5爆轰理论下教程
第3章 爆轰波的经典理论

1 2 j D u j U j Pj D u j j D u j D u j 2
… (3)
16
3.1.1 爆轰波的基本关系式
由(1)、(2)式可得:
D u 0 v0 p j p0 v0 v j
p j p0 v0 v j
4
第3章 爆轰波的经典理论
Chapman和Jouguet在20世纪初分别提出了关于爆
轰波的平面一维流体动力学理论,简称爆轰波的
CJ理论。
前苏联的泽尔多维奇(Zeldovich,1940年),美 国的冯纽曼(Von Neumann,1942年),德国的道 尔令(Doering,1943年)各自对CJ理论进行了改 进,提出了ZND模型。
P0 O
0
v0
v
爆轰波:
e e0
1 p p0 v0 v Qe 2
22
3.1.2 爆轰波稳定传播的条件
3.Rayleigh线和Hugoniot曲线的关系
(1)dc段:v>v0,p>p0 D为虚数 (2)c点: v>v0,p=p0 D=0,定压燃烧 (3)CGAI段: v>v0,p<p0 D>0,u<0;爆燃 其中,CGA段(p-p0)负压值较小, 称弱爆燃支; AI段(p-p0)负压值较大, 称强爆燃支。 A点的爆燃速度最大。
D v0
p p0 v0 v
D2 D2 p 2 v p0 v v0 0
D2 tg tg 2 v0
21
3.1.2 爆轰波稳定传播的条件
2. Hugoniot (雨贡纽、雨果尼奥)曲线
P 1 2
爆轰学第3章_爆轰波、爆燃波的经典理论

pp0 v0 v
pD v022vD v02 p0
tgtg D v0 22
21
3.1.2 爆轰波稳定传播的条件 2. Hugoniot (雨贡纽、雨果尼奥)曲线
12 P
冲击波: ee01 2pp0v0v
P0
O
0
v0
爆轰波: e e01 2pp 0v0 v Q e
v 22
3.1.2 爆轰波稳定传播的条件
由(3)、(6)、(7)式可推导出:
e j e 0 1 2p j p 0v 0 v j Q e ……(8)
这就是爆轰波的Hugoniot方程,也称放热的 Hugoniot方程。
18
3.1.1 爆轰波的基本关系式
➢ 如果已知爆轰产物的状态方程:
eep,v
或
pp,s
……(9)
➢ 从数学上来说,爆轰波应满足什么条件才能使爆
16
3.1.1 爆轰波的基本关系式
由(1)、(2)式可得:
Du0 v0
pj p0 v0 vj
uj u0v0vj
pj p0 v0vj
在u0 0 时,(4)、(5)式可变为:
Dv0
pj p0 v0 vj
uj v0vj
pj p0 v0vj
……(4) ……(5) ……(6) ……(7)
17
3.1.1 爆轰波的基本关系式
➢ ZND模型把爆轰波阵面看成是由前沿冲击波和紧 跟其后的化学反应区构成,它们以同一速度沿爆 炸物传播,反应区的末端平面对应CJ状态,称 为CJ面。
39
3. 2 爆轰波的ZND模型
图3-4 ZND模型
40
3. 2 爆轰波的ZND模型
➢ 按照这一模型,爆轰波面内发生的历程为:原始爆 炸物首先受到前导冲击波的强烈冲击压缩,立即由 初始状态O(v0,p0)被突跃压缩到N(vN,pN)点的状态, 温度和压力突然升高,高速的爆轰化学反应被激发, 随着化学反应连续不断地展开,反应进程变量λ从 N(vN,pN)点(λ=0)开始逐渐增大,所释放的反应热λQe 逐渐增大,状态由点N沿瑞利线逐渐向反应终态点M 变化,直至反应进程变量λ=1 ,到达反应区的终态, 化学反应热Qe全部放出。
爆轰物理

《爆轰物理》教学大纲课程类别:技术基础教育课程课程名称:爆轰物理开课单位:环境与安全工程系课程编号:2080302总学时:48学时学分: 3适用专业:特种能源工程与烟火技术专业先修课程:炸药理论、流体力学等一、课程在教学计划中的地位和作用《爆轰物理》属于特种能源工程与烟火技术专业重要的技术基础教育课程之一。
炸药作为一种能源,具有许多独特的优点。
无论在军事上还是在国民经济的许多领域中,炸药均得到广泛的使用。
通过对该课程的学习可以使学生了解炸药的爆炸、炸药的起爆机理、炸药中的爆轰传播以及对周围介质做功的能力。
同时炸药爆炸现象的发生,爆轰的传播规律以及爆炸效应等有关内容,是本专业学生必备的基础知识。
二、课程内容、基本要求绪论1.概述2.热力学基本知识本章主要了解爆炸现象及性质并掌握热力学的基础知识。
为后述章节打下基础。
第一章炸药的爆炸1.概述2.炸药爆炸的特征3.炸药的组成与爆炸分解4.炸药的爆炸变化与炸药的分类5.炸药的主要特性数6.炸药爆炸对介质的作用本章主要了解炸药爆炸的特征、对介质的作用,掌握爆热、爆温和爆容等特性数的计算与测定。
第二章炸药的起爆机理1.概述2.炸药的热起爆理论3.炸药的机械作用起爆机理4.炸药的冲击波起爆5.炸药对静电放电的感度本章主要要求学生了解炸药的起爆过程以及起爆能具有的各种形式,重点掌握热起爆和机械作用起爆理论。
第三章冲击波基本理论1.概述2.一维非定常等熵流动3.正冲击波基本关系式4.冲击波雨贡纽曲线及冲击波的性质5.运动冲击波的正反射6.运动冲击波的斜反射7.冲击波的声学近似本章要理解特征线的概念及冲击波雨贡纽曲线的含义,区别运动冲击波的正反射与斜反射,熟练掌握冲击波参数的计算方法。
第四章爆轰波的流体力学理论1.概述2.爆轰波的基本关系式3.多方气体中的爆轰4.爆轰波的定常结构----ZND模型本章主要重点了解爆轰过程中炸药的化学反应和反应产物质点的运动过程以及一个复杂的爆轰过程可以用比较简单的冲击波流体力学理论而进行研究的方法,掌握根据C-J理论建立爆轰波的基本关系式,根据ZND模型研究爆轰过程的规律。
爆轰学 第1章_绪论

1.1基本概念
▪ 一些宇宙学家认为,当今宇宙是在一次大爆 炸中开始形成和发展的,而且至今这一过程 尚未结束,宇宙的年龄大约为137亿年,地球 也是在一次大爆炸中产生的,距今已46亿年。
12
1.1基本概念
2011年诺贝尔物理学奖 美国加州大学伯克利分校教授索尔-佩尔马特、澳大利亚国 立大学教授布莱恩-施密特,以及美国约翰斯霍普金斯大学
8
1.1基本概念
(4)燃烧产物移动的方向与燃烧波传播 的方向相反。
(5)凝聚物的燃烧要经过熔化、蒸发、升 华、热分解、混合和扩散等中间阶段,才能 通过燃烧化学反应转变为燃烧的最终产物。
(6)与其他化学反应相似,燃烧反应速度 受到反应物浓度和温度的影响,燃速对外界 条件(如压力、初温、扩散速度等)的变化 敏感。
2
爆炸物理学 ➢ 主要内容
第1章 绪论 第2章 炸药的起爆机理 第3章 爆轰(爆热)波的经典理论 第4章 气体爆轰理论 第5章 凝聚炸药爆轰理论 第6章 爆轰产物的流动及其与物体的相互作用
3
第1章 绪论
4
第1章 绪论
本章内容 ➢ 燃烧、爆炸、炸药、爆轰的基本概念; ➢ 炸药爆炸的特点; ➢ 炸药发生化学变化的类型; ➢ 爆轰学的研究历史。
5
1.1基本概念
6
1.1基本概念
1.燃烧(Combustion,Deflagration) ➢ 物质间发生剧烈氧化还原的化学反应,并
伴随放热和发光,产生大量高温气体的过 程,称为燃烧。
➢ 燃烧具有以下的基本特征: (1)燃烧体系中,必须有燃烧化学反
应所需要的氧化元素和可燃元素。
7
1.1基本概念
▪ 烟火剂:通常由氧化剂、有机可燃物(或金 属粉)加入少量粘合剂混合而成。军事上, 利用其速燃时产生的光、热、烟、色、声等 效应用于各种用途,如照明弹中的照明剂、 烟幕弹、燃烧弹等。
第五章 炸药爆炸的基本理论

氧平衡:炸药内含氧量与可燃元素充分氧化所 需氧量之间的关系。氧平衡用每克炸药中剩 余或不足氧量的克数或百分数表示。
氧系数:指炸药中含氧量与可燃元素充分氧化 所需氧量之比,用它也可以表示氧平衡的关 系。
氧平衡计算
对单体炸药:
假设炸药的通式为 CaHbNcOd ,则单质炸药的
例阿梅托的氧平衡计算
阿梅托
TNT 50% NH4NO3 50%
TNT的摩尔数为 500/227=2.2 1kg
NH4NO3的摩尔数为500/80=6.25
①1kg阿梅托组成为 2.2(C7H5N3O6)+ 6.25(C0H4N2O3) =C15.4H36N19.1O31.95
d (2a b)
炸药上述三种化学变化的形式,在一定条件 下,都是能够相互转化的:缓慢分解可发展为燃 烧、爆炸;反之,爆炸也可转化为燃烧、缓慢分 解。
研究炸药化学变化形式,就是为了控制外界 条件,使炸药的化学变化符合我们的需要。
氧平衡
炸药的爆炸是一个化学反应的过程,或者从 本质上说是一个氧化的过程,即炸药中氧对碳、 氢等元素氧化,使之成为较稳定的氧化物。
定义:单位质量炸药在定容条件下爆炸所释放的热
量称为爆热,其单位是kJ/kg或kJ/mol。 爆热的计算: 生成热:由元素生成1kg或lmol化合物所放出(或吸
收)的热量叫做该化合物的生成热。 盖斯定律:盖斯定律认为,化学反应的热效应同反
应进行的途径无关,当热力过程一定时,热效应只 取决于反应的初态和终态。
被完全氧化; • 硫被氧化为二氧化硫; • 氯首先与金属作用,再与氢生成HCl。
影响有毒气体生成量的因素:
3.3炸药的爆轰理论

炸药径向间隙效应
视频1 视频2
可采取选用爆速大的炸药和大直径药 卷及坚固外壳等措施,实现稳定爆轰。
视频1
视频2
七、爆速的测定方法
炸药的爆速是衡量炸药爆炸性能的重 要标志量,也是目前可以比较准确测定的 一个爆轰参数。
测量方法 (1)导爆索法 (2)电测法 (3)高速摄影法
视频1 视频2
l
h
导爆索法测爆速
一、冲击波的基本概念
1、压缩波基本概念
P P
P1
P0 x
均 匀 区
扰 动 区
未扰 动区
P0 x
视频1
视频2
在无限长气筒活塞右侧充满压力为P0 的气体,当活塞在F力的作用下向右运动 时,活塞右侧气体存在三个区域: 压力为P1的均匀区 压力介于P1与P0之间的扰动区 压力仍为P0的未扰动区
视频1
视频2
视频1 视频2
2
1 0
使介质运动的力是波阵面两边的压力差 PH P0 在单位时间内流进波阵面的介质质量为 0 ( D u0 ) 其速度的变化为 ( D u 0 ) ( D u H ) u H u 0 根据动量守恒定律有:
PH P0 0 ( D u 0 )( u H u 0 )
已反应的药包
视频1 视频2
未反应的药包
1)炸药达到稳定爆轰前有 一个不稳定的爆炸区。
2)在特定的条件下,每种 炸药都会有一个不变的炸 药特征爆速Di。 3) 每种炸药都存在一个最 小的临界爆速Dc。波速低 于Dc后,冲击波将衰减为 音波而导致爆轰熄灭。
炸药包在冲击波激发下的爆轰过程
视频1 视频2
(2)爆轰波模型
H ( D u H )[ E H
炸药爆炸基本理论PPT课件

含棱角,石英,玻璃; 钝感材料:软质,高热容,水,石腊。
.
28
3.3 炸药的传爆
工程爆破中通常都用雷管来起爆炸药。雷管的爆 炸能量比起爆药包的爆炸能量要小的多,雷管的作用 仅在于激起与它邻近的局部炸药分子爆炸,至于整个 药包能否完全爆炸,则取决于炸药爆炸的稳定传爆。
.
9
3.1 爆炸和炸药的基本概念
三、炸药化学变化的形式:
(一) 缓慢分解
炸药的缓慢分解是一个很复杂的反应过程,其主要特点是:炸
药内的各点温度相同;在全部炸药内反应同时进行,没有集中的反
应区;分解时,既可以吸热,也可以放热,决定于炸药的类型和环
境温度。但当温度较高时,所有炸药的分解反应都伴随有热量放出。
炸。若是非均相炸药受到冲击时,则由于炸药受热的不均匀
性,使在局部率先产生热点,爆炸首先在热点开始并扩展,
.
19
然后引起整个炸药的爆炸。
3.2 炸药的起爆和感度
3.2.2 炸药的感度
炸药在外界能量作用下发生爆炸反应的难易程度 称为炸药的感度或敏感度。炸药感度分为:热感度、 机械感度、起爆冲能感度、冲击波感度、静电火花感 度、激光感度和枪击感度等。
.
26
3.2 炸药的起爆和感度
3.2.2 炸药的感度
5.静电火花 感度
6.激光感度
7.枪击感度
静电火花感度指在静电火花的作用下炸 药发生爆炸的难易程度。
激光感度是指在激光能量作用下,炸药 发生爆炸的难易程度,常用50%发火能 量来表示。
枪击感度,又称为抛射体撞击感度,是 指用枪弹等高速抛射体撞击下,炸药发 生爆炸的难易程度。
.
爆炸与炸药的基本理论ppt课件

通常采取相对某种已知的炸药作比较 来确定炸药的威力。
相对重量威力
相对体积威力
通常情况下仅有10%的炸药发挥了功效。损失原因如下:
1.化学损失 2.热损失 3.无效的机械损失
表示侧向飞散 带走部分未反应炸药 损失能量的50% 包括振动 抛掷 冲击波
炸药的爆炸性能
猛度 破碎能力。
爆速越高 猛度越大 岩石破碎度越高
炸药的爆轰理论
爆轰波的基本方程(冲击波分析法)
质量守恒: 动量守恒:
0 D H (D D H )
P HP 0 D H
能量守恒:
E H E 0 Q 1 2 (H 0 )V ( 0 V H )
ρ0 ----- 初始炸药密度
ρH ----- 反应区炸药密度 DH ----- 爆轰气体流速 D ----- 爆速 V0 ----- 炸药初始质量体积
炸药的爆炸性能
消除沟槽效应的方法:
1. 采取提高爆速的手段 使爆轰波的传递速度大于等离子波的传播速度。
(V>4500m/s)
2. 提高外包装质量。
提高包装外壳的强度 爆速将上升 沟槽效应下降
即提高了抵御等离子波的压缩穿透作用。
3. 堵塞等离子波的传播。
炮孔中设置卡环 炮孔中填充炮泥
增大药卷直径
工业生产最小药卷 Φ25 cm
沟槽效应产生的原因 1. 爆炸产物压缩药卷和孔壁间的空气,产生冲击波,它超前于爆轰波
并压缩药卷, 从而抑制爆轰。 2.美国学者认为:沟槽效应是由于药卷外部炸药爆轰产生的等离子体
影响。即炸药起爆后 在爆轰波阵面的前方有一等离子层,对后面未 反应的药卷表层产生压缩作用,妨碍该层炸药的完全反应。 (以上两种说法都有一定的实验依据 但还需要进一步发展完善)
爆破工程课程学习指导讲解

《爆破工程》课程学习指导一、本课程旳性质、目旳《爆破工程》是一门理论与实践性较强旳课程。
它既是采矿工程、安全工程专业旳必修课程,也是交通工程专业旳专业选修课程,其目旳意在向学生传授炸药爆炸和岩石爆破旳基本原理和基本技能,培养学生运用所学旳理论知识,进行工程爆破设计和分析处理工程爆破实际问题旳能力,并为后继专业课有关工程爆破内容旳学习奠定基础。
二、本课程旳教学重点本课程旳教学重点重要包括如下几种模块(方面)旳内容:1、基础理论模块:包括炸药旳起爆机理与爆轰理论,岩石旳爆破破坏机理、利文斯顿爆破漏斗理论等。
该模块既是本课程旳重点,也是难点。
2、爆破器材模块:包括各类炸药旳重要性能,各类起爆器材旳构造、使用措施和重要性能以及起爆措施;3、爆破设计及施工技术模块:包括光面预裂爆破、掘进爆破、露天浅深爆破、露天硐室爆破、拆除爆破等爆破技术旳设计计算及施工技术和安全技术。
三、本课程教学中应注意旳问题1、结合工程实例讲解,突出行业特点;2、讲课时要紧紧围绕教学大纲和教材内容,同步也应简介某些与本课程有关旳最新知识和最新理论,使同学们理解本学科旳发展趋势与前沿信息3、培养学生旳自主学习能力。
四、本课程旳教学目旳通过本课程旳学习,学生应当到达如下规定1、能精确地使用专业术语,理解炸药爆炸旳基本概念以及起爆和传爆旳基本原理;2、熟悉爆破器材旳构造和性能,掌握火雷管起爆法、电雷管起爆法、导爆索起爆法、导爆管起爆法及其爆破网路旳施工技术;3、掌握地下光面预裂爆破、掘进爆破、露天浅深爆破、露天硐室爆破以及拆除爆破等爆破技术;4、掌握爆破安全技术;5、理解和爆破有关旳岩石性质,理解岩石爆破旳物理过程和基本原理;6、理解目前爆破旳先进技术和发展方向。
五、本课程采用旳教学措施本课程理论教学采用课堂讲授(多媒体+板书)措施,并安排课堂讨论。
六、课程教学资料教材:爆破工程戴俊主编,机械工业出版社, 2023,2参照书:1、爆破工程东兆星邵鹏主编, 中国建筑工业出版社, 2023,12、爆破工程管伯伦主编, 冶金工业出版社, 1992.23、爆轰物理学张宝坪主编, 化学工业出版社, 1997.84、爆炸基本理论张守中主编,国防工业出版社,1988七、成绩评估1、本课程采用构造评分,即平时作业和考勤占本课程考核总成绩旳30%,期末考试占70%;2、根据《西南科技大学学分制学籍管理暂行措施》(西南科大发[2023]207号)第十二条规定:有下列情形之一者,取消考核资格,必须重修。
凿岩爆破工程精品课程讲义教程-4爆炸反应和爆轰理论

工艺原因
外界原因
爆炸热化学参数
爆热
热化学参 数
爆温
爆容
爆压
重点讲解爆热,其他三个热化学参数请同学们自学。
爆炸热化学参数-爆热
爆热
在炸药爆炸全 过程中,体积 保持不变,此 时所能生成的 热量,称为定 容爆热。
如果炸药爆炸 全过程中,压 力保持恒定, 此时所生成的 热量,称为定 压爆热。
爆炸过程十分迅速,从开始爆炸到结束时间内,气体产物来不及向周围扩散, 故爆炸过程可看成是定容过程。因此炸药的爆炸生成热通常是指定容爆热。
设炸药中氧化剂、还原剂两种成分的合适配比为:x、y
根据氧平衡值设计混合炸药配比
令 a、b、c为这两种成分和混合后炸药的O.B值。 则有:x+y=100%
ax+by=c 解得:x=(c-b)/(a-b)
y=(a-c)/(a-b) ②、三种成分的混合炸药的配比方法
设 K1、K2、K3分别代表混合炸药各成分的百分含量。 B1、B2、 B3分别代表这些成分各自的氧平衡值。 O.B为混合后的氧平衡值。 则:kI+k2+k3=1 B1.k1+B2.K2+B3.K3=O.B
炸药爆炸反应方程
❖ 爆炸化学反应速度非常快,温度和压力都很高, 并且瞬时都在变化,反应平衡程度不断改变。在 这种情况下,要精确测定反应终了瞬间爆轰生物 组成是十分困难的。因此,一般都采用近似的方 法建立爆炸化学反应方程,在此基础上确定爆轰 产物。
❖ 由于爆轰产物组成首先取决于炸药氧平衡,爆炸 化学反应方程是基于炸药的不同氧平衡建立的。
当c-(2a+b/2) >0时,为正氧平衡。 当c-(2a+b/2)=0时,为零氧平衡。 当c-(2a+b/2)<0时,为负氧平衡。
爆炸性物质的燃烧与爆炸

5.3 炸药的有关知识
• 5.3.4炸药的燃烧转爆轰
• 研究炸药燃烧转爆轰的规律及特点,对于安全使用炸药及其制品具有 重要的实际意义。
• 在火炸药生产及处理过程中,有时会发生燃烧事故,若不及时扑救或扑 救方法不当,都有可能由燃烧转变成爆轰,使损失扩大。在销毁废炸药 时,有时使用销毁法,如果处理不当,炸药可能由燃烧转化成爆轰,从而造 成意外的事故。
100kPa下不能稳定燃烧,燃烧很容易转变为爆轰。在压力低于100kPa 时,起爆药的燃速与压力呈线性关系u=a+bp。 • 总之,一般起爆药的特征是,在低压下能进行稳定燃烧。例如,压制的雷 汞在p=0.4Pa的低压下,仍能稳定燃烧。
上一页 下一页 返回
5.3 炸药的有关知识
• 高压下易由燃烧转变为爆轰。 • 对于上述特点,叠氮化铅是个例外,它在任何条件下均不能进行稳定的
上一页 下一页 返回
5.3 炸药的有关知识
• 因此,销毁炸药时,要根据炸药的性质选择适当的销毁方法,用燃烧法销 毁炸药及其制品时,要注意防止燃烧转变为爆轰,以确保销毁过程的安 全。
• 2.试验得到的凝聚炸药稳定燃烧的规律 • (1)压力对燃烧速度的影响 • 1)起爆药燃烧时,燃速与压力的关系 • 根据对雷汞等一些起爆药的研究表明,大多数起爆药在压力高于
上一页 下一页 返回
5.3 炸药的有关知识
• 3.堆积尺寸对分解速度的影响 • 正如上面所分析的炸药是否会发生热分解向燃烧和爆轰的转变,取决
于炸药分解反应所释放的热量与向环境散失的热量能否达到平衡。炸 药堆积量越大,单位体积炸药与环境的散热面积就越小,这样越容易出 现热积累。因此,炸药堆积尺寸越大,越容易发生燃烧或爆轰。 • 由上可见,炸药在热分解过程中,若环境温度过高,或环境散热条件不好, 或炸药量太大,都会使炸药的热分解反应加速,而转变为燃烧或爆轰。 因此,储存炸药及其制品时,必须保证一定的温度、一定的尺寸及良好 的通风条件,以保证炸药及其制品的储存安全和质量。关于这部分内 容,我们在第6章中还将详细讨论。
气体爆轰理论 ppt课件

40
4.3 气体爆轰参数的计算
需要注意的是: (1)作为一种近似估算,Qe,k,Mj,nj 可按近似的爆炸
反应式确定; (2)Q e 的单位是单位质量(1kg)爆炸物的定容比
热J kg ; (3) n j 为1kg爆炸物爆炸后形成气体产物的摩尔数。
41
4.3 气体爆轰参数的计算
【例】已知混合气爆炸反应式为:
➢ 爆轰波在接近爆轰极限的气体内,或者在 化学反应活化能比较高、较难起爆的气体 中传播时,实验发现了一种称为“螺旋爆 轰”现象。
45
4.4 螺旋爆轰现象及胞格结构 ➢ 1926年,Campbell和Woodhead在研究气
10
4.2.1 气体爆炸浓度极限
表4-1混合气体的爆炸浓度范围
注意:表中的爆炸浓度极限(explosive limit)和爆轰浓度 极限的区别。工程上,爆炸浓度极限通常包括爆燃部分。
11
4.2.1 气体爆炸浓度极限
➢ 当可燃物含量很稀或很浓时,化学反应进行 很慢,单位时间内放出的总化学反应能量较 小,就不能支持前沿冲击波去激发下层混合 气体的化学反应。即使没有任何能量耗散, 也不能使爆轰波稳定传播。
18
4.2.1 气体爆炸浓度极限
表4-3 压力对甲烷空气混合气体爆炸极限的影响。
19
4.2.1 气体爆炸浓度极限 ➢ 在减压的情况下,随着压力的降低,爆炸范
围不断缩小。当压力降到某一数值时,则会 出现上限浓度和下限浓度重合。如果压力再 继续下降,则混合气便不会爆炸了,这一压 力称为爆炸极限的临界压力。
CaHbOc+n0O2——aCO2+b/2H2O
则
n0=a+b/4-c/2
26
爆炸力学讲义

爆炸力学讲义第一章绪论§1.1 爆炸力学的基本概念爆炸效应是多种多样的,包括物理、力学、化学等多个学科领域,如主要以力学的观点和方法来研究爆炸,则可称之为“爆炸力学”。
郑哲敏教授和朱兆祥教授提出:“爆炸力学是力学的一个分支,是主要研究爆炸的发生和发展规律以及爆炸的力学效应的应用和防护的学科”。
爆炸力学从力学角度研究化学爆炸、核爆炸、电爆炸、粒子束爆炸(也称辐射爆炸)、高速碰撞等能量突然释放或急剧转化的过程,以及由此产生的强冲击波(又称激波)、高速流动、大变形和破坏、抛掷等效应。
自然界的雷电、地震、火山爆发、陨石碰撞、星体爆发等现象也可用爆炸力学方法来研究。
爆炸力学是流体力学、固体力学和物理学、化学之间的一门交叉学科,在武器研制、交通运输和水利建设、矿藏开发、机械加工、安全生产等方面有广泛的应用。
§1.2 爆炸力学的发展历程人们知道利用爆炸能为自己服务已经有很长的历史了,可以说从炸药发明以后就开始了。
黑火药是我国古代四大发明之一,这在我国是家喻户晓的常识,但在西方国家却不这么认为。
丁儆教授在1980年参加美国国际烟火技术会议(IPS),在会上作报告述及中国发明火药和烟火技术的事实,引起许多欧美学者的惊异,因为西方教材中都说火药是英国的罗吉•培根(Roger Bacon)发明的,为了纠正西方的错误,丁儆教授回国后进行了中国古代火药和爆炸方面历史的研究,研究表明,大约在公元8世纪(唐朝),中国就出现了火药的原始配方,在十世纪已应用于军事,北宋初官修著的《武经总要》中记载有火炮、蒺藜火球和毒烟火球等几种实战武器的火药配方。
宋代周密揆在《葵辛杂记》中记载了火药产生的爆炸事故:“……守兵百余人皆糜碎无余,盈栋皆寸裂,或为炮风崩至十余里外。
”《宋史》记载元兵破静江时有:“……娄乃令所都人拥一火炮燃之,声如雷霆,震城土皆崩,烟气涨天外,兵多惊死者。
”火药的知识由阿拉伯人传入欧洲,直到十三世纪,英国人罗吉•培根才涉及火药的配方和应用,他的工作比中国人晚300~500年。
爆轰的气体动力学理论PPT模板

01
02
03
04
2.1状态变量
2.2状态方程
2.3完善气体
2.4流动过程 的热力学分 类
第一章激波
3激波绝热线
3.1激波关系
3.3Hugoniot方程
3.5声波
3.2Rayleigh线
3.4沿激波绝热线的熵 变(面积律)
3.6量热完善气体中的ห้องสมุดไป่ตู้激波
03
Part One
第二章弛豫激波
第二章弛豫激波
第三章燃烧、爆轰
第三章燃烧、爆轰
7燃烧与爆轰过程的Hugoniot曲 线 8Rayleigh过程
第三章燃烧、爆轰
7燃烧与爆轰过程的Hugoniot曲线
7.1爆轰
7.3定常平面反应阵面 的分类(Jouguet法则)
7.5相关过程(冷凝间 断)
7.2燃烧
7.4沿着平衡Hugoniot 曲线熵的变化
第三章燃烧、 爆轰
01
4非平衡流动
4.1弛豫 4.2气体能量的形式 4.3激波引起的弛豫层 4.4激波
02
5反应能量
5.1定义 5.2微分量q的一般关系 5.3量q<sub>p,v</sub > 5.2微分量q的一般关系 5.3量q<sub>p,v </sub>
03
6弛豫模型
04
Part One
12
Part One
参考文献
参考文献
13
Part One
名词索引
名词索引
2020
感谢聆听
0 6
20化学平衡计 算
08
Part One
5爆轰理论(下)剖析.

∴给定一组反应速率 rj 就可确定一个反应分数
在p-V图上,可画出一条雨果尼奥曲线。
=0,对应冲击波波雨果尼奥曲线 =1,对应完全反应雨果尼奥曲线 =0~1,对应中间冻结态雨果尼奥曲线
例:某反应速率方程
d
dt
r2
1
当t 0时, 0
e
pv k 1
证明
[例证4] 由波速方程
p2 p0 v0 v2
vD2 v02
02 (vD )2
由质量守恒方程: 0vD 2 (vD u2 )
∴
02vD2
2 2
(vD
u2 )2
利用C-J点的性质
p2 v0
p0 v2
(
dp dv
)S
∴
2 (vD
EF段
燃烧段 P2<P0 V2>V0(P2<P0)VD>0 u2<0
即质点运动方向与波传播方向相反,符合燃烧过程的特征。 ∴称燃烧段。 E点称为燃烧 C-J点
V<VCJ 称弱燃烧段 V>VCJ 称强燃烧段 B点 V2=V0 ;VD→∞定容绝热爆炸 D点 P2=P0 ;VD -u0=0表示无限缓慢的燃烧
e( p,v,)
pv
( D
u)2 2
e(0,v0,o)
p0v0
( D
u0)2 2
——化学反应分数
(1, 2 l)
为l个反应率方程
dj
dt
rj ( p, v, )
d
dt
D
u
T T ( p, v,)
中南大学爆破教程第4章 炸药及爆炸的基本理论

(2)核爆炸
核爆炸的能源是核裂变(铀235或钚239的的 裂变)或核聚变(氘、氚、锂的聚变)反应所释放 出的能量。 核爆炸可形成数百万到几千万度的高温,在 爆炸中心可区造成数数百万到几千万个大气压的高 压,同时还有很强的光和热的辐射以及各种放射性 粒子的贯穿辐射。
原子弹; 氢弹;
(3)化学爆炸 化学爆炸是通过化学反应将物质内潜在的化学能, 在极短时间内迅速释放出来,转变为强压缩能,使 爆轰产物处于高温(3000~5000 K )、高压(几 MPa甚至上万MPa)状态,并急骤向外膨胀,从而 对外界做功。 炸药爆炸; 可燃气体或粉尘与一定比例空气的混合物; 瓦斯爆炸;
表面上看,此反应形成的都是固态产物,但是由 于在爆炸反应温度下,银发生气化,同时使周围的空气 迅速灼热,因此导致了爆炸。
高速度和生成气体产物是炸药爆炸的三要素。 因此,我们可以把炸药的爆炸现象重新下这样的定义: 炸药的爆炸现象是一种以高速进行的能自动传播的化 学反应过程,在此过程,放出大量的热,以极高的速 度进行反应,并最终生成大量的气体产物。
(2)燃烧
同其它可燃物一样,有些炸药在热源(如火焰)作 用下,也会燃烧,其区别仅在于炸药燃烧是不需要外界 供氧。炸药的快速燃烧(每秒数百米)叫爆燃。 其特点: 燃烧不是在全部 物质内同时展开的,而只在局部 区域内进行并在物质中传播。
(3)爆轰与爆炸
炸药爆炸与燃烧的共同点:化学反应都只在局部 区域(反应区)内进行并在炸药内传播。大多数炸药的 爆炸也是氧化反应。
第4章 炸药及爆炸的基本理论
4.1 4.2 4.3 4.4 4.5 4.6 4.7 炸药的感度 炸药的爆轰理论 炸药爆轰产物及氧平衡值 炸药的热化学参数 爆炸功
4.1 爆炸与炸药基本概念
《爆破理论基础》PPT课件

(3)生成的气体多。
硝酸铵炸药爆炸全部生成气体。 1kg工业炸
药爆炸时约产生700 ~1000升的气体。
例如:C H N (NO )→ 26.12.2020
3 63
2
2 3C2 O 2 3C O 2 3N 2 O 2 3H 2 3 N 2
精选PPT
3
二、炸药及其分类 1、炸药的概念 炸药是在一定条件下能够发生快速
岩石铵梯炸药分为:1号、2号、2号抗水、3号抗水、 42号6.12抗.202水0 等。
精选PPT
17
26.12.2020
精选PPT
18
26.12.2020
精选PPT
19
铵梯炸药,一般制成直径27mm、 32mm、35mm、38mm,重100g、150g、 200g的药卷;
聚能穴:药卷一端为平顶,另一端内凹 入,称为聚能穴。
最小抵抗线:药包中心到自由面的垂直
距离叫最小抵抗线。
爆破漏斗:炸药爆炸后在靠近自由面一
侧所形成的漏斗状的坑叫爆破漏斗。
爆破作用指数:爆破漏斗半径γ与最小抵
抗线W之比,
26.12.2020
n W
精选PPT
37
2、破岩原理 将药包埋入岩石中,起爆后的瞬间产生高
温高压气体,它以冲击波的形式(压缩级)作 用于药包周围的岩石上,并以药为中心,以每 秒数千米的速度向四周作径向传播,在药包附 近形成一个粉碎圈,在粉碎圈外形成一个环状 裂隙圈,当冲击波达到自由面后,产生反射而
26.12.2020
精选PPT
6
3、炸药的爆温 爆温是指炸药爆炸瞬间放出的
热在定容条件下爆炸产物被加热达 到的最高温度。
单质炸药:3000~5000℃ 矿用混合炸药:2000~2500℃
爆轰理论(下)资料共50页文档

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
爆轰理论(下)资料
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
பைடு நூலகம்
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p2
p0
v
2 D
v02
(v0
v2 )
由此可看出,直线的斜率与波VD有关
tg p2 p0
v0 v2
可得一族经过初好状态(P0、V0)的直线
D1线 VD1
D2线 VD2
VD1<VD2<VD3
D3线 VD3
注意:雨果尼奥曲线中并不是所有线段与爆轰过程相对应只表示反应刚结束时生成 物所处的状态。
(Hale Waihona Puke p2p0 )(v0
v2 )
Qv
(5-34)
还可推导出(基本关系式)
D v0
p2 p0 v0 v2
——爆轰波米海尔逊直线(波速线)
u2 ( p2 p0 )(v0 v2 )
1 e2 e0 2 ( p2 p0 )(v0 v2 ) Qv
——爆轰波雨果尼奥曲线
(4)稳定爆轰传播条件
∵ 由方程可知 ① 爆轰产物的状态应沿着波速线变化(爆轰速度一定) ② 爆轰产物的状态必须在雨果尼奥曲线爆轰段上。 ∴ 波速线上与对应的冲击绝热线应该有相交与相切的情 况。
a. 相交情况 KM段
∵ u+c>VD强爆轰段,爆轰波后的膨胀波能赶上爆轰波 进入反应区。∴削弱前沿冲击波,引起爆轰速度的降低 ,∴波速线斜率减少,直到M点。 LM段 ∵u+c<VD弱爆轰段,爆轰波中反应区扰动落后于爆轰 传播速度,∴反应区将逐渐拖长,反应放出的能量不集
(2)柔格提出:爆轰波相对于爆轰产物的传播速度等于
爆轰产物中的音速
即 D u2 c2 或
D u2 c2
四、P-V图
(1)雨果尼奥曲线 对于反应区中,放出的化学能QV只是一部分,若β为
未反应物质量百分比,则能量方程可写成
e2
e0
1 2
(
p2
p0 )(v0
v2 )
(1
1. C-J是爆轰波雨果尼奥曲线(爆轰波绝热线),米海逊 线(爆轰波波速线)和过该点等熵线的公切点:即
p2 p0 v0 v2
(
dp dv
)
H
.M
(
dp dv
)
S.M
2. C-J点是爆轰波雨质组曲线上熵值最小的点,即
(
ds dv
)
Hu
0
S Hu S H m in
3. C-J点是过该点米海逊线上熵值最大的点。
即质点运动方向与波传播方向相反,符合燃烧过程的特征。 ∴称燃烧段。
E点称为燃烧 C-J点 V<VCJ 称弱燃烧段 V>VCJ 称强燃烧段
B点 V2=V0 ;VD→∞定容绝热爆炸 D点 P2=P0 ;VD -u0=0表示无限缓慢的燃烧
五个线段(CM、MB、BD、DE、EF)和四个点(M、E、B、D) 的意义要搞清楚。
∴该段各点符合爆轰过程 ∴ 称为爆轰段:此线段上各点表示该爆轰产物在反应刚 完成时的状态。P>PCJ
M点称为爆轰C-J点 MB段斜率较小称弱爆轰段 CM段斜率较大称强爆轰段
③ BD段——无意2段∵P>P0 V2>V0,此时VD为虚数, 不代表任何实际过程。
④ DE段 ⑤ EF段
燃烧段 P2<P0 V2>V0(P2<P0)VD>0 u2<0
面 ② 爆轰波传播过程没有能量耗散过程,—不考虑粘
性,传热等能量损失。 ③ 化学反应瞬间完成,释放出来的能量全部用来支
持爆轰波的自行传播 ∴爆轰波即是含有化学反应能量支持的冲击波,爆 轰波具有稳定的传播特性,直到反应结束。
二、爆轰波C-J方程(基本关系式)
三大定律
① 质量守恒(物质不灭) 0 D 2 ( D u2 )
5-28
② 动量守恒(动量的变化等于外力作用的冲量)
p2 p0 0 DuD
5-28
③ 能量守恒(内能的变化等于对外所作的功)
0D (e0
D2 2
)
2 (D
u2)[e2
Qv
(D
u2)2 2
]
p0D
p2 (D
u2 )
5-30
化简
e2
e0
1 2
中,不能供给波阵面以足够的能量,结果必须削弱爆轰 波波速,也不稳定,波速线斜率↓直到M点。
b. 相切情况
u+c=VD M点,反应放出的能量正好支持反应的稳定传播, 即该点的膨胀波(或稀疏波)的传播正好等于爆轰波 向前推进的速度。∴M点是稳定传播点,M点即是稳定 传播爆轰的条件,即C-J条件。
五、C-J点的重要性质
)Qv
e pv
可变换为 k 1
p2 (k 1)v0 (k 1)v2 2(k 1)(1 )Qv
p0 (k 1)v2 (k 1)v0 (k 1)v2 (k 1)v0
∴在P-V图中雨果尼奥曲线,随β↓(未反应物质质量百 分比减少)曲线位置高移。
(2)米海尔逊直线 由波速方程(米海尔逊方程)变换得
5.3 爆轰波基本知识
(气体爆轰入手) 理论基础:气体动力学原理
爆轰波是带有化学反应的冲击波,爆轰过程 即是爆轰波的传播过程。
(经典理论: chapmam &Jouguet 18~19世纪提出)
一、爆轰波C-J理论
(chapmam &Jouguet卡普曼- 柔格(儒格)) 几点假设: ① 爆轰波为无限宽的准平面波,厚度忽略突跃间断
QV——单位质量,单位时间,单位面积的爆轰热
三、C-J条件
—气体爆轰波稳定传播条件(理论研发的结果) (1)卡普曼提出:对应于所有实际爆轰可能稳定传播的 爆轰波速度为最小的速度。即为爆轰产物所处的状态是雨 果尼奥曲线与米海逊直线相切点所确定的状态。
(
dp dv
)曲线 m in
( p2 v0
p0 ) 直线 v2
(3)各线段点的意义
爆轰波雨果尼奥曲线代表爆轰挑台应结束时生成物 所处的状态。
A(P0,V0)作等压线与等容线分别交雨果尼奥曲线 于B、D点,同时该曲线的两条切线相切于M、E点。 ∴雨果尼奥曲线为五段: CM、MB、BD、DE、DF
①CM段 ②MB段
P2>P0 V2<V0(ρ2>ρ0) VD,u2均大于0 与爆轰波传播特点相同
(
ds dv
)
M
0
S M S M . m ax
4. C-J是处爆轰波相对于爆轰产物的传播速度等于爆轰产 物中的音速,VD-u2=C2或VD=u2+C2
5. 爆轰波相对于波前质点的速度为超音速,即VD-u0>C0 。爆轰波相对于波后质点的速度,在强爆轰时为亚音速,即 VD-u2<C2,对于弱爆轰时为声速的,即VD-u2>C2。