第13章全等三角形复习题

合集下载

2024—2025学年华东师大版数学八年级上册第13章《全等三角形》基础复习

2024—2025学年华东师大版数学八年级上册第13章《全等三角形》基础复习

第13章基础复习知识点1命题、定理与证明1.一般地,判断某一件事情的语句叫做命题.命题一般由条件和结构两部分组成,可以写成“如果……,那么……”的形式.2.基本事实是在继续学习过程中用来判断其他命题真假的原始依据.3.定理:有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.4.根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.1.下列命题中,是真命题的是()A.无限小数是无理数B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.平行于同一条直线的两条直线平行D.过一点有且只有一条直线与已知直线垂直2.判断命题“如果n<1,那么W−1<0”是假命题,只需举出一个反例.反例中的n可以为()A.-2u−12 C.0D123.把命题“对顶角相等”改写成“如果⋯⋯,那么⋯⋯”的形式:.4.填写下列证明过程中的推理根据:已知:如图所示,AC、BD相交于点O,DF平分∠CDO与AC相交于点F,BE平分∠ABO与AC相交于点E,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C(),∴AB∥CD(),∴∠ABO=∠CDO(),又∵DF平分∠CDO,BE平分∠ABO,∴∠1=12∠Cs∠2=12∠B(),∴∠1=∠2().知识点2三角形全等的判定1.能够完全重合的两个三角形是全等三角形,相互重合的顶点是对应顶点,相互重合的边是对应边,相互重合的角是对应角,全等三角形的对应边相等,对应角相等.2.全等三角形的判定条件:①两边及其夹角分别相等的两个三角形全等.简写为S. A.S.(或边角边).②两角及其夹边分别相等的两个三角形全等.简写为A.S. A.(或角边角).③两角分别相等且其中一组等角的对边相等的两个三角形全等.简写为A. A.S.(或角角边).④三边分别相等的两个三角形全等.简写为S.S.S.(或边边边).⑤斜边和一条直角边分别相等的两个直角三角形全等.简写为H.L.(或“斜边直角边”).5.如图,AB=AD,CB=CD,∠B=32°,∠BAD=72°,则∠ACD的度数是()A.102°B.112°C.114°D.1226.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠DB.AC=DFC.AB=EDD.BF=EC7.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.28.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A.点DB.点CC.点BD.点A9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC一定全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙10.如图所示,在Rt△ACD和Rt△BCE中,若AD=BE,DC=EC,则不正确的结论是()A.Rt△ACD≌Rt△BCEB.OA=OBC.E是AC的中点D.AE=BD11.如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°-∠ABC-2x°,则下列角中,大小为x°的角是()A.∠EFCB.∠ABCC.∠FDCD.∠DFC12.如图,在等腰△ABC中,AB=AC,AB>BC,点D在边BC上,且C B=14,点E、F在线段AD上,满足∠BED=∠CFD=∠BAC,若△B=20,则.△B+△C=()A.18B.15C.12D.913.如图,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个14.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.15.如图,∠1=∠2,∠3=∠4,,则全等三角形有对.16.如图,已知△ABC中,F是高AD和BE的交点,且AD=BD,CD=4,则线段DF的长度为.17.(南通中考)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连结AC并延长到点D,使CD=CA.连结BC并延长到点E,使CE= CB.连结DE,那么量出DE的长就是A、B的距离.为什么?18.如图,在△ABC中,AC=5,中线AD=7,求边AB的取值范围.19.如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC.(2)若∠ADO=35°,求∠DOC的度数.20.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB.(2)求两堵木墙之间的距离.21.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE.(2)求∠FAE的度数.(3)求证:CD=2BF+DE.。

第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)

第13章 全等三角形 华东师大版八年级数学上册单元测试(含答案)

第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=( )A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是( )A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=( )A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是( )A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为( )A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有对( )A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有( )A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是.10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是:.11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为.12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是.13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.14.如图,∠BOC=60°,A是BO的延长线上一点,OA=10 cm,动点P从点A出发,沿AB 以3 cm/s的速度移动,动点Q从点O出发沿OC以2 cm/s的速度移动,若点P,Q 同时出发,当△OPQ是等腰三角形时,移动的时间是.三、解答题(共52分)15.(6分)(2023·云南中考)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P在直线l上.求作:直线PQ,使PQ⊥l.作法:①以点P为圆心,任意长为半径画弧,交直线l于A,B两点,AB长为半径画弧,两弧在直线l上方交于点Q,②分别以A,B为圆心,大于12③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.()(填推理的依据)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;(2)若PC=2,求BF的长.18.(8分)(2023·苏州中考)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连结DE,DF.(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.19.(10分)已知,如图,AD为△ABC的角平分线,且AD=AC,E为AD延长线上的一点,AE=AB.(1)求证:△ABD≌△AEC;(2)求证:BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是;(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.第13章 全等三角形(90分钟 100分)一、选择题(每小题3分,共24分)1.△ABC中,AB=AC=2,∠B=60°,则BC=(A)A.2B.3C.4D.52.(2024·泉州期末)下列命题的逆命题是真命题的是(C)A.全等三角形的对应角相等B.对顶角相等C.若x>y,则x-y>0D.若C是线段AB的中点,则AC=BC3.(2024·南通质检)如图,已知△ABC≌△DEC,∠ACB=100°,∠D=35°,则∠E=(B)A.35°B.45°C.55°D.无法计算4.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是(B)5.(2023·台州中考)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连结BE,CD.下列命题中,假命题是(A)A.若CD=BE,则∠DCB=∠EBCB.若∠DCB=∠EBC,则CD=BEC.若BD=CE,则∠DCB=∠EBCD.若∠DCB=∠EBC,则BD=CE6.如图,在Rt△ABC中,∠C=90°,AC=12 cm,BC=6 cm,线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若以A,B,C为顶点的三角形与以A,P,Q为顶点的三角形全等,则AP的值为(C)A.8 cmB.12 cmC.12 cm或6 cmD.12 cm或8 cm7.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D,C,BD,AC都经过点E,则图中全等的三角形共有 对(B)A.3B.4C.5D.68.(2024·天津期中)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④连结OC,OC平分∠AOE;⑤∠AOB=60°.恒成立的结论有(D)A.①⑤B.①②⑤C.①②③⑤D.①②③④⑤二、填空题(每小题4分,共24分)9.定理“直角三角形的两个锐角互余”的逆定理是 有两个角互余的三角形是直角三角形 .10.检测房梁是否水平,可以采用下面的方法:在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端拴一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的顶点,则可以判断房梁是水平的.这样做的根据是: 等腰三角形的底边上的中线、底边上的高重合 .11.如图,D在BC边上,△ABC≌△ADE,∠EAC=44°,则∠B的度数为 68° .12.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是 85° .13.(2023·重庆中考A卷)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连结AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE =4,CF =1,则EF 的长度为 3 .14.如图,∠BOC =60°,A 是BO 的延长线上一点,OA =10 cm,动点P 从点A 出发,沿AB 以3 cm/s 的速度移动,动点Q 从点O 出发沿OC 以2 cm/s 的速度移动,若点P ,Q 同时出发,当△OPQ 是等腰三角形时,移动的时间是 2 s 或10 s .三、解答题(共52分)15.(6分)(2023·云南中考)如图,C 是BD 的中点,AB =ED ,AC =EC.求证:△ABC ≌△EDC.【解析】∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,AB =ED AC =EC BC =DC,∴△ABC ≌△EDC (S.S.S.).16.(8分)(2024·北京期中)下面是“过直线上一点作已知直线的垂线”的尺规作图过程:已知:如图,点P 在直线l 上.求作:直线PQ ,使PQ ⊥l.作法:①以点P 为圆心,任意长为半径画弧,交直线l 于A ,B 两点,②分别以A ,B 为圆心,大于12AB 长为半径画弧,两弧在直线l 上方交于点Q ,③作直线PQ.直线PQ即为所求的垂线.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)(填推理的依据)【解析】(1)补全的图形如图所示:【解析】(2)连结AQ,BQ,∵根据作法,有AQ=BQ,AP=BP,∴PQ⊥AB,即PQ⊥l.(等腰三角形底边上的中线与底边上的高重合)17.(8分)如图,在长方形纸片ABCD中,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点G,F,且GF=GP.(1)求证:△GEF≌△GBP;【解析】(1)∵纸片ABCD为长方形,∴∠B=∠C=90°,由折叠的性质得,∠E=∠C,∴∠E=∠B,在△GEF 和△GBP 中,∠E =∠B ∠EGF =∠BGP GF =GP,∴△GEF ≌△GBP (A.A.S.);(2)若PC =2,求BF 的长.【解析】(2)由△GEF ≌△GBP 得GE =GB ,∵GF =GP ,∴BF =GB +GF =GE +GP =PE ,由折叠的性质得,PE =PC =2,∴BF =2.18.(8分)(2023·苏州中考)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 为圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连结DE ,DF.(1)求证:△ADE ≌△ADF ;【解析】(1)∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD.由作图知:AE =AF.在△ADE 和△ADF 中,AE =AF ∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (S.A.S.);(2)若∠BAC =80°,求∠BDE 的度数.【解析】(2)∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD ,∴∠AED =∠ADE ,∴∠ADE =12×(180°-40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC ,∴∠BDE =90°-∠ADE =20°.19.(10分)已知,如图,AD 为△ABC 的角平分线,且AD =AC ,E 为AD 延长线上的一点,AE =AB.(1)求证:△ABD≌△AEC;【证明】(1)∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD与△AEC中,AB=AE∠BAD=∠EAC AD=AC,∴△ABD≌△AEC(S.A.S.); (2)求证:BE=EC.【证明】(2)∵AD=AC,AE=AB,∴∠ACD=∠ADC=180°-∠DAC2,∠ABE=∠AEB=180°-∠BAD2,∴∠ACD=∠ADC=∠ABE=∠AEB,∵∠BDE=∠ADC,∴∠BDE=∠BED,∴BD=BE,∵△ABD≌△AEC,∴BD=EC,∴BE=EC.20.(12分)如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是AD=CE;【解析】(1)AD=CE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC=BC.∵点D为AC的中点,∴∠DBC=30°,AD=DC,∵BD=DE,∴∠E=∠DBC=30°,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE,又∵AD=DC,∴AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF∥BC,交AB于点F)【解析】(2)AD=CE,理由如下:如图,过点D作DF∥BC,交AB于点F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°-60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E∠BFD=∠DCE BD=DE,∴△BFD≌△DCE(A.A.S.),∴DF=EC,又∵AD=DF,∴AD=CE;(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.【解析】(3)结论仍成立,理由如下:如图,过点D作DP∥BC,交AB的延长线于点P,则∠ABC=∠APD=60°,∠ACB=∠ADP=60°,∵∠A=60°,∴△APD是等边三角形,∴AP=PD=AD,∴∠DCE=∠ACB=∠P,∵DP∥BC,∴∠PDB=∠CBD,∵DB=DE,∴∠DBC=∠DEC,∴∠PDB=∠DEC,在△BPD和△DCE中,∠PDB=∠CED ∠P=∠DCE BD=DE,∴△BPD≌△DCE(A.A.S.),∴PD=CE,又∵AD=PD,∴AD=CE.【附加题】(10分)(1)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和△BCE.①连结AE,CD,如图1,求证:∠BCD=∠AEB;②若AB⊥BC,延长AB交DE于点M,求证:点M为DE的中点;【解析】(1)①∵△ABD和△BCE是等边三角形,∴BD=BA,BC=BE,∠DBA=∠EBC=60°,∴∠DBA+∠ABC=∠EBC+∠ABC,即∠DBC=∠ABE,在△DBC和△ABE中,BD=BA∠DBC=∠ABE BC=BE,∴△DBC≌△ABE(S.A.S.),∴∠BCD=∠AEB;②如图,过点E作AD的平行线,交AM的延长线于点F,∵AD∥EF,∴∠DAM=∠AFE=60°,∵AB⊥BC,∴∠EBF=180°-∠ABC-∠CBE=30°,∴∠BEF=90°,在△ABC与△FEB中,∠BAC=∠EFB ∠ABC=∠FEB BC=EB,∴△ABC≌△FEB(A.A.S.),∴AB=EF=AD,在△MAD与△MFE中,∠AMD=∠FME ∠DAM=∠EFM AD=FE,∴△MAD≌△MFE(A.A.S.),∴DM=EM,即点M为DE的中点;(2)如图3,HE⊥CE于点E,∠BEH=30°,点G在EH上运动,以BG为边作等边△BGF,当BF的长最小时,求∠FBE的度数.【解析】(2)当BF的长最小时,即BG最小,则BG⊥HE,当以BG为边在BG左侧作等边△BGF时,如图所示:可得∠GBE=180°-∠BEH-∠BGE=60°,∵△FBG为等边三角形,∴∠FBG=60°,∴∠FBE=∠FBG+∠GBE=120°;当以BG为边在BG右侧作等边△BGF时,如图所示:此时点F在BE上,∴∠FBE=0°,综上所述,∠FBE=0°或120°.。

冀教版八年级上册数学 第十三章 全等三角形 单元复习试题

冀教版八年级上册数学 第十三章 全等三角形 单元复习试题

第十三章全等三角形一、选择题1.下列定理中,没有逆定题的是()①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A. 1个B. 2个C. 3个D. 4个2.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.如图,△ABC中,AB=AC ,EB=EC ,则由“SSS”可以判定()A. △ABD≌△ACDB. △ABE≌△ACEC. △BDE≌△CDED. 以上答案都不对4.如图:AB=AD,AE平分∠BAD,则图中有()对全等三角形。

A. 2B. 3C. 4D. 55.下列语句:①相等的角是对顶角;②如果两条直线被第三条直线所截,那么同位角相等;③过直线外一点有且只有一条直线与已知直线平行;④平行线间的距离处处相等.其中正确的命题是()A. ①②B. ②③C. ③④D. ①④6.如图,△AOC≌△BOD,∠A和∠B,∠C和∠D是对应角,下列几组边中是对应边的是()A. AC与BDB. AO与ODC. OC与OBD. OC与BD7.下列命题是假命题的是()A. 若x<y,则x+2021<y+2021B. 单项式-的系数是-4C. 若|x-1|+(y-3)2=0则x=1,y=3D. 平移不改变图形的形状和大小8.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,则EF的长为()A. 2cmB. 3cmC. 4cmD. 5cm9.下列关于几何画图的语句正确的是()A. 延长射线AB到点C ,使BC=2ABB. 点P在线段AB上,点Q在直线AB的反向延长线上C. 将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D. 已知线段a ,b满足2a>b>0,在同一直线上作线段AB=2a ,BC=b ,那么线段AC=2a-b10.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了.甲说:“是乙不小心闯的祸.”乙说:“是丙闯的祸.”丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是()A. 甲B. 乙C. 丙D. 丁二、填空题11.请把命题“对顶角相等。

冀教版八年级上册数学第13章 全等三角形复习

冀教版八年级上册数学第13章 全等三角形复习

第13章 全等三角形复习一、教学目标复习总结全等三角形整章内容。

二、知识点梳理证明两个三角形全等的基本思路:⎪⎩⎪⎨⎧)找是否有直角()找夹角()找第三边()已知两边(HL SAS SSS 1⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(已知角是直角,找一边)找一角(已知一边和它的对角)找这边的对角()找这个角的另一个边()找这边的另一个邻角(已知一边和它的邻角)已知一边一角(HL AAS AAS SAS ASA 2 ()()⎩⎨⎧AAS ASA 3找夹边外的任意边找两角的夹边)已知两角( 三、典型例题讲解考点一 三角形全等的判定例1 如下图,在△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC 。

(1)求证:△ABE ≌△DCE ;(2)当∠AEB=50°时,求∠EBC 的度数。

考点二运用全等三角形证明线段相等例2 如下图,∠AOB=90°,OA=OB,直线l经过点O,分别过A,B两点作AC⊥l于点C,BD⊥l交l于点D。

求证:AC=OD。

考点三结论开放题例3 如下图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段__________。

例3 例4考点四条件开放题例 4 如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为__________。

(答案不唯一,只需填一个)例5 已知命题:如下图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF。

判断这个命题是真命题还是假命题,如果是真命题,请给出证明:如果是假命题,请添加一个适当条件使它成为真命题,并加以证明。

四、课堂练习1、下面结论中错误的是()A、全等三角形对应边上的角平分线相等B、全等三角形对应边上的中线相等C、两个锐角对应相等的两个直角三角形全等D、全等三角形的周长相等2、如图1,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,则∠BAC等于()A、70°B、80°C、100°D、90°3、两个三角形如果具有下列条件:①三条边分别相等;②两条边和夹角分别相等;③两条边和其中一边的对角分别相等;④两个角和一条边分别相等;⑤三个角分别相等。

八年级数学上册第13章全等三角形复习

八年级数学上册第13章全等三角形复习
△DCE和△DBE能全等吗?你能证明它们全等吗?请你写出证明 过程.
第四页,共十一页。
观察图形 复习 (túxíng) 知识
你能把下面给的图形所涉及到的知识都说出来吗:
边的
已知,AB=AC,D是BC
DE⊥AB,DF⊥AC
中点,
E,F,为垂足.
图形变(biànhuàn)演示课件的副本.gsp图形变换动画.gsp
出条件,最后写出两个三角形全等; 6.SSS;
7.全等形; 8.叫做全等三角形;
9.如果两个三角形全等,那么对应边相等,对应角相等;
10.假命题。
第二页,共十一页。
请看下面 的选 (xiàmian)
择题 1.如果(rúguǒ)等腰三角形的一个底角为
,则一定有( );
° . (A) 不大于45° (B)0°< <90°(C) = 90° (D) 90° < <180
• 2.如图,在△ABC中,AB=AC,DB=DC, • AD的延长线交BC于点E. • 求证:∠BAE=∠CAE.
第十页,共十一页。
内容(nèiróng)总结
全等三角形知识(zhī shi)的回顾。图形变换演示课件的副本.gsp图形变换动画.gsp。(2)角的 平分线的判定。(2)线段的垂直平分线的判定。1.已知,∠AOB,求作:∠AOB的平分线OC.。3. 已知,∠AOB和∠AOB内的两点P和Q.
第十一页,共十一页。
(1)线段的垂直平分线的性质; (2)线段的垂直平分线的判定。 5.命题,定理,逆命题逆定理。
同学们,这些知识(zhī shi)你都说出来了吗?
第六页,共十一页。
请看下面 的作 (xiàmian) • 1.已知图,问∠A题OB,求作:∠AOB的平分线OC.

第13章 13.2 1.全等三角形+2.全等三角形的判定条件

第13章 13.2 1.全等三角形+2.全等三角形的判定条件
(1)证明:∵△BAD≌△ACE,∴BD=AE,CE=AD,∵AE=AD+DE,∴ BD=DE+CE; (2)解:∵△BAD≌△ACE,∴∠ADB=∠AEC,∵BD∥CE,∴∠BDE=∠ AEC,∴∠ADB=∠BDE,∵∠ADB+∠BDE=180°,∴∠ADB=90°,即 △ABD 中,∠ADB=90°时,BD∥CE.
全等三角形的性质.
【例 2】如图所示,△ABE 和△ADC 是△ABC 分别沿着 AB、AC 边翻折 180° 形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α= 80° .
【思路分析】据∠1∶∠2∶∠3=28∶5∶3,可求出∠2=25°,∠3=15°, △ABC 沿 AB 翻折得到△ABE,∴△ABC≌△ABE,△ABC 沿 AC 翻折得 到△ACD,∴△ABC≌△ADC,然后根据全等性质计算.
【方法归纳】经过平移、旋转、翻折得到图形与原图形全等,以获取边和 角对应相等的关系.
知识点一:全等三角形 能够完全重合的两个三角形是 全等三角形 ,相互重合的顶点是 对应顶点 , 相互重合的边是 对应边 ,相互重合的角是 对应角 ,全等三角形的 对应边 相等, 对应角 相等. 1.下列命题中正确的是( D ) A.全等三角形是指形状相同的两个三角形 B.全等三角形是指面积相等的两个三角形 C.两个等边三角形是全等三角形 D.全等三角形是指能够完全重合的两个三角形
到的三角形与原三角形是全等三角形.其中正确的命题是( B )
A.1 个
B.2 个
C.3 个
D.4 个
4.如图,△ABC 在一条直线上运动到△A′B′C′的位置,延长 AC、A′B′ 相交于 D 点.
(1)试说明∠A=∠D; (2)试说明 BB′=CC′; (3)你还能发现哪些信息?

2021-2022学年华师大版八年级数学上册《第13章全等三角形》期末复习解答题专题训练(附答案)

2021-2022学年华师大版八年级数学上册《第13章全等三角形》期末复习解答题专题训练(附答案)

2021-2022学年华师大版八年级数学上册《第13章全等三角形》期末复习解答题专题训练(附答案)1.如图,点E,C,F,B在同一条直线上,EC=BF,AC∥DF,∠A=∠D.求证:AB=DE.2.已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.3.已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.5.已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.6.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.7.如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.8.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,求△ACD的周长.9.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点G,BD=DC,DF∥BC交AB于点F,连接FG.求证:(1)△DAB≌△DGC;(2)CG=FB+FG.10.如图,在△ABC中,∠A=60°,BE,CD是△ABC的角平分线,BE与CD相交于点P.(1)求∠BPC的度数;(2)求证:BC=BD+CE.11.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.12.如图,BD为△ABC的角平分线,且BD=BC,E在BD的延长线上,连接AE,∠BAE =∠BEA,连接CE.求证:(1)△ABD≌△EBC;(2)∠BCE+∠BCD=180°.13.如图,已知点A,B,C,D在同一条直线上,AB=DC,AF=DE,CF=BE.求证:AF ∥DE.14.如图,∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE;(2)若OM平分∠EOF,求证:OM⊥EF.15.如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.16.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.17.如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE、CE,过点D作DF ⊥AE,DG⊥CE,垂足分别是F、G.(1)求证:△ABE≌△CBE;(2)求证:DF=DG.18.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.19.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.20.如图,△AOC和△BOD中,OA=OC,OB=OD,∠AOC=∠BOD=α(0<α<90°),AD与BC交于点P.(1)求证:△AOD≌△COB;(2)求∠APC(用含α的式子表示);(3)过点O分别作OM⊥AD,ON⊥BC,垂足分别为点M、N,请直接写出OM和ON 的数量关系.参考答案1.证明:∵EC=BF,∴EC+CF=BF+CF,即EF=BC,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.2.(1)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA);(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.3.证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D,∵∠ACD=∠B,∴∠D=∠B,在△ABC和△EDC中,∴△ABC≌△CDE(AAS).4.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.5.证明:(1)∵AF=CD,∴AF+FC=CD+FC即AC=DF.∵AB∥DE,∴∠A=∠D.∵AB=DE,∴在△ABC和△DEF中.∴△ABC≌△DEF(SAS).(2)∵△ABC≌△DEF(已证),∴∠ACB=∠DFE.∴EF∥BC.6.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.7.解:(1)∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD,∵D是EF的中点,∴ED=FD,在△BED与△CFD中,,∴△BED≌△CFD(ASA),∴CD=BD;(2)由(1)得:CF=EB=6,∵AF=CF,∴AF=6,∵D是EF的中点,∴DF=DE=3,∴AD=9,∴△ACD的面积:AD•CF=×9×6=27.8.(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7,∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13,∴△ACD的周长为:5+12+13=30,故答案为:30.9.证明:(1)∵BD⊥AC,CE⊥AB,∴∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,在△DAB和△DGC中,,∴△DAB≌△DGC(ASA);(2)∵△DAB≌△DGC,∴AB=CG,DA=DG,∵BD=CD.∠BDC=90°,∴∠DBC=∠DCB=45°,∵DF∥BC,∴∠FDA=∠FDG=45°,在△DF A和△DFG中,,∴△DF A≌△DFG(SAS),∴F A=FG.∴CG=AB=FB+F A=FB+FG.10.解:(1)∵BE,CD是△ABC的角平分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∵∠A=60°,∴∠BPC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°;(2)证明:在BC上取点G使得CG=CE,∵∠BPC=120°,∴∠BPD=∠CPE=60°,在△CPE和△CPG中,,∴△CPE≌△CPG(SAS),∴∠CPG=∠CPE=60°,∴∠BPG=120°﹣60°=60°=∠BPD,在△BPD和△BPG中,,∴△BPD≌△BPG(ASA),∴BD=BG,∴BD+CE=BG+CG=BC.11.(1)证明:∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等),在△ADC与△CEB中∴△ADC≌△CEB(AAS);(2)解:由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.12.证明:(1)∵∠BAE=∠BEA,∴BA=BE,∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS);(2)由(1)得:△ABD≌△EBC,∴∠ADB=∠BCE,∵BD=BC,∴∠BDC=∠BCD,又∵∠ADB+∠BDC=180°,∴∠BCE+∠BCD=180°.13.证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACF和△DBE中,,∴△ACF≌△DBE(SSS),∴∠A=∠D,∴AF∥DE.14.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)由(1)得:Rt△ABF≌Rt△DCE,∴∠AFB=∠DEC,∴OE=OF,∵OM平分∠EOF∴OM⊥EF.15.证明:连接AC,在△AEC与△AFC中,∴△AEC≌△AFC(SSS),∴∠CAE=∠CAF,∵∠B=∠D=90°,∴CB=CD.16.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL);(2)∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=217.证明:(1)∵BD是∠ABC的平分线,∴∠ABE=∠CBE,在△ABE和△CBE中,∴△ABE≌△CBE(SAS);(2)∵△ABE≌△CBE,∴∠AEB=∠CEB,∴∠AED=∠CED,∵DF⊥AE,DG⊥CE,∴FD=DG.18.(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA),(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.19.证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.20.解:(1)∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB(SAS);(2)由(1)可知△AOD≌△COB,∴∠OAD=∠OCB,令AD与OC交于点E,则∠AEC=∠OAD+∠AOC=∠OCB+∠APC,∴∠AOC=∠APC,∵∠AOC=α,∴∠APC=α;(3)∵△AOD≌△COB,∴∠P AO=∠BCO,即∠MAO=∠NCO,∵OM⊥AD,ON⊥BC,∴∠AMO=∠CNO=90°,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OM=ON.。

第13章 全等三角形(13.1) 华东师大版八年级数学上册同步练习(含答案)

第13章 全等三角形(13.1) 华东师大版八年级数学上册同步练习(含答案)

命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有( )A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是( )A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是( )4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补.知识点2 定理与证明5.“同角或等角的补角相等”是( )A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是( )A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理:.8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD().∵∠BGC=∠F(已知),∴CD∥EF(),∴AB∥EF(),∴∠B+∠F=180°().又∵∠BGC+∠BGD=180°(),∠BGC=∠F(已知),∴∠F+∠BGD=180°().【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为( )A.4B.3C.2D.110.下列命题是定理的是( )A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是.12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是.13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是(填“真命题”或“假命题”).(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2>,∴a2+bc>.∵a>b,c<0,∴bc>,∴ab+bc>,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是,并给出证明过程. 命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有(C)A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是(C)A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是(C)4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;【解析】(1)条件:两个角的和等于平角,结论:这两个角互为补角,是真命题. (2)内错角相等;【解析】(2)条件:两个角是内错角,结论:这两个角相等,是假命题.如图,∠1与∠2是内错角,∠2>∠1.(3)两条平行线被第三条直线所截,同旁内角互补.【解析】(3)条件:两条平行线被第三条直线所截,结论:同旁内角互补,是真命题.知识点2 定理与证明5.“同角或等角的补角相等”是(C)A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是(D)A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理: 两直线平行,同位角相等(答案不唯一) .8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD( 同位角相等,两直线平行 ).∵∠BGC=∠F(已知),∴CD∥EF( 同位角相等,两直线平行 ),∴AB∥EF( 平行公理的推论 ),∴∠B+∠F=180°( 两直线平行,同旁内角互补 ).又∵∠BGC+∠BGD=180°( 平角的定义 ),∠BGC=∠F(已知),∴∠F+∠BGD=180°( 等量代换 ).【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为(C)A.4B.3C.2D.110.下列命题是定理的是(B)A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是 如果两个三角形关于某个点中心对称,那么这两个三角形全等 .12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是 0(答案不唯一) .13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是假命题(填“真命题”或“假命题”).【解析】(1)由题中图形可知,∠1,∠2既不是同位角也不是内错角,即使∠1=∠2也不能得到AB∥CD,故该命题为假命题;(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【解析】(2)添加BE∥DF(答案不唯一).理由如下:∵BE∥DF,∴∠EBD=∠FDN.又∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2,即∠ABD=∠CDN,∴AB∥CD.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2> ,∴a2+bc> .∵a>b,c<0,∴bc> ,∴ab+bc> ,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是 ,并给出证明过程.【解析】(1)∵a>b>0,∴a2> ab,∴a2+bc> ab+bc.∵a>b,c<0,∴bc>ac,∴ab+bc> ab+ac,∴a2+bc>ab+ac.(2)选择②④.证明如下: ∵a<b,b<0,∴a<0,∴|a|=-a,|b|=-b.∵a < b,∴-a>-b,∴|a|>|b|.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13章复习 全等三角形
一、选择题:
1、只用无刻度的直尺就能作出的图形是( )
A.延长线段AB 至C ,使BC =AB
B.过直线L 上一点A 作L 的垂线
C.作已知角的平分线
D.从点O 再经过点P 作射线OP 2、下列命题中,真命题是( )
A.相等的角是直角
B.内错角相等
C.两直线平行,同位角互补
D.经过两点有且只有一条直线
3、如图1所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.5
4、已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( ) A.6cm B.7cm C.8cm D.9cm
5、如图2所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )
A 、A
B =DE B 、∠ACE =∠DFB
C 、BF =EC
D 、∠ABC =∠DEF
6、用尺规作已知角的角平分线,其根据是构造两个三角形全等,它所用到的判别方法是( )
A.SAS
B.ASA
C.AAS
D.SSS
7、如图3,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACD
B.∠B =∠C
C.AD 是 BAC 的平分线
D.△ABC 是等边三角形
8、如图4,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E , AB =10,△BCD 的周长为18,则BC 的长为( ) A.8 B.6 C.4 D.2
二、填空:
1、如果等腰三角形的一个角为90°,那么其余两个角分别是________和_________。

2、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为_____________。

3、把“互为邻补角的两个角的平分线互相垂直”写成“如果……,那么……”的形式为_______________.
4、如图所示,在△ABC 和△DEF 中,AB=DE ,∠B=∠E ,要使△ABC ≌△DEF ,•需要补充的一个
条件是____________.
5、如图所示,△ABC 中,∠C=90°,AD 平分∠CAB ,BC=8cm ,BD=•5cm ,则D 点到直线AB 的
图1
F
E
C
B
A
A
B
C
D
图3
图4
图2
距离是______cm.
三、解答题:
1、判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明.
(1)有一个角是60°的等腰三角形是等边三角形.
(2)有两个角是锐角的三角形是锐角三角形.
2、如图,作出线段AB的垂直平分线EF,作出∠BCD的平分线CN.(利用尺规作图,不写作法,
但要保留作图痕迹)
3、如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分
线上.
4、牧童在点A处放牛,其家在点B处,B
A,到河岸l的距离分别为BD
AC,,且
m
BD
AC300
=
=,测得m
CD800
=.
(1)牧童从A处牵牛到河边饮水后再回家,是否有最近的路线可走?若有,请通过作图说明
在何处饮水,所走的路线最短,并标出路线.
(2)若有最短路线,请求出牧童走的最短路程.。

相关文档
最新文档