二、填空题共6小题,每小题5分,共30分.9.(5分)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于.10.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=;前n项和Sn=.11.(5分)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=,AB=.12.(5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.13.(5分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.16.(13分)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.19.(14分)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20.(13分)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2…的最小值记为Bn,dn=An﹣Bn.(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:dn=﹣d(n=1,2,3…)的充分必要条件为{an}是公差为d 的等差数列;(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.高考复习试卷习题资料之高考数学试卷(理科)高考模拟卷 (3)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限. 【解答】解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.3.(5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得s inφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选:A.【点评】本题考查充要条件的判定,用到的知识是三角函数的图象特征.是基础题.4.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.5.(5分)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=()A.ex+1B.ex﹣1C.e﹣x+1D.e﹣x﹣1【分析】首先求出与函数y=ex的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选:D.【点评】本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.6.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2xB.C.D.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选:B.【点评】本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.7.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A. B.2 C. D.【分析】先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分可求直线l 与抛物线围成的封闭图形面积.【解答】解:抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=( x﹣)|=.故选:C.【点评】本题考查封闭图形的面积,考查直线方程,解题的关键是确定直线的方程,求出积分区间,确定被积函数.8.(5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A. B. C. D.【分析】先根据约束条件画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x ﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选:C.【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、填空题共6小题,每小题5分,共30分.9.(5分)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于1.【分析】先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.【解答】解:在极坐标系中,点化为直角坐标为(,1),直线ρsinθ=2化为直角坐标方程为y=2,(,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1,故答案为:1.【点评】本题关键是直角坐标和极坐标的互化,体现等价转化数学思想.10.(5分)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和Sn= 2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{an}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{an}时首项为2,公比为2的等比数列.∴数列{an}的前n项和为:Sn===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.11.(5分)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD=,AB=4.【分析】由PD:DB=9:16,可设PD=9x,DB=16x.利用切割线定理可得PA2=PD•PB,即可求出x,进而得到PD,PB.AB为圆O的直径,PA为圆O的切线,利用切线的性质可得AB⊥PA.再利用勾股定理即可得出AB.【解答】解:由PD:DB=9:16,可设PD=9x,DB=16x.∵PA为圆O的切线,∴PA2=PD•PB,∴32=9x•(9x+16x),化为,∴.∴PD=9x=,PB=25x=5.∵AB为圆O的直径,PA为圆O的切线,∴AB⊥PA.∴==4.故答案分别为,4.【点评】熟练掌握圆的切线的性质、切割线定理、勾股定理是解题的关键.12.(5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是96.【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种. 故答案为:96.【点评】本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.13.(5分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=4.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:4【点评】本题给出向量用向量、线性表示,求系数λ、μ的比值,着重考查了平面向量的坐标运算法则和平面向量基本定理及其意义等知识,属于基础题.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.【分析】如图所示,取B1C1的中点F,连接EF,ED1,利用线面平行的判定即可得到C1C∥平面D1EF,进而得到异面直线D1E与C1C的距离.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离. 过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为【点评】熟练掌握通过线面平行的性质即可得到异面直线的距离是解题的关键.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【分析】(Ⅰ)由条件利用正弦定理和二倍角公式求得cosA的值.(Ⅱ)由条件利用余弦定理,解方程求得c的值,再进行检验,从而得出结论. 【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,即 c2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得 B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.【点评】本题主要考查正弦定理和余弦定理,以及二倍角公式的应用,注意把c=3舍去,这是解题的易错点,属于中档题.16.(13分)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)由题意可知X所有可能取值为0,1,2,得出P(X=0),P(X=1),p(x=2)及分布列与数学期望;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:设Ai表示事件“此人于5月i日到达该地”(i=1,2, (13)依据题意P(Ai)=,Ai∩Aj=∅(i≠j)(Ⅰ)设B表示事件“此人到达当日空气质量优良”,则P(B)=…(3分)(Ⅱ)X的所有可能取值为0,1,2P(X=0)=,P(X=1)=,P(X=2)=…(6分)∴X的分布列为X 0 1 2P…(8分)∴X的数学期望为E(X)=…(11分)(Ⅲ)从5月5日开始连续三天的空气质量指数方差最大. …(13分)【点评】本题考查了正确理解题意及识图的能力、古典概型的概率计算、随机变量的分布列及数学期望与方差,考查了数形结合的思想方法及审题与计算的能力.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.(13分)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.【分析】(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.【解答】解:(Ⅰ)∵∴∴l的斜率k=y′|x=1=1∴l的方程为y=x﹣1证明:(Ⅱ)令f(x)=x(x﹣1)﹣lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x﹣1)﹣lnx>0,则f′(x)=2x﹣1﹣=∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0∴x∈(0,1)时,f(x)>0,即<x﹣1x∈(1,+∞)时,f(x)>0,即<x﹣1即除切点(1,0)之外,曲线C在直线l的下方【点评】本题考查的知识点是导数的几何意义,利用导数研究函数的单调性,是导数的综合应用,难度中档.20.(13分)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n 项之后各项an+1,an+2…的最小值记为Bn,dn=An﹣Bn.(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:dn=﹣d(n=1,2,3…)的充分必要条件为{an}是公差为d 的等差数列;(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.【分析】(Ⅰ)根据条件以及dn=An﹣Bn 的定义,直接求得d1,d2,d3,d4的值.(Ⅱ)设d是非负整数,若{an}是公差为d的等差数列,则an=a1+(n﹣1)d,从而证得dn=An﹣Bn=﹣d,(n=1,2,3,4…).若dn=An﹣Bn=﹣d,(n=1,2,3,4…).可得{an}是一个不减的数列,求得dn=An﹣Bn=﹣d,即 an+1﹣an=d,即{an}是公差为d的等差数列,命题得证.(Ⅲ)若a1=2,dn=1(n=1,2,3,…),则{an}的项不能等于零,再用反证法得到{an}的项不能超过2,从而证得命题.【解答】解:(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d1=A1﹣B1=2﹣1=1,d2=A2﹣B2=2﹣1=1,d3=A3﹣B3=4﹣1=3,d4=A4﹣B4=4﹣1=3.(Ⅱ)充分性:设d是非负整数,若{an}是公差为d的等差数列,则an=a1+(n﹣1)d,∴An=an=a1+(n﹣1)d,Bn=an+1=a1+nd,∴dn=An﹣Bn=﹣d,(n=1,2,3,4…).必要性:若dn=An﹣Bn=﹣d,(n=1,2,3,4…).假设ak是第一个使ak﹣ak﹣1<0的项,则dk=Ak﹣Bk=ak﹣1﹣Bk≥ak﹣1﹣ak>0,这与dn=﹣d≤0相矛盾,故{an}是一个不减的数列. ∴dn=An﹣Bn=an﹣an+1=﹣d,即 an+1﹣an=d,故{an}是公差为d的等差数列.(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),首先,{an}的项不能等于零,否则d1=2﹣0=2,矛盾.而且还能得到{an}的项不能超过2,用反证法证明如下:假设{an}的项中,有超过2的,设am是第一个大于2的项,由于{an}的项中一定有1,否则与d1=1矛盾.当n≥m时,an≥2,否则与dm=1矛盾.因此,存在最大的i在2到m﹣1之间,使ai=1,此时,di=Ai﹣Bi=2﹣Bi≤2﹣2=0,矛盾.综上,{an}的项不能超过2,故{an}的项只能是1或者2.下面用反证法证明{an}的项中,有无穷多项为1.若ak是最后一个1,则ak是后边的各项的最小值都等于2,故dk=Ak﹣Bk=2﹣2=0,矛盾,故{an}的项中,有无穷多项为1.综上可得,{an}的项只能是1或者2,且有无穷多项为1.【点评】本题主要考查充分条件、必要条件的判断和证明,等差关系的确定,用反证法和放缩法证明数学命题,属于中档题.19.(14分)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.【分析】(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足=r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.【解答】解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1设A(1,t),得,解之得t=(舍负)∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|•|BO|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2与椭圆的公共点,解之得=r2﹣1设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足x1=x2=•,或x1=•且x2=﹣•,①当x1=x2=•时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);②若x1=•且x2=﹣•,则x1+x2=0,可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.【点评】本题给出椭圆方程,探讨了以坐标原点O为一个顶点,其它三个顶点在椭圆上的菱形问题,着重考查了菱形的性质、椭圆的标准方程与简单几何性质等知识,属于中档题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19737

高三数学寒假作业冲刺培训班之历年真题汇编复习实战19737

一、选择题(共12小题,每小题5分,满分60分)1.(5分)(•山东)已知全集U=R,集合M={x||x﹣1|≤2},则CUM=()A.{x|﹣1<x<3} B.{x|﹣1≤x≤3} C.{x|x<﹣1,或x>3} D.{x|x≤﹣1,或x≥3}【考点】补集及其运算.【专题】集合.【分析】由题意全集U=R,集合M={x||x﹣1|≤2},然后根据交集的定义和运算法则进行计算.【解答】解:因为集合M={x||x﹣1|≤2}={x|﹣1≤x≤3},全集U=R,∴CUM={x|x<﹣1,或x<3}.故选C.【点评】本题考查集合的补集运算,以及简单的含绝对值的不等式的求解,属容易题.2.(5分)(•山东)已知,其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3.(5分)(•山东)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理,可以很容易得出答案.【解答】解:平行直线的平行投影重合,还可能平行,A错误.平行于同一直线的两个平面平行,两个平面可能相交,B错误.垂直于同一平面的两个平面平行,可能相交,C错误.故选D.【点评】本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.4.(5分)(•山东)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b 为常数),则f(﹣1)=()A.﹣3 B.﹣1 C.1 D.3【考点】奇函数.【专题】函数的性质及应用.【分析】首先由奇函数性质f(0)=0求出f(x)的解析式,然后利用定义f(﹣x)=﹣f (x)求f(﹣1)的值.【解答】解:因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.【点评】本题考查奇函数的定义f(﹣x)=﹣f(x)与基本性质f(0)=0(函数有意义时).5.(5分)(•山东)已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2≤ξ≤2)=()A.0.477 B.0.625 C.0.954 D.0.977【考点】正态分布曲线的特点及曲线所表示的意义.【专题】概率与统计.【分析】画出正态分布N(0,1)的密度函数的图象,由图象的对称性可得结果.【解答】解:由随机变量ξ服从正态分布N(0,σ2)可知正态密度曲线关于y轴对称,而P(ξ>2)=0.023,则P(ξ<﹣2)=0.023,故P(﹣2≤ξ≤2)=1﹣P(ξ>2)﹣p(ξ<﹣2)=0.954,故选:C.【点评】本题主要考查正态分布的概率求法,结合正态曲线,加深对正态密度函数的理解.6.(5分)(•山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A. B.C. D.2【考点】极差、方差与标准差.【专题】概率与统计.【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可.【解答】解:由题意知(a+0+1+2+3)=1,解得a=﹣1,∴样本方差为S2=[(﹣1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(3﹣1)2]=2,故选:D.【点评】本题考查用样本的平均数、方差来估计总体的平均数、方差,属基础题,熟记样本的平均数、方差公式是解答好本题的关键.7.(5分)(•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.【考点】定积分在求面积中的应用.【专题】函数的性质及应用.【分析】要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.【解答】解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.【点评】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.8.(5分)(•山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种【考点】排列、组合的实际应用.【专题】排列组合.【分析】由题意知甲的位置影响乙的排列,甲在第一位和甲不在第一位,对于排列有影响要分两类:一类为甲排在第一位共有A44种,另一类甲排在第二位共有A31A33种,根据分类计数原理得到结果.【解答】解:由题意知甲的位置影响乙的排列∴要分两类:一类为甲排在第一位共有A44=24种,另一类甲排在第二位共有A31A33=18种,∴故编排方案共有24+18=42种,故选B.【点评】本题主要考查排列组合基础知识,考查分类与分步计数原理,分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属某一类,并且分别属于不同的两类的方法都是不同的方法,即“不重不漏”.9.(5分)(•山东)设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】等比数列.【专题】等差数列与等比数列.【分析】首项大于零是前提条件,则由“q>1,a1>0”来判断是等比数列{an}是递增数列.【解答】解:若已知a1<a2,则设数列{an}的公比为q,因为a1<a2,所以有a1<a1q,解得q>1,又a1>0,所以数列{an}是递增数列;反之,若数列{an}是递增数列,则公比q>1且a1>0,所以a1<a1q,即a1<a2,所以a1<a2是数列{an}是递增数列的充分必要条件.故选C【点评】本题考查等比数列及充分必要条件的基础知识,属保分题.10.(5分)(•山东)设变量x,y满足约束条件,则目标函数z=3x﹣4y的最大值和最小值分别为()A.3,﹣11 B.﹣3,﹣11 C.11,﹣3 D.11,3【考点】简单线性规划.【专题】不等式的解法及应用.【分析】①作出可行域②z为目标函数纵截距负四倍③画直线3x﹣4y=0,平移直线观察最值.【解答】解:作出满足约束条件的可行域,如右图所示,可知当直线z=3x﹣4y平移到点(5,3)时,目标函数z=3x﹣4y取得最大值3;当直线z=3x﹣4y平移到点(3,5)时,目标函数z=3x﹣4y取得最小值﹣11,故选A.【点评】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函数z=3x﹣4y 的几何意义是解答好本题的关键.11.(5分)(•山东)函数y=2x﹣x2的图象大致是()A.B.C.D.【考点】函数的图象与图象变化.【专题】函数的性质及应用.【分析】充分利用函数图象中特殊点加以解决.如函数的零点2,4;函数的特殊函数值f (﹣2)符号加以解决即可.【解答】解:因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.12.(5分)(•山东)定义平面向量之间的一种运算“⊙”如下:对任意的,令,下面说法错误的是()A.若与共线,则⊙=0 B.⊙=⊙C.对任意的λ∈R,有⊙=⊙)D.(⊙)2+()2=||2||2【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据题意对选项逐一分析.若与共线,则有,故A正确;因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确;得到答案.【解答】解:对于A,若与共线,则有,故A正确;对于B,因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=||2||2,D正确;故选B.【点评】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(•山东)执行如图所示的程序框图,若输入x=10,则输出y的值为.【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量y的值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:x y 是否继续循环循环前 10∥第一圈 10 4 是第二圈 4 1 是第三圈 1﹣是第四圈﹣﹣否故输出y的值为.故答案为:【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.(4分)(•山东)若对任意x>0,≤a恒成立,则a的取值范围是a≥.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】根据x+≥2代入中求得的最大值为进而a的范围可得.【解答】解:∵x>0,∴x+≥2(当且仅当x=1时取等号),∴=≤=,即的最大值为,故答案为:a≥【点评】本题主要考查了基本不等式在最值问题中的应用.属基础题.15.(4分)(•山东)△ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为.【考点】同角三角函数基本关系的运用;二倍角的正弦;正弦定理.【专题】解三角形.【分析】由条件由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,根据三角形的内角和定理得到0<B<π得到B的度数.利用正弦定理求出A即可.【解答】解:由sinB+cosB=得1+2sinBcosB=2,即sin2B=1,因为0<B<π,所以B=45°,b=2,所以在△ABC中,由正弦定理得:,解得sinA=,又a<b,所以A<B=45°,所以A=30°.故答案为【点评】本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了同学们解决三角形问题的能力.16.(4分)(•山东)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x﹣1被圆C所截得的弦长为,则过圆心且与直线l垂直的直线的方程为x+y﹣3=0.【考点】直线与圆的位置关系.【专题】直线与圆.【分析】先求圆心坐标,然后可求过圆心与直线ℓ垂直的直线的方程.【解答】解:由题意,设所求的直线方程为x+y+m=0,并设圆心坐标为(a,0),则由题意知:,解得a=3或﹣1,又因为圆心在x轴的正半轴上,所以a=3,故圆心坐标为(3,0),∵圆心(3,0)在所求的直线上,所以有3+0+m=0,即m=﹣3,故所求的直线方程为x+y﹣3=0.故答案为:x+y﹣3=0.【点评】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力.三、解答题(共6小题,满分74分)17.(12分)(•山东)已知函数f(x)=sin2xsinφ+cos2xcosφ﹣sin(+φ)(0<φ<π),其图象过点(,).(Ⅰ)求φ的值;(Ⅱ)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,]上的最大值和最小值.【考点】y=Asin(ωx+φ)中参数的物理意义;三角函数的最值.【专题】三角函数的图像与性质.【分析】(I)由已知中函数f(x)=sin2xsinφ+cos2xcosφ﹣sin(+φ)(0<φ<π),其图象过点(,).我们将(,)代入函数的解析式,结合φ的取值范围,我们易示出φ的值.(II)由(1)的结论,我们可以求出y=f(x),结合函数图象的伸缩变换,我们可以得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,不难求出函数的最大值与最小值.【解答】解:(I)∵函数f(x)=sin2xsinφ+cos2xcosφ﹣sin(+φ)(0<φ<π),又因为其图象过点(,).∴φ﹣解得:φ=(II)由(1)得φ=,∴f(x)=sin2xsinφ+cos2xcosφ﹣sin(+φ)=∴∵x∈[0,]∴4x+∈∴当4x+=时,g(x)取最大值;当4x+=时,g(x)取最小值﹣.【点评】本题考查三角函数的诱导公式即二倍角等基本公式的灵活应用、图象变换及三角函数的最值问题、分析问题与解决问题的能力.已知函数图象求函数y=Asin(ωx+φ)(A >0,ω>0)的解析式时,常用的解题方法是待定系数法,由图中的最大值或最小值确定A,由周期确定ω,由适合解析式的点的坐标来确定φ,但由图象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得出唯一解,否则φ的值不确定,解析式也就不唯一.18.(12分)(•山东)已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn.(Ⅰ)求an及Sn;(Ⅱ)令(n∈N*),求数列{bn}的前n项和Tn.【考点】等差数列的通项公式;等差数列的前n项和;数列的求和.【专题】等差数列与等比数列.【分析】(1)根据等差数列所给的项和项间的关系,列出关于基本量的方程,解出等差数列的首项和公差,写出数列的通项公式和前n项和公式.(2)根据前面做出的数列构造新数列,把新数列用裂项进行整理变为两部分的差,合并同类项,得到最简结果,本题考查的是数列求和的典型方法﹣﹣裂项法,注意解题过程中项数不要出错.【解答】解:(Ⅰ)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,∴有,解得a1=3,d=2,∴an=3+2(n﹣1)=2n+1;Sn==n2+2n;(Ⅱ)由(Ⅰ)知an=2n+1,∴bn====,∴Tn===,即数列{bn}的前n项和Tn=.【点评】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键.是每年要考的一道高考题目.19.(12分)(•山东)如图,在五棱锥P﹣ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P﹣ACDE的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系;直线与平面所成的角.【专题】空间位置关系与距离;空间角;空间向量及应用;立体几何.【分析】(Ⅰ)要证平面PCD⊥平面PAC,只需证明平面PCD内的直线CD,垂直平面PAC内的两条相交直线PA、AC即可;(Ⅱ)过点A作AH⊥PC于H,说明∠PBO为所求角,然后解三角形求直线PB与平面PCD所成角的大小,也可以利用空间直角坐标系,求出向量,平面PCD的一个法向量,计算,即可.(Ⅲ)直接求出底面面积和高,再求四棱锥P﹣ACDE的体积.【解答】解:(Ⅰ)证明:因为∠ABC=45°,AB=2,BC=4,所以在△ABC中,由余弦定理得:,解得,所以AB2+AC2=8+8=16=BC2,即AB⊥AC,又PA⊥平面ABCDE,所以PA⊥AB,又PA∩AC=A,所以AB⊥平面PAC,又AB∥CD,所以CD⊥平面PAC,又因为CD⊂平面PCD,所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作AH⊥PC于H,则AH⊥平面PCD,又AB∥CD,AB⊄平面PCD内,所以AB平行于平面PCD,所以点A到平面PCD的距离等于点B到平面PCD的距离,过点B作BO⊥平面PCD于点O,则∠BPO为所求角,且AH=BO,又容易求得AH=2,所以,即∠BPO=30°,所以直线PB与平面PCD所成角的大小为30°;另解:(Ⅱ)因为△PAB为等腰三角形,所以又AB∥CD,所以点B到平面PCD的距离等于点A到平面PCD的距离.由CD⊥平面PAC,在Rt△PAC中,,所以PC=4.故PC边上的高为2,即点A到平面的距离,即点点B到平面PCD的距离为2.设直线PB与平面PCD所成的角为θ,则,又,所以.(Ⅱ)由(Ⅰ)知AB,AC,AP两两互相垂直,分别以AB,AC,AP为x,y,z轴建立如图所示的空间直角坐标系,由△PAB为等腰直角三角形,所以,而,则因为AC∥ED,CD⊥AC,所以四边形ACDE是直角梯形.因为AE=2,∠ABC=45°,AE∥BC,所以∠BAE=135°,∠CAE=45°,故,所以.因此,设是平面PCD的一个法向量,则,解得x=0,y=z.取y=1,得,而.设θ表示向量与平面PCD的法向量所成的角,则因此直线PB与平面PCD所成角的大小为;(Ⅲ)由(Ⅰ)知CD⊥平面PAC,所以CD⊥AC,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥P﹣ACDE的体积为=.【点评】本题主要考查空间中的基本关系,考查线面垂直、面面垂直的判定以及线面角和几何体体积的计算,考查识图能力、空间想象能力和逻辑推理能力.20.(12分)(•山东)某学校举行知识竞赛,第一轮选拔共设有A,B,C,D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A,B,C,D分别加1分,2分,3分,6分,答错任意题减2分;②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;③每位参加者按A,B,C,D顺序作答,直至答题结束.假设甲同学对问题A,B,C,D回答正确的概率依次为,且各题回答正确与否相互之间没有影响.(Ⅰ)求甲同学能进入下一轮的概率;(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望Eξ.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)根据题意,列举甲能进入下一轮的五种情况,由于每题答题结果相互独立,根据相互独立事件和互斥事件的概率公式得到结果.(2)由题意可知答对一个题或答错一个题都不能决定甲的去留,所以最少答两个题,随机变量ξ可能的取值为2,3,4,由于每题的答题结构都是相对独立的,根据相互独立事件同时发生的概率得到结果.【解答】解:设A,B,C,D分别是第一、二、三、四个问题,用Mi(i=1,2,3,4)表示甲同学第i个问题回答正确,用Ni(i=1,2,3,4)表示第i个问题回答错误,则Mi与Ni(i=1,2,3,4)是对立事件.由题意得,则.(Ⅰ)记“甲同学能进入下一轮”为事件Q,则Q=M1M2M3+N1M2M3M4+M1N2M3M4+M1M2N3M4+N1M2N3M4由于每题答题结果相互独立,∴P(Q)=P(M1M2M3+N1M2M3M4+M1N2M3M4+M1M2N3M4+N1M2N3M4)=P(M1M2M3)+P(N1M2M3M4)+P(M1N2M3M4)+P(M1M2N3M4)+P(N1M2N3M4)=(Ⅱ)由题意可知随机变量ξ可能的取值为2,3,4,由于每题的答题结果都是相对独立的,∵,,P(ξ=4)=1﹣P(ξ=2)﹣P(ξ=3)=1﹣﹣=∴.【点评】本题主要考查离散型随机变量的分布列和数学期望,考查相互独立立事件、对立事件的概率和求解办法,考查用概率知识解决实际问题的能力.21.(12分)(•山东)如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.【考点】圆锥曲线的综合;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(Ⅰ)由题意知,椭圆离心率为=,及椭圆的定义得到又2a+2c=,解方程组即可求得椭圆的方程,等轴双曲线的顶点是该椭圆的焦点可求得该双曲线的方程;(Ⅱ)设点P(x0,y0),根据斜率公式求得k1、k2,把点P(x0,y0)在双曲线上,即可证明结果;(Ⅲ)设直线AB的方程为y=k(x+2),则可求出直线CD的方程为y=(x﹣2),联立直线和椭圆方程,利用韦达定理,即可求得|AB|,|CD|,代入|AB|+|CD|=λ|AB|•|CD|,求得λ的值.【解答】解:(Ⅰ)由题意知,椭圆离心率为=,得,又2a+2c=,所以可解得,c=2,所以b2=a2﹣c2=4,所以椭圆的标准方程为;所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为.(Ⅱ)设点P(x0,y0),则k1=,k2=,∴k1•k2==,又点P(x0,y0)在双曲线上,∴,即y02=x02﹣4,∴k1•k2==1.(Ⅲ)假设存在常数λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,则由(II)知k1•k2=1,∴设直线AB的方程为y=k(x+2),则直线CD的方程为y=(x﹣2),由方程组消y得:(2k2+1)x2+8k2x+8k2﹣8=0,设A(x1,y1),B(x2,y2),则由韦达定理得,,∴AB==,同理可得CD===,∵|AB|+|CD|=λ|AB|•|CD|,∴λ==﹣==,∴存在常数λ=,使得|AB|+|CD|=λ|AB|•|CD|恒成立.【点评】本题考查了椭圆的定义、离心率、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.22.(14分)(•山东)已知函数f(x)=lnx﹣ax+﹣1(a∈R).(Ⅰ)当a≤时,讨论f(x)的单调性;(Ⅱ)设g(x)=x2﹣2bx+4.当a=时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性;(Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识或分离常数法求出g(x)在闭区间[1,2]上的最小值,然后解不等式求参数.【解答】解:(Ⅰ),令h(x)=ax2﹣x+1﹣a(x>0)(1)当a=0时,h(x)=﹣x+1(x>0),当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.(2)当a≠0时,由f′(x)=0,即ax2﹣x+1﹣a=0,解得.当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减;当时,,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减;时,h(x)<0,f′(x)>0,函数f(x)单调递增;时,h(x)>0,f′(x)<0,函数f(x)单调递减.当a<0时,当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增;当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减;当时,函数f(x)在(0,1)单调递减,单调递增,单调递减.(Ⅱ)当时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x1∈(0,2),有,又已知存在x2∈[1,2],使f(x1)≥g(x2),所以,x2∈[1,2],(※)又g(x)=(x﹣b)2+4﹣b2,x∈[1,2]当b<1时,g(x)min=g(1)=5﹣2b>0与(※)矛盾;当b∈[1,2]时,g(x)min=g(b)=4﹣b2≥0也与(※)矛盾;当b>2时,.综上,实数b的取值范围是.【点评】本题将导数、二次函数、不等式知识有机的结合在一起,考查了利用导数研究函数的单调性、利用导数求函数的最值以及二次函数的最值问题,考查了同学们分类讨论的数学思想以及解不等式的能力;考查了学生综合运用所学知识分析问题、解决问题的能力.一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战1977

高三数学寒假作业冲刺培训班之历年真题汇编复习实战1977

(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(·湖北高考)i为虚数单位,i607的共轭复数为( )A.i B.-iC.1 D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】A2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:1920】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】A4.(·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】C6.(·安徽高考)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【解析】2i1-i=2i 1+i 1-i 1+i=2i -12=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】B7.(·深圳高二检测)在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】C8.给出下面类比推理:①“若2a<2b ,则a<b ”类比推出“若a2<b2,则a<b ”; ②“(a +b)c =ac +bc(c ≠0)”类比推出“a +b c =a c +bc(c ≠0)”;③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b>0,则a>b ”类比推出“a ,b ∈C ,若a -b>0,则a>b(C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B. 【答案】B9.(·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】运行第一次:S =1-12=12=0.5,m =0.25,n =1,S>0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S>0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S>0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S>0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S>0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S>0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S<0.01. 输出n =7.故选C. 【答案】C10.已知a1=3,a2=6,且an +2=an +1-an ,则a33为( ) A .3B .-3C .6D .-6【解析】a1=3,a2=6,a3=a2-a1=3,a4=a3-a2=-3,a5=a4-a3=-6,a6=a5-a4=-3,a7=a6-a5=3,a8=a7-a6=6,…观察可知{an}是周期为6的周期数列,故a33=a3=3. 【答案】A11.(·青岛高二检测)下列推理合理的是( ) A .f(x)是增函数,则f ′(x)>0B .因为a >b(a ,b ∈R),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】A 不正确,若f(x)是增函数,则f ′(x)≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】x =-2-3-5-64=-4, y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4.当x=-8时,y=34.6.故选A.【答案】A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.已知复数z=m2(1+i)-m(m+i)(m∈R),若z是实数,则m的值为________.【导学号:1921】【解析】z=m2+m2i-m2-mi=(m2-m)i,∴m2-m=0,∴m=0或1.【答案】0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:”或“否”).【解析】因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】是15.(·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(·江西吉安高二检测)已知等差数列{an}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{bn}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=…=b11b20,∴10b11b12…b20=30b1b2…b30. 【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(·哈三中模拟)设z =1-4i1+i+2+4i3+4i,求|z|.【解】z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z|=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:患心脏病 患其他病 总计 高血压 20 10 30 不高血压 30 50 80 总计5060110(参考数据:P(K2≥6.635)=0.010,P(K2≥7.879)=0.005) 【解】由列联表中数据可得 k =110×20×50-10×30230×80×50×60≈7.486.又P(K2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c不能构成等差数列. 【导学号:1922】【证明】假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c ,因此b(a +c)=2ac.而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c)2=4ac ,即(a -c)2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a2+b2=1,x2+y2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】综合法:∵2ax ≤a2+x2,2by ≤b2+y2, ∴2(ax +by)≤(a2+b2)+(x2+y2). 又∵a2+b2=1,x2+y2=1, ∴2(ax +by)≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by)≥0, 只要证2-2ax -2by ≥0, 又∵a2+b2=1,x2+y2=1,∴只要证a2+b2+x2+y2-2ax -2by ≥0, 即证(a -x)2+(b -y)2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: b ^=∑i =1n xiyi -n x-y-∑i =1nx2i -n x 2,a ^=y -b ^x -.【解】(1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15xiyi =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x2i =882+762+732+662+632=27 174. 所以b ^=∑i =15xiyi -5x-y-∑i =15x2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42397

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42397

本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。

2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁和平整。

第一部分选择题(共 50 分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.直线03=-y x 的倾斜角为( ) A .6π B .3πC .32πD .65π2.已知向量→a 表示“向东航行1km”,向量→b 表示“向南航行1km”,则向量a b +表示( )A kmB .向东南航行2kmC kmD .向东北航行2km3.已知全集U R =,集合{A x y ==,{2,}x B y y x R ==∈,则A B 等于( ) A .{2}x x > B .{01}x x <≤C .}2{≥x x D .{0}x x <4.已知等比数列}{n a 中,公比0q >,若42=a ,则321a a a ++的最值情况为( ) A .有最小值4-B .有最大值4-C .有最小值12D .有最大值125.过点)1,0(P 与圆22(1)4x y -+=相交的所有直线中,被圆截得的弦最长的直线方程是( )A .0=xB .1=yC .01=-+y xD .01=+-y x6.若不等式220ax bx ++<的解集为1{2x x <-或1}3x >,( )A .61B .61-C .65D .65- 7.下列四个函数中,既是定义域上的奇函数又在区间)2,0(内单调递增的是( )A .=yB .-=-x x y e eC .sin =y x xD .tan y x = 8. 直线20-+=ax y a 与圆229+=x y 的位置关系是() A .相离 B .相交 C .相切 D .不确定9. 设→→b a ,是两个非零向量,下列选项正确的是( )A .若a b a b +=-,则→→⊥b a B .若→→⊥b a ,则a b a b +=- C .若a b a b +=-,则存在实数λ,使得→→=a b λ D .若存在实数λ,使得→→=a b λ,则a b a b +=-10. 函数()y f x =的图像如图所示,在区间],[b a 上可找到(2)n n ≥个不同的数n x x x ,,,21 ,使得nn x x f x x f x x f )()()(2211=== ,则n 的取值范围为( ) A .}3,2{B .}4,3,2{ C .}4,3{D .}5,4,3{第二部分非选择题 (共100 分)二.填空题:本大题共6小题, 每小题5分, 共30分. 把答案填在答卷的相应位置. 11.已知等差数列{}n a 的前三项依次为1a -,12+a ,4a +,则=a . 12.已知两直线012=+-y x 与03=+ay x 平行,则=a ___________. 13.从0,1,2,3中任意取出两个不同的数,其和为3的概率是________. 14.已知角)20(παα<≤的终边过)32cos ,32(sin ππP ,则α=. 15.在锐角ABC ∆中,若B A 2=,则ba的取值范围是. 16.对于定义域为D 的函数()x f ,若存在区间[,]()M a b D a b =⊆<,使得(){}M M x x f y y =∈=,则称区间M 为函数()x f 的“等值区间”.给出下列三个函数: ①1()()2x f x =; ②3()f x x =; ③2()log 1f x x =+ 则存在“等值区间”的函数的个数是___________. ks5u三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设△ABC 的内角A B C 、、所对的边分别为a b c 、、,已知1a =,2b =,1cos 4C = (Ⅰ)求△ABC 的周长;(Ⅱ)求()cos A C -的值. 18.(本题满分10分)已知圆228120+-+=C x y y :,直线l 经过点(2,0)D -, (Ⅰ)求以线段CD 为直径的圆E 的方程;(Ⅱ)若直线l 与圆C 相交于A ,B 两点,且ABC ∆为等腰直角三角形,求直线l 的方程. ks5u19.(本题满分12分)已知向量)cos ),(sin(x x a ωωπ-=→,)1,1(=→b ,且→→⋅=b a x f )(的最小正周期为π (Ⅰ)求ω的值; (Ⅱ)若)2,0(π∈x ,解方程1)(=x f ;(Ⅲ)在OAB ∆中,)2,(x A ,)5,3(-B ,且AOB ∠为锐角,求实数x 的取值范围. ks5u20.(本题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元).当年产量不小于80千件时,14501000051)(-+=xx x C (万元),每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(Ⅰ)写出年利润)(x L (万元)关于年产量x (千件)的函数解析式; (Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 21.(本题满分14分)若圆C 经过坐标原点和点)0,6(,且与直线1=y 相切, 从圆C 外一点),(b a P 向该圆引切线PT ,T 为切点,(Ⅰ)求圆C 的方程;ks5u(Ⅱ)已知点)2,2(-Q ,且PQ PT =, 试判断点P 是否总在某一定直线l 上,若是,求出l 的方程;若不是,请说明理由;(Ⅲ)若(Ⅱ)中直线l 与x 轴的交点为F ,点N M ,是直线6=x 上两动点,且以N M ,为直径的圆E 过点F ,圆E 是否过定点?证明你的结论.22.(本题满分12分)已知二次函数tx tx x f 2)(2+=(0)t ≠ (Ⅰ)求不等式1)(>x f 的解集;(Ⅱ)若1=t ,记n S 为数列}{n a 的前n 项和,且11=a ,0>n a +∈N n (),点)2,(11+++n n n a S S 在函数)(x f 的图像上,求n S 的表达式.∴8152415sin sin ===cCa A 6分 ∵c a <,∴C A <,故A 为锐角,7分ks5u∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A 8分 ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=10分 18.解:(1)将圆C 的方程228120x y y +-+=配方得标准方程为22(4)4x y +-=,则此圆的圆心为C (0 , 4),半径为2. 2分所以CD 的中点(1,2)E -,||CD =,4分r ∴=,所以圆E 的方程为22(1)(2)5x y ++-=;5分 (2)设直线l 的方程为:0(2)20y k x kx y k -=+⇔-+=6分易知||2CA =,又由ABC ∆为等腰直角三角形,得|||AB CA == 所以圆心C 到直线l|CA .8分 解得17k k ==或,所求直线l 的方程为:02=+-y x 或0147=+-y x 10分19.解:(Ⅰ)()sin()cos sin cos )4f x a b x x x x x ππωωωωω→→=⋅=-+=+=+2分∴2ππω=∴2ω=4分(Ⅱ)由())14f x x π=+=,得2244x k πππ+=+或32244x k πππ+=+,k Z ∈6分又)2,0(π∈x , ∴4x π=8分(Ⅲ)(,2),(3,5)OA x OB ==-AOB ∠为锐角,ks5u0310OA OB x ∴<•=-+ 10分103x ∴< 又65x =-时OA OB 、同向11分 ∴310<x 且56-≠x 12分 20.解:(Ⅰ)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1000x 万元,依题意得:当800<<x 时,2501031)100005.0()(2---⨯=x x x x L25040312-+-=x x .2分当80≥x 时,25014501000051)100005.0()(-+--⨯=xx x x L =⎪⎭⎫⎝⎛+-x x 100001200.4分 所以⎪⎪⎩⎪⎪⎨⎧≥⎪⎭⎫ ⎝⎛+-<<-+-=).80(100001200),800(2504031)(2x x x x x x x L 6分(Ⅱ)当800<<x 时,.950)60(31)(2+--=x x L 此时,当60=x 时,)(x L 取得最大值950)60(=L 万元. 8分当80≥x 时,10000()1200()120012002001000L X x x x x=-+≤-=-= 当xx 10000=时,即100=x 时)(x L 取得最大值1000万元.11分 1000950<所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元.12分21.解(Ⅰ)设圆心),(n m C 由题易得3=m 1分半径291n n r +=-=,2分得4-=n ,5=r 3分所以圆C 的方程为25)4()3(22=++-y x 4分 (Ⅱ)由题可得CT PT ⊥5分所以25)4()3(2222-++-=-=b a CTPC PT 6分22)2()2(++-=b a PQ 7分所以25)4()3(22-++-b a 22)2()2(++-=b a 整理得042=+-b a所以点P 总在直线042=+-y x 上8分(Ⅲ))0,4(-F 9分由题可设点),6(1y M ,),6(2y N , 则圆心)2,6(21y y E +,半径221y y r -=10分从而圆E 的方程为4)()2()6(2212212y y y y y x -=+-+-11分整理得036)(12212122=+++--+y y y y y x y x 又点F 在圆E 上,故0=⋅→→FN FM 得10021-=y y 12分所以064)(122122=-+--+y y y x y x 令0=y 得064122=--x x ,13分所以16=x 或4-=x 所以圆E 过定点)0,16(和)0,4(-14分22.解:(Ⅰ)1)(>x f 即:2210tx tx +->,①0>t 时,方程0122=-+tx tx 的判别式0442>+=∆t t 1分方程两根为ttt t x +±-=22分解集是2(,(,)t t t tt t---++-∞+∞3分 ②0<t 时,方程0122=-+tx tx 的判别式t t 442+=∆ Ⅰ)当0442≤+t t ,即01<≤-t 时,解集是φ4分Ⅱ)当0442>+t t 即1t <-时,解集是5分综上所述,0>t 时, 解集是2(,()t t t t t t--++-∞+∞;01<≤-t 时,解集是φ;1t <-时,解集是(,t t t t--6分ks5u (Ⅱ)x x x f 2)(2+= 点)2,(11+++n n n a S S 在函数)(x f 的图像上, 即)(2)(21211n n n n n S S S S a +++=+++7分ks5u 整理得112)22()n n n a S S ++==-=∴2=∴2= 9分∴1)1)=,112==,10分所以1}2是首项为,公比为3的等比数列。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战35097

高三数学寒假作业冲刺培训班之历年真题汇编复习实战35097

开始m =1, i =1m =m (2i )+1i = i +1m =0?结束输出i是 否1、(昌平区高三上学期期末)执行如图所示的程序框图, 输出的S 值为_______.2、(朝阳区高三上学期期末)执行如图所示的程序框图,则输出的i 值为 A .3 B .4 C .5 D .63、(丰台区高三上学期期末)已知数列{}n a 中,1111,1n na a a +==+,若利用下 面程序框图计算该数列的第项,则判断框内的条件是 (A )2014≤n (B )2016n ≤ (C )2015≤n (D )2017n ≤?结束输出A 否是A =1A +1n =n +1n =1,A =1开始4、(海淀区高三上学期期末)某程序框图如图所示,执行该程序,若输入的a值为1,则输出的a 值为A.1B.2C.3D.55、(石景山区高三上学期期末)右面的程序框图表示算法的运行结果是()A. 2-B. 2C. 1-D. 16、(西城区高三上学期期末)某市乘坐出租车的收费办法如下:输出输入开始结束是否开始 4x > 输出y 结束 否 是 输入x y=12 ○1 不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x]表示不大于x 的最大整数,则图中○1处应填() (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++7、(北京临川学校高三上学期期末考试)执行如图所示的程序框图,则输出的结果是开始0S =,1n = 20n ≤输出S 结束是否1(1)S S n n =++1n n =+A .2019 B .2120 C .2122D .23228、(北京汇文中学高三上期中)执行如图所示的程序框图,如果输入a=2,那么输出的a 值为( ) A .4 B .16 C .256 D .log316 参考答案1、522、B3、C4、C5、A6、D7、C8、C一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1、(常州市高三上期末)某地区有高中学校10所,初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校所。

2、(淮安、宿迁、连云港、徐州苏北四市高三上期末)交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有辆.3、(南京、盐城市高三上期末)书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为 ▲4、(南通市海安县高三上期末)已知一组数据9.8,10.1,10,10.2,9.9,那么这组数据的方差为5、(苏州市高三上期末)若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为▲6、(泰州市高三第一次模拟)某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从男学生中抽取的人数为100人,那么n = ▲7、(无锡市高三上期末)随机抽取100名年龄在[)[)[)10,20,20,30,,50,60年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的分分随机抽取8人,则在[)50,60年龄段抽取的人数为8、(扬州市高三上期末)某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二频率组距)组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为▲9、(镇江市高三第一次模拟)箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为________.10、(淮安、宿迁、连云港、徐州苏北四市高三上期末)若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率的概率的概率为.11、(南京、盐城市高三上期末)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 ▲ 12、(南通市海安县高三上期末)用大小完全相同的黑、白两种颜色的正六边形积木拼成如图所示的图案,按此规律再拼5个图案,并将这 8 个图案中的所有正六边形积木充分混合后装进一个盒子中,现从盒子中随机 取出一个积木,则取出黑色积木的概率是;13、(苏州市高三上期末)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),则事件“两次向上的数字之和等于7”发生的概率为▲.14、(泰州市高三第一次模拟)甲乙两人下棋,若甲获胜的的概率为15,甲乙下成和棋的概率为25,则乙不输棋的概率为 ▲ 15、(扬州市高三上期末)从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是▲ 填空题答案1、62、753、3104、0.025、26、2007、28、1449、35 10、1311、17 12、949 13、16 14、4515、25二、解答题1、(苏州市高三上期末) 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率均为34,购买B 种商品的概率均为23,购买E 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.2、(无锡市高三上期末)甲乙丙三名射击运动员射中目标的概率分别为1,,(01)2a a a <<,三人各射击一次,击中目标的次数为ξ(1)求ξ的分布列及数学期望;(2)在概率()(0,1,2,3)P i i ξ==中,若(1)P ξ=的值最大,求实数a 的取值范围。

3、(扬州市高三上期末) 某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金m 元,若摸中乙箱中的红球,则可获奖金n 元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止. (1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由. 解答题答案1、解:(1)记“该网民购买i 种商品”为事件,2,3i A i =,则:33211()4324P A =⨯⨯=,232132132111()(1)(1)(1)43243243224P A =⨯⨯-+⨯-⨯+-⨯⨯=,………………………3分 所以该网民至少购买2种商品的概率为3211117()()42424P A P A +=+=. 答:该网民至少购买2种商品的概率为1724. …………………………5分(2)随机变量的可能取值为0,1,2,3,3211(0)(1)(1)(1)43224P ==-⨯-⨯-=, 又211(2)()24P P A ===,31(3)()4P P A ===,所以11111(1)1242444P ==---=.所以随机变量的概率分布为:故数学期望1111123012324424412E =⨯+⨯+⨯+⨯=.…………………………10分2、3、解:(1)设参与者先在乙箱中摸球,且恰好获得奖金n元为事件M.则131()344P M=⨯=即参与者先在乙箱中摸球,且恰好获得奖金n元的概率为14.…………4分(2)参与者摸球的顺序有两种,分别讨论如下:①先在甲箱中摸球,参与者获奖金可取0,,m m n 则3121111(0),(),()44364312P P m P m n3110()4612412m nEm m n …………6分 ②先在乙箱中摸球,参与者获奖金可取0,,n m n则2131111(0),(),()33443412P P n P m n ηηη====⨯==+=⨯=2110()3412123m nE n m n …………8分 2312m nEE当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大; 当32m n时,两种顺序参与者获奖金期望值相等; 当32m n时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. 答:当32m n >时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当32m n时,两种顺序参与者获奖金期望值相等;当32mn时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大.…………10分(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是.15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。

解答应写出文字说明、解答过程或演算步骤。

第17~21题为必做题,每个试题考生都必须作答。

相关文档
最新文档