模拟试卷 含答案
高考语文模拟试卷含答案

高考语文模拟试卷含答案2024年高考语文模拟试卷一、选择题1、下列词语中,字形和加点字的读音全部正确的一项是() A. 角(jiǎo)落木圭 (guī) 混 (hùn) 沌一丘之貉 (hé) B. 豆豉 (chǐ) 应届 (yīng) 应届考生既往不咎 (jiū) C. 洗马蓦 (mù)然遏(jié)制暴虎冯 (píng)河 D. 肄 (yì)业筵 (yán)席言简意赅 (g āi) 戛 (jiá)然而止2、下列各句中,没有语病的一句是() A. 我们应该充分认识到,我国当下的教育体系已经走出传统模式,但是仍然受到传统思维和价值观念的影响。
B. 这次发射是我国载人航天工程立项实施以来的第23次飞行任务,也是长征系列运载火箭的第358次飞行。
C. 参加研讨会的专家们对于如何快速、有效地破解病毒这一难题,也提出了许多值得借鉴的意见和建议。
D. 通过查找、筛选、分类、整理,使我们建立起可信可靠的中华辞赋数据库,这是文学爱好者和研究者的福音。
3、下列各句中,加点的词语运用正确的一项是() A. 父亲季怀属马,母亲王氏属羊,在旧时婚配习俗中,他们理所当然的被街坊四邻认为是“绊马索”和“大羊小羊”。
B. 我们看过很多网络小说,听过很多创业传奇,但这一段不期而遇的创业历程,却是让人始料未及的一番遭遇。
C. 突然间,我恍然大悟,这不就是《红楼梦》里贾母提到的“千红一窟”吗?原来就在我们身边,而且就在我们一张张小小的课桌上。
D. 从《乌兰牧骑的孩子》里我们感受到了那些灵魂闪光的时刻,也找到了编造弥天大谎时的良苦用心,而艺术追求与现实生活的反差则更让人啼笑皆非。
二、阅读理解阅读下面的文言文,完成4-7题。
卢象昇,字建斗,宜兴人。
天启二年进士,崇祯七年迁御史。
八年巡按浙江,不久遭母丧归。
象昇虽文士,而廉知民间疾苦。
九年遭父丧归。
2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
2024-2025学年统编版2024新教材七年级语文上学期第一次月考模拟卷2含答案

2024-2025学年七年级上学期第一次月考模拟语文试卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。
用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。
将条形码粘贴在答题卡“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.测试范围:七年级上册第1~2单元。
5.难度系数:0.75。
6.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第一部分(34分)1.雨,是自然的精灵,是情感的纽带。
在雨中,我们或许能找回那份久违的宁静,或许能体验到那份与天地同呼吸、共命运的壮阔。
同学们想要加深对雨的了解,于是打算制作有关雨的PPT,请你帮助他们。
(1)(3分)同学们制作的PPT封面上少了一个字,请你选择一个合适的字()(2)(2分)为了让大家更好地了解雨的本义,班长在PPT第二页放入“雨”字的演变过程的图片,请你推断“雨”字的基本含义。
“雨”字的基本含义(3)(19分)PPT第三页介绍了最常见的夏天的雨,请你帮助同学们完成相关练习。
粗犷.()绿茵.茵()jié()毛chán()声②(3分)选出下列对语段中词语词性说法不正确的一项()A.“雨滴”“花苞”是表示具体事物的名词。
B.“风情”“浆汁”是表示抽象事物的名词。
C.“夏天”“雨后”是表示时间的名词。
③(2分)语段中画线句有语病,请你把修改意见写在下面。
④(3分)上面关于夏雨的介绍不够完整,你又找来下面的语句,请你将语句排列成语段()a.人们急匆匆地从四面八方奔向室内。
河南省 2024 年中等职业学校对口升学模拟考试英语试卷含答案

河南省2024年中等职业学校对口升学模拟考试英语试卷一、单项选择题(每题1分,共20分)1.—What’s your favorite sport?—I like________best.A.swimB.swimmingC.to swimD.swims2.—________is it from your home to school?—It’s about two kilometers.A.How farB.How longC.How oftenD.How soon3.The book________on the table is mine.A.lieB.liesC.lyingy4.—I have never been to Beijing.—________.A.Me neitherB.Me tooC.So have ID.Neither have I5.He is very kind and always helps________people.A.otherB.othersC.the otherD.another6.—________do you usually go to school?—By bike.A.WhatB.HowC.WhenD.Where7.My mother________cooking when I got home yesterday.A.isB.wasC.areD.were8.—________beautiful flowers!—Yes.They are for you.A.WhatB.What aC.HowD.How a9.The teacher told us that the earth________around the sun.A.movesB.movedC.is movingD.will move10.—Could you please pass me the book?—________.A.Yes,I couldB.No,I couldn’tC.Here you areD.You’re welcome11.I will go to the park if it________tomorrow.A.doesn’t rainB.won’t rainC.didn’t rainD.isn’t raining12.He is________than his brother.A.tallB.tallerC.tallestD.the tallest13.I have been learning English________five years.A.forB.sinceC.inD.on14.—________do you study for a test?—By reading books and taking notes.A.WhatB.HowC.WhenD.Where15.The girl is good at singing and dancing.She wants to be a(n)________in the future.A.actorB.actressC.singerD.dancer16.—Have you ever been to Shanghai?—Yes,I________there last year.A.goB.wentC.have goneD.will go17.The students are busy________their homework.A.doB.doingC.to doD.did18.—________is your birthday?—It’s on May1st.A.WhenB.WhereC.WhatD.Who19.There________a lot of people in the park on Sundays.A.isB.areC.was20.—Thank you for your help.—________.A.No thanksB.You’re welcomeC.That’s rightD.All right二、完形填空(每题 1.5分,共30分)My name is Li Hua.I am a student of No.1Middle School.I like21very much.I often go to the library to read books.There are many kinds of books in the library.I can learn a lot from st Sunday,I went to the library as usual.When I was reading a book,I22a noise.I looked up and saw a boy about ten years old.He was talking loudly on his mobile phone.I was very23.I wanted to tell him to be quiet,but I didn’t know how to say.Just then,a librarian came over.She told the boy to be quiet.The boy said sorry and hung up the phone.After that,I24reading my book.But I couldn’t concentrate on it.I was thinking about the boy.I think we should be quiet in the library.It is a place for people to read and study.If everyone talks loudly,it will be very25.We should respect others and keep the library quiet.I will always remember this26and try to be a good student.I hope everyone can do the same.21.A.readingB.writingC.singingD.dancing22.A.heardB.listenedD.saw23.A.happyB.sadC.angryD.excited24.A.startedB.stoppedC.continuedD.finished25.A.noisyB.quietC.beautifulD.dirty26.A.thingB.lessonC.bookD.library三、阅读理解(每题2分,共30分)A Dear Lily,How are you?I’m very happy to hear from you.I’m in Beijing now.Beijing is a beautiful city.There are many places of interest here.I have visited the Great Wall,the Summer Palace and the Palace Museum.They are all very wonderful.I have also tasted some delicious food here.Beijing Roast Duck is my favorite.It is very famous all over the world.I’m staying here for a week.I will visit some other places of interest.Then I will goback home.Best wishes!Yours,Lucy27.Where is Lucy now?A.In Shanghai.B.In Guangzhou.C.In Beijing.D.In Shenzhen.28.What has Lucy visited in Beijing?A.The Great Wall,the Summer Palace and the Temple of Heaven.B.The Great Wall,the Summer Palace and the Palace Museum.C.The Great Wall,the Forbidden City and the Summer Palace.D.The Great Wall,the Ming Tombs and the Summer Palace.29.What’s Lucy’s favorite food in Beijing?A.Beijing Roast Duck.B.Noodles.C.Dumplings.D.Hot pot.B There are four people in my family.They are my father,my mother,my brother and I. My father is a doctor.He works in a hospital.He is very busy.He often goes to work early and comes back late.My mother is a teacher.She teaches English in a middle school.She is very kind and patient.She loves her students very much.My brother is a student.He is in Grade Nine.He is very hard-working.He wants to be a scientist in the future.I am also a student.I am in Grade Eight.I like reading books and playing basketball.I love my family very much.30.What does Lucy’s father do?A.He is a teacher.B.He is a doctor.C.He is a scientist.D.He is a worker.31.Where does Lucy’s mother work?A.In a hospital.B.In a factory.C.In a school.D.In a shop.32.What does Lucy’s brother want to be in the future?A.A teacher.B.A doctor.C.A scientist.D.An engineer.C In today’s world,more and more people are using the Internet.The Internet has become an important part of our lives.We can use the Internet to do many things.For example,we can use it to send emails,read news,listen to music,watch movies and so on.The Internet also brings us some problems.For example,some people spend too much time on the Internet.It is bad for their eyes and health.Some people use the Internet to play games or chat with others.They don’t do their homework or study har D.We should use the Internet properly.We should use it to learn knowledge and improve ourselves.We should not spend too much time on it.33.What can we do with the Internet?A.Send emails,read news,listen to music and watch movies.B.Play games and chat with others.C.Do homework and study hard.D.All of the above.34.What problems does the Internet bring us?A.Some people spend too much time on the Internet.B.Some people use the Internet to play games or chat with others.C.They don’t do their homework or study hard.D.All of the above.35.What should we do with the Internet?e it properly.e it to learn knowledge and improve ourselves.C.Not spend too much time on it.D.All of the above.四、书面表达(20分)请以“My Hobbies”为题,写一篇80词左右的短文,介绍你的爱好。
2024年最新人教版初三数学(上册)模拟试卷及答案(各版本)

2024年最新人教版初三数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:x²4x+3=03. 解答下列方程:2x²5x+2=04. 解答下列方程:3x²+2x1=0四、应用题(每题10分,共20分)1. 一个长方形的长是5cm,宽是3cm,求这个长方形的面积。
2. 一个圆的半径是4cm,求这个圆的面积。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c+d,那么a+c=b+d。
2. 证明:如果a²=b²,那么a=b或者a=b。
六、论述题(每题10分,共20分)1. 论述一下你在学习数学过程中的困难和解决方法。
2. 论述一下你在学习数学过程中的收获和体会。
一、选择题(每题5分,共20分)1. A2. A3. A4. B5. A二、填空题(每题5分,共20分)1. 82. 163. 74. 9三、解答题(每题10分,共40分)1. x=2, y=12. x=1, x=33. x=1/2, x=24. x=1, x=1/3四、应用题(每题10分,共20分)1. 15cm²2. 50.24cm²五、证明题(每题10分,共20分)1. 证明:如果a+b=c+d,那么a+c=b+d。
2024年陕西省渭南市某地区中考模拟语文试题(含答案)

2024年陕西省初中学业水平考试模拟试卷语文注意事项:1.本试卷共6页。
全卷总分120分。
考试时间150分钟。
2.答题前,考生在试卷和答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的学校、姓名、准考证号填写清楚。
3.请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
4.考试结束,将本试卷和答题卡一并交回。
一、积累和运用(共7小题,计24分)华夏文明,源远流长。
陕西作为中华民族和华夏文明重要的发祥地之一,这里文物古迹众多,文化底蕴深厚,是华夏儿女共同的精神家园。
学校文学社将开展以“坚定文化自信传承文化基因”为主题的系列活动,请你一起参加。
【三秦文化一脉相承】中华民族在沃野千里的关中八百里秦川、沟壑纵横的陕北黄土高原、水草丰茂的陕南鱼米之乡,谱写了底蕴深厚、根深叶茂的三秦文化。
下面是小秦准备给校文学社投递的一篇文稿中的部分内容,请你帮他修改其中的错误。
“秦中自古帝王州”,陕西曾是中国政治、经济、文化的核心区域,多个朝代在此相继建都。
中华文明顶盛时期的周、秦、汉、唐都是在三秦大地拉开序幕并书写了辉煌的历史。
巍峨的大秦岭、奔腾的黄河水、静穆的黄帝陵、雄伟的兵马俑、厚重的古城墙、悠远的古丝路……一山一水一陵一俑一城一路,章显了陕西作为中华文明重要发祥地的厚重历史和独特的自然人文禀赋。
独特地道的风味、匠心独运的技艺、悠远亲切的乡音、怎么称道都不为过的文化古迹,一字一词皆有故事,一砖一瓦饱蘸深情——它们是三秦文化的“活化石”,是我们每一个人心中的乡愁与记忆。
1.有两个词语的读音小秦没有读准确,请你帮他指出正确的读音。
(2分)(1)“巍峨”应读为______ (2)“静穆”应读为______2.这篇文稿中有两个词语书写错误,请你帮小秦改正。
(2分)(1)“顶盛”应写为______ (2)“章显”应写为______【传统文化绵延不息】诗词文化作为中华优秀传统文化代表,具有悠久的历史和独特的魅力,它是中国人的精神家园,是文化创新创造的宝贵资源。
语文高考试卷模拟试卷及答案

一、选择题(本大题共20小题,每小题3分,共60分)1. 下列词语中,字形、字音、字义完全正确的一项是:A. 漫步(màn bù)气魄(qì pò)马虎(mǎ hǔ)B. 崇高(chóng gāo)精湛(jīng zhàn)畏缩(wèi suō)C. 琢磨(zuó mó)摆脱(bǎi tuō)摩拳擦掌(mó quán cā zhǎng)D. 稳健(wěn jiàn)纤巧(xiān qiǎo)雕梁画栋(diāo liáng huà dòng)2. 下列句子中,没有语病的一项是:A. 随着科技的进步,我们的生活越来越便捷,但同时也带来了许多新的问题。
B. 他不仅学习优秀,还积极参加各种社会活动,是我们班级的榜样。
C. 为了保护环境,我们应该减少使用一次性塑料制品,而改用可降解材料。
D. 他的成绩之所以能够取得如此优异,是因为他付出了比常人更多的努力。
3. 下列各句中,表达效果最强烈的一项是:A. 他终于明白,成功并非一蹴而就。
B. 她的微笑如阳光般温暖。
C. 那是一个寂静的夜晚,只有虫鸣和风声。
D. 他的眼神中充满了坚定的信念。
4. 下列各句中,使用比喻手法最恰当的一项是:A. 他的智慧像海洋一样深邃。
B. 她的歌声如泉水般清澈。
C. 他的笑容像阳光一样灿烂。
D. 他的故事像画卷一样展开。
5. 下列各句中,运用排比手法最成功的一项是:A. 人生就像一场戏,有喜有悲,有笑有泪。
B. 我愿意像春蚕一样,默默奉献。
C. 她的成绩在班级里名列前茅,德、智、体全面发展。
D. 我要像雄鹰一样,展翅高飞。
6. 下列各句中,运用拟人手法最生动的一项是:A. 那朵花在微风中轻轻摇曳。
B. 太阳渐渐升高,阳光洒满了大地。
C. 那条小河欢快地流淌着。
D. 树叶在秋风中翩翩起舞。
湖南省长沙市2024届高三下学期模拟(二)物理试卷含答案

姓名准考证号2024届模拟试卷(二)物理(答案在最后)命题人、审题人:注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共6小题,每小题4分,共24分。
每小题只有一项符合题目要求)1.下列实验现象或应用中,与光的波动性无关的是()A. B. C. D.2.如图所示,一只小鸟落在了树枝上,树枝发生了弯曲,小鸟处于静止状态,下列说法正确的是()A.树枝发生了弯曲,是因为小鸟对树枝的压力大于树枝对小鸟的支持力B.树枝对小鸟的支持力是由树枝发生形变产生的C.树枝对小鸟作用力的方向斜向右上方D.小鸟起飞瞬间,翅膀对空气的作用力大于空气对翅膀的作用力3.如图所示,一运动员在清澈的水池里沿直线以0.5m/s m,不考虑水面波动对视线的影响。
t=0他看到自己正下方的水底有一小石块,t=6s恰好看不到小石块了(在水面之上),下列说法正确的是()A.6s后运动员会再次看到水底的小石块B.水的折射率53 nC.水的折射率43n = D.水的折射率n =4.电磁流量计是随着电子技术的发展而迅速发展起来的新型流量测量仪表。
主要有直流式和感应式两种。
如图所示是直流式电磁流量计,外加磁感应强度为B 的水平匀强磁场垂直于管轴,在竖直径向a 、b 处装有两个电极,用来测量含有大量正,负离子的液体通过磁场时所产生的电势差大小U 。
液体的流量Q 可表示为1UA Q k Bd=⋅,其中d 为管道直径,k 为修正系数,用来修正导出公式时未计及的因素(如流量计管道内的流速并不均匀等)的影响。
那么A 应该为()A.恒定常数B.管道的横截面积C.液体的流速D.液体中单位时间内流过某一横截面的电荷量5.如图甲,一带电粒子沿平行板电容器中线MN 以速度v 平行于极板进人电容器(记为t =0时刻),同时在两板上加一按图乙变化的电压。
湖南省长沙市2024届高三下学期第二次模拟考试数学试题含答案

2024届模拟试卷(二)数学(答案在最后)命题人:注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()x f =的定义域是A .[]2,2-B .()2,2-C .{}2,2x x x <->或D .{}2,2-2.已知函数()y f x =的图象是下列四个选项图象之一,且其导函数()y f'x =的图象如图所示,则该函数的图象是A .B .C .D .3.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则该双曲线的渐近线方程为A .34y x =±B .43y x =±C .45y x =±D .54y x=±4.已知定义在R 上的函数()f x 是奇函数,对任意x ∈R 都有()()11f x f x +=-,当()32f -=-时,则()2023f 等于A .2B .2-C .0D .4-5.将函数()2sin 24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ(0ϕ>)个单位长度,再将图象上每一点的横坐标缩短到原来的12倍(纵坐标不变),所得图象关于直线π4x =对称,则ϕ的最小值为A .3π4B .1π2C .3π8D .1π86.为调查某地区中学生每天睡眠时间(单位:小时),采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9,方差为1,抽取高中生1200人,其每天睡眠时间均值为8,方差为0.5,则估计该地区中学生每天睡眠时间的方差为A .0.96B .0.94C .0.79D .0.757.在等腰△ABC 中,120BAC ∠=︒,AD 平分∠BAC 且与BC 相交于点D ,则向量BD 在BA上的投影向量为A .32BAB .4BAC .2BAD .34BA8.如图,点P 在正方体1111ABCD A B C D -的面对角线1BC (包括端点)上运动,则下列结论一定成立的是A .三棱锥1A A PD -的体积大小与点P 的位置有关B .1A P 与平面1ACD 相交C .平面1PDB ⊥平面11A BC D .1AP D C⊥二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设a ,b ,c ,d 为实数,且0a b c d >>>>,则下列不等式正确的有A .2c cd<B .a c b d -<-C .ac bd<D .0c d a b->10.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是A .此人第二天走了九十六里路B .此人第三天走的路程占全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了四十二里路11.三棱锥A -BCD 的侧棱AB 垂直于底面BCD ,BC CD ⊥,2AB BC ==,三棱锥A -BCD 的体积43A BCD V -=,则A .三棱锥A -BCD 的四个面都是直角三角形B .2CD =C .π2CDA ∠=D .三棱锥A -BCD 外接球的体积三、填空题:本题共3小题,每小题5分,共15分.12.在复数范围内方程210x x ++=的解为.13.已知圆N :22650x y y +-+=,直线1y =-,圆M 与圆N 外切,且与直线1y =-相切,则点M 的轨迹方程为.14.若m ,*n ∈N ,3m ≥,2n m +≥,则22111222A A A C A A mm m n m n m n ----=++.(请用一个排列数来表示)四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知22sin cos 212A BC ++=,外接圆半径2R =.(1)求角C 的大小;(2)求△ABC 面积的最大值.16.(本小题满分15分)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB =,1AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若PD AD =,求二面角A -PB -C 的余弦值.17.(本小题满分15分)已知椭圆G :22221x y a b+=(0a b >>)的离心率为63,右焦点为(),斜率为1的直线l 与椭圆G交于A ,B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -.(1)求椭圆G 的方程;(2)求△PAB 的面积.18.(本小题满分17分)某手机App 为了答谢新老用户,设置了开心大转盘抽奖游戏,制定了如下中奖机制:每次抽奖中奖的概率为p ,n 次抽奖仍未中奖则下一次抽奖时一定中奖.每次中奖时有12的概率中积分奖,有12的概率中现金奖.若某一次中奖为积分奖,则下一次抽奖必定中现金奖,抽到现金奖后抽奖结束.(1)若2n =,12p =,试求直到第3次才抽到现金奖的概率;(2)若19n =,0.01p =,X 表示抽到现金奖时的抽取次数.(ⅰ)求X 的分布列(用p 表示即可);(ⅱ)求X 的数学期望()E X .(180.990.8345≈,结果四舍五入精确到个位数)19.(本小题满分17分)极值的广义定义如下:如果一个函数在一点的一个邻域(包含该点的开区间)内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值.对于函数()y f x =,设自变量x 从0x 变化到0x x +∆,当0x ∆>,()()000limx f x x f x x∆→+∆-∆是一个确定的值,则称函数()y f x =在点0x 处右可导;当0x ∆<,()()000limx f x x f x x∆→+∆-∆是一个确定的值,则称函数()y f x =在点0x 处左可导.当函数()y f x =在点0x 处既右可导也左可导且导数值相等,则称函数()y f x =在点0x 处可导.(1)请举出一个例子,说明该函数在某点处不可导,但是该点是该函数的极值点;(2)已知函数()22132e sin e ax f x x x x x +=--.(ⅰ)求函数()21esin e ax g x x x +=--在0x =处的切线方程;(ⅱ)若0x =为()f x 的极小值点,求a 的取值范围.2024届模拟试卷(二)数学参考答案一、二、选择题题号1234567891011答案DBAACBDCADACDABD2.B【解析】由()y f'x =的图象知,()y f x =为增函数,且在区间()1,0-上增长速度越来越快,而在区间()0,1上增长速度越来越慢.故选B .3.A【解析】∵53c a =,∴222259a b a +=,∴43b a =.∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为a y x b =±.∴所求双曲线的渐近线方程为34y x =±.故选A .4.A【解析】定义在R 上的函数()f x 是奇函数,且对任意x ∈R 都有()()11f x f x +=-,故函数()f x 的图象关于直线1x =对称,∴()()2f x f x =-,故()()()2f x f x f x -=+=-,∴()()()24f x f x f x =-+=+,∴()f x 是周期为4的周期函数.则()()()3(202350533)42f f f f =⨯+==--=.故选A .6.B【解析】初中生人数800m =,每天睡眠时间的平均数9x =,方差211s =;高中生人数1200n =,每天睡眠时间的平均数8y =,方差220.5s =.总的样本平均数8.4mx n y a m n +==+.总的样本方差()()22221220.94m s x a n s y a s m n⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦==+.故选B .7.D【解析】设AB AC x ==,由余弦定理可知22222cos1203BC AB AC AB AC x =+-⋅⋅︒=,∴BC =,30ABC ∠=︒,∵AD 平分∠BAC 且与BC 相交于点D ,△ABC 是等腰三角形,∴D 是BC 中点,2BD x =,由图可知向量BD 在BA 上的投影向量为BE ,3cos304BE BD x =︒= ,34BE BA = ,∴34BE BA =.故选D .8.C 【解析】对于选项A ,11A A PD P AA D V V --=.在正方体中,1BC ∥平面1AA D ,所以点P 到平面1AA D 的距离不变,即三棱锥1P AA D -的高不变,又1AA D ∆的面积不变,因此三棱锥1P AA D -的体积不变,即三棱锥1A A PD -的体积与点P 的位置无关,故A 不成立;对于选项B ,由于11BC AD ∥,1AD ⊂平面1ACD ,1BC ⊂/平面1ACD ,所以1BC ∥平面1ACD ,同理可证1BA ∥平面1ACD ,又11BA BC B = ,所以平面11BA C ∥平面1ACD ,因为1A P ⊂平面11BA C ,所以1A P ∥平面1ACD ,故B 不成立;对于选项C ,因为11A C BD ⊥,111A C BB ⊥,1BD BB B = ,所以11A C ⊥平面1BB D ,则111A C B D ⊥;同理11A B B D ⊥,又1111A C A B A = ,所以1B D ⊥平面11A BC ,又1B D ⊂平面1PDB ,所以平面1PDB ⊥平面11A BC ,故C 成立;对于选项D ,当B 与P 重合时,AP 与1D C 的夹角为π4,故D 不成立.故选C .9.AD 【解析】因为0a b c d >>>>,所以0a b >>,0c d >>,对于A ,因为0c d >>,由不等式的性质可得2c cd <,故选项A 正确;对于B ,取2a =,1b =,1c =-,2d =-,则3a c -=,3b d -=,所以a c b d -=-,故选项B 错误;对于C ,取2a =,1b =,1c =-,2d =-,则2ac =-,2bd =-,所以ac bd =,故选项C 错误;对于D ,因为0a b >>,0d c <<,则ad bc <,所以c d a b >,故0c da b->,故选项D 正确.故选AD .10.ACD【解析】设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,因为6378S =,所以166112378112a S ⎛⎫- ⎪⎝⎭==-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第一天走了九十六里路,所以A 正确;对于B ,由于31192484a =⨯=,4813788>,所以B 不正确;对于C ,由于378192186-=,1921866-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确;对于D ,456378192964842a a a ++=---=,所以此人后三天共走了四十二里路,所以D 正确.故选ACD .11.ABD 【解析】∵AB BC ⊥,BC CD ⊥,构造如图所示的长方体,则AD 为三棱锥A -BCD的外接球的直径.设外接球的半径为R .∵1114223263A BCD V BC CD AB CD -=⨯⨯⨯⨯=⨯⨯⨯=,∴2CD =,∴该长方体为正方体,∴AD =∴R =,∴外接球体积为34π3V R ==.故选ABD .三、填空题:本题共3小题,每小题5分,共15分.12.12x -=13.212x y=【解析】由题意得,直线l :1y =-,且圆N :()2234x y +-=,设点M 到直线l 的距离为r ,则点M 到l ':3y =-与点M 到点N 的距离相等,都是2r +,故点M 的轨迹是以N 为焦点,以l '为准线的抛物线,故方程为212x y =.14.2A mn -【解析】法一:直接计算,略.法二:实际意义:从n 个元素中选取m 个元素排列到m 个位置上去,对于两个指定的元素a ,b 进行分类,a ,b 都被选出来,有222A A m m n --种排法,a ,b 中有一个被选出来,有11122C A A m m n --种排法,a ,b 都没有被选出来,有2A mn -种排法,所以221112222A A A C A A A mm m mn m n m n n -----=++.法三:特值法试一试,如取3m =,7n =,再猜出排列数.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)()cos 2cos cos C A B C =+=-,22cos cos 10C C +-=,1cos 2C =,因为()0,πC ∈,所以π3C =.(2)由外接圆半径2R =和正弦定理知1sin sin 2ABC S ab C A B ∆==,2ππsin sin 3sin 22236ABC S A B A A A A A ∆⎛⎫⎛⎫==-=+=- ⎪ ⎪⎝⎭⎝⎭,当π3A =时,△ABC的面积最大值为16.【解析】(1)因为60DAB ∠=︒,2AB =,1AD =,由余弦定理得BD =,从而222BD AD AB +=,故BD AD ⊥.因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥.又AD PD D = ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD .因为PA ⊂平面PAD ,所以PA BD ⊥.(2)如图,以D 为坐标原点,射线DA ,DB ,DP 分别为x ,y ,z 的正半轴建立空间直角坐标系D -xyz,则()1,0,0A,()B,()C -,()0,0,1P.()AB =-,()1PB =-,()1,0,0BC =- 设平面PAB 的法向量为(),,n x y z =,则00n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即0x z ⎧-+=⎪-=,因此可取n =.设平面PBC 的法向量为m ,则0m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩,可取(0,1,m =-,则cos ,7m n <>==-,经判断,二面角A -PB -C 为钝角,故二面角A -PB -C的余弦值为7-.17.【解析】(1)由已知得c =3c a =,解得a =,又2224b a c =-=,所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由221124y x m x y =+⎧⎪⎨+=⎪⎩消去y 得22463120x mx m ++-=,①设A ,B 的坐标分别为()11,x y ,()22,x y (12x x <),AB 中点为()00,E x y ,则120324x x x m +==-,004my x m =+=,因为AB 是等腰△PAB 的底边,所以PE AB ⊥,所以PE 的斜率为241334mk m -==--+,解得2m =,此时方程①为24120x x +=,解得13x =-,20x =,所以11y =-,22y =,所以AB =,又点()3,2P -到直线AB :20x y -+=的距离2d ==,所以1922PAB S AB d ∆=⋅=.18.【解析】(1)设抽到现金奖时共抽取了3次为事件A ,则事件A 包括第一次未中奖第二次未中奖第三次中了现金奖或第一次未中奖第二次中了积分奖第三次中现金奖,则()1111111222244P A =⨯⨯+⨯⨯=,所以直到第3次才抽到现金奖的概率为14.(2)(ⅰ)X 的可能取值为1,2,3,…,19,20,21.()112P X p ==,()()()()()2121111121222i i i P X i p p p p p p p ---==-⋅+-⋅=--,2i =,3, (19)()()()()18191811120111222P X p p p p ==-⋅+-⋅=-,()()()1919112111122P X p p ==-⋅⨯=-,所以X 的分布列为X 12…i …2021P 12p ()122p p -…()()21212i p p p ---…()18112p -()19112p -其中2i =,3,…,19.(ⅱ)()()()()()()12111112232121192222i E X p p p p p p i p p p -=⨯+⨯-+⨯--++⨯--++⨯ ()()()1719181112120(1)211222p p p p p --+⨯-+⨯-()()()()()()217181911212231411911011222p p p p p p p p ⎡⎤=+-+-+-++-+-+-⎣⎦ ,令()()()21723141191S p p p =+-+-++- ,则()()()()()23181213141191p S p p p p -=-+-+-++- ,作差得()()()17181112191p p pS p p ⎡⎤---⎣⎦=+--,所以()()()()()18182111192221222p p p p p S p p p p ⎡⎤----⎣⎦-=-+---,()()()()()()()181818192111192122110112222p p p E X p p p p p p p ⎡⎤----⎣⎦=+-+---+-+-()1811112192p p p p ⎛⎫=++---≈ ⎪⎝⎭,所以X 的数学期望()E X 约为19.19.【解析】(1)y x =,0x =为该函数的极值点,该函数在0x =处的左导数为1-,右导数为1,所以该函数在0x =处不可导.(2)(ⅰ)切线方程为0y =.(ⅱ)()()22213221e sin e e sin e ax ax f x x x x x x x x ++=--=--,因为当0x ≠时,20x >,故()f x 与()g x 同号,()21e sin e ax g x x x +=--,现考察()g x 的性质,由于()g x 为偶函数,只需分析其在()0,+∞上的性质即可,()212e sin cos ax g'ax x x x x +=--,()0,0g'=,()()222124e 2cos sin ax a a x x x x g''x +=+-+,()2e 20g 'a '=-,则必有()e 2002g''a =-≥,即1e a ≥.①否则,若()e 2002g''a =-<,即1ea <,则必存在一个区间()0,m ,使得()0g''x <,则()g'x 在()0,m 单调递减,又()00g'=,则()g'x 在区间()0,m 内小于0,则()g x 在()0,m 单调递减,又()00g =,故()g x 在区间()0,m 内小于0,故()f x 在区间()0,m 内小于0,则0x =不可能为()f x 的极小值点.②当1ea ≥时,()22111e e sin e e sin e x ax g x x x x x ++=----≥,令()211e esin e x h x x x +=--,()2112e sin cos e x e x h x x x 'x +=--,()2112e 224e 2cos sin e e x h x x x x ''x +⎛⎫=+-+ ⎪⎝⎭,易知2112e 224e e e x y x +⎛⎫=+ ⎪⎝⎭在区间()0,+∞上单调递增,对2cos sin y x x x =-+,2sin sin cos 3sin cos y'x x x x x x x =++=+,则3sin cos y'x x x =+在区间π0,2⎛⎫ ⎪⎝⎭上大于0,故2cos sin y x x x =-+在区间π0,2⎛⎫ ⎪⎝⎭上单调递增.故()2112e 224e 2cos sin e e x h x x x x ''x +⎛⎫=+-+ ⎪⎝⎭在区间π0,2⎛⎫ ⎪⎝⎭上单调递增.又()00h''=,故()0h''x ≥,故()h'x 在区间π0,2⎛⎫ ⎪⎝⎭上单调递增,又()00h'=,故()0h'x ≥,故()h x 在区间π0,2⎛⎫ ⎪⎝⎭上单调递增,又()00h =,故()0h x >,π0,2x ⎛⎫∈ ⎪⎝⎭,则()()21e sin e 0ax x x x g x h +=-->≥,π0,2x ⎛⎫∈ ⎪⎝⎭,故当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,由偶函数知π,02x ⎛⎫∈-⎪⎝⎭时,()0f x >,故0x =为()f x 的极小值点,所以a 的取值范围为1e a ≥.。
2024年江苏省南京市高三下学期第二次模拟考试语文试卷含答案

南京市2024届高三第二次模拟考试语文注意事项:1.本试卷考试时间为150分钟,试卷满分150分,考试形式闭卷;2.本试卷中所有试卷必须作答在答题卡上规定的位置,否则不给分;3.答题前,务必检查自己的学校、班级、姓名、准考证号明白0.5毫米黑色墨水签字笔填写正确,试卷及答题卡上;一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。
材料一四十五万年前,欧美大多数北气候学家相信,气候在历史时代是稳定的。
这种见解,已为世界近数十年来在其他社会变革中所否定。
在我国,古代作家如《梦溪笔谈》的作者沈括,《农书》的作者张标和《广阳杂记》的作者刘献庄,均怀疑历史时代气候的定性,提出各朝代气候变革的事例,记载于上述书籍中。
对我国近五千年来气候气候变化的研究,可得出下列初步结论:(1)在这五千年的最初一千年,即从仰韶文化到安阳殷墟,大部分时间的年平均温度高于现在2℃左右。
这一月温度变化比现在要高35℃。
(2)在稍早些,有一颗到土下探明,未发现温度在公元前1050年公元前400年(公元前1250年)和前几周,变化微小为12℃。
(3)在每一个四百至八百年的期间里,可以分出五十至一百年为期期的小循环,温度范围是0.5℃~1℃。
(4)上述循环中,任何夏冷的时期,似乎都是从东亚太平洋海岸开始,寒冷波动向西传布到欧洲和非洲的大西洋海岸。
同时也有从北向南趋势。
我国气候在历史时代的波动与世界其他地区比较,可以明显看出,气候的波动是全世界性的,虽然是青少年和最年年可以而在不同的年代,但彼此是先后呼应的。
(5)在十九世纪的寒冷中,中国比欧洲早了五十年。
欧洲和中国气候息息相关是有理由的。
因为这两个区域的寒冷季节,都是由西气压的控制。
如西伯利亚的高气压向东扩展,中国北部西北风强,则中国严寒而欧洲温暖。
相反,如西伯利亚的高气压向北而欧洲,欧洲东北风强,则北欧寒冷而中国温和。
只有当西伯利亚高压足以控制全部欧亚时,两大陆都要同时出现严寒。
上海市浦东新区民办欣竹中学2024-2025学年九年级上学期期中模拟数学试卷(含答案)

初三期中模拟试卷(1)一、选择题(每题4分,满分24分)1 、已知线段满足,则下列比例式不一定正确的是()A B C D2 、如图,在中,分别是上的点,下列比例式中伯努判定的是()A B C D3 、已知是线段的黄金分割点,,下列各式中不正确的是()A BC D4 、已知,在中,,,则的长为()A B C D5 、已知,是非零向量,下列判断错误的是()A 如果,那么B 如果为单位向量,且,那么C 如果,那么D 如果,那么或6 、如图,在梯形中,,对角线相交于点,是梯形的中位线,与相交于点,如果的面积为1,那么的面积为()A 3B 2C 4D 2.5二、填空题(每题4分,满分48分)ba、43=ba34=ab47=+bba3211=--bababa=++43ABC△ED、ACAB、BCDE//ACAEABAD=ECAEDBAD=ACCEABBD=BCDEABAD=P AB PBAP>215-=ABAPABPBAP⋅=2215-=PBAP253-=ABBPABC△︒=∠90C mBCA==∠、αABαsinmαcosmαsinmαcosma bba2=ba//e ea2=2||=a=+ba ba-=||||ba=ba=ba-=ABCD ADBCBCAD3//=、BDAC、O EF EF ACBD、HG、OGH△ABD△7 、如果线段,那么线段的比例中项8 、计算:9 、在中,,,那么的余弦值为10 、如图,在梯形中,,是梯形中位线,设,,那么向量用向量,表示为11 、如图,已知,,,那么12 、小明在楼上点处看到楼下点处小丽的俯角是,那么点小丽看点处小明的仰角是13 、如图,在中,,点是的重心,如果,那么14 、如果梯形两底分别为4和6,梯形高为2,那么两腰延长线的交点到这个梯形的较大底边的距离为15 、如图,在梯形中,,分别在的延长线上,,如果,,那么的长为16 、构建几何图形解决代数问题是数形结合思想,在中,,,延长线段,使,联结,可得,所以,利用此图形可以得出,通过此方法,可以得出cmccma94==、ca、=b cm=--)2(24baaABC△︒=∠90C43==BCAC、A∠ABCD ADBCBCAD3//=、EFaAD=bDC=BC a b321////LLL23=BCAB6=DE=DFA B︒32B A ABC△3=BC G ABC△BCDG// =DGABCD CDAB//FE、BDAC、ABEF//DEAD3=106==EFAB、CDABCRt△︒=∠90C ︒=∠30ABC DCB到点ABBD=AD︒=∠15D︒=∠75CAD3275tan+=︒=︒5.67tan17 、如图,在中,,垂足分别为,若,则18 、如图,在中,,平分,交,将绕着点旋转,如果点落在射线,点落在点处,联结,那么的正切值为三 、解答题(本大题共7题,满分78分)19 、(本题满分10分)计算:20 、(本题满分10分)如图,,于点,已知,求的长ABC △AB CE AC BD A ⊥⊥=∠︒、、45E D 、22=DE =BC ABC Rt △4390===∠︒BC AC ACB 、、CD ACB ∠D AB 于点ABC △A C CD B E DE AED ∠︒︒︒︒+-45cot 30sin 30cos 60tan 2BC EG AD ////AC DB AB EG 、、分别交G F E 、、53106====AB AE BC AD 、、、FG EG 、21 、(本题满分10分)如图,在中,,点分别在边上,,,(1)求的长(2)求的值22 、(本题满分10分)地铁10号线某站出口横截面平面图如图所示,电梯的两端分别距顶部9.9米和2.4米,在距电梯起点端6米的处,用1.5米的测角仪测得电梯终端处的仰角为,求电梯的坡度与长度参考数据:,,ABC △︒=∠90C E D 、AB AC 、ABC BD ∠平分8=⊥AE AB DE 、53sin =A CD DBC ∠cot AB A P B ︒14AB 24.014sin ≈︒97.014cos ≈︒25.014tan ≈︒23 、(本题满分12分)已知,如图,在中,点分别在边上,,相交于点,(1)求证:(2)求证:24 、(本题满分12分)在平面直角坐标系中,直线与轴交于点,将直线向下平移16个单位后交轴于点(1)求的余切值(2)点在平移后的直线上,其纵坐标为6,联结,其中与交于点,求:的值(3)点在直线上,且位于第一象限,联结,当时,求点的坐标ABC △E D 、AB BC 、AC AD BD ==CE AD 与F ECEF AE ⋅=2EAFDCE ADC ∠+∠=∠EFAB AD AF ⋅=⋅1223:+-=x y L x A L y BOBA ∠C CB CA 、CA y E ABE CBE S S △△:M 3=x MB MA 、OBA BMA ∠=∠M25 、(本题满分14分)如图,在直角图形中,,,对角线交于点,已知,,点是射线上任意一点,过点作,垂足为点,交射线,射线(1)当点是线段中点时,求线段的长(2)当点在线段上时(不与重合),设,求的函数解析式及定义域(3)联结,如果线段与直角梯形中的一条边(除外)垂直时,求的值ABCD CD AB //︒=∠90ABC BD AC 、G 3==BC AB 21tan =∠BDC E BC B DE BF ⊥F M AC 于点HDC 于点F BH CH E BC C B 、y CM x BE ==、x y 关于GF GF ABCD AD x参考答案一,选择题1 ,C ;2 ,D ;3 ,C ;4 ,C ;5 ,D ;6 ,C ;二 ,填空题7 ,6 ;8 ,;9 , ;10,;11 ,10 ;12 ,32 ;13 ,1 ;14 ,6 ;15 ,9 ;16 , ;17 ,4 ;18 , ;三 ,解答题19 , ;20 , ;21 ,(1)6 ,(2) ;22 ,19 , ;23 ,证明略 ;24 ,(1),(2)(,6),(3)(3 ,5);25 ,(1) ,(2)()(证相似)(3)当时,∵,∴,∵相似,∴ ,∴∵相似,∴,,∵ ,∴ ,解得:,(舍)b a 42+53a 2+12+7334+5186==GF EG 、2124:1=i 21cot =∠OBA C 320-658320||21||21==⋅⋅=A C ABE CBE x BE x BE S S △△M 653-x x y +-=3232930<<x BCH △DCE △BC GF ⊥21==DC AB GD BG 31=BH BF BH BF 31=BCH △DCE △DE BH 21=DE BF 61=BFE △DCE △DE BE CD BF =DEx DE =661x DE 362=222CE CD DE +=2)3(3636x x -+=116211-=x 116212+=x当时,如上图易得,,∵相似,,∵,∴, , ,,(舍)综上所述CD GF ⊥24==KC DK 、32=CE KF )3(32-=x KF BCH △DCE △21=CE CH )3(2121-==x CE CH 27)3(212x x CH CK KH -=--=-=BC KF //CH KH BC KF =23273)3(32--=-x x x )7(9)3(22x x -=-045322=--x x 441331+=x 441332-=x 1162144133-+=或x。
2024年6月辽宁省大连市部分学校中考模拟语文试题(含答案)

2024年辽宁省中考对标模拟试卷语文注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共四大题,23小题,满分120分,考试时间为150分钟。
一、积累运用(17分)1.下列词语中加点字的字音、字形完全正确的一项是()(2分)A.燥热(zào)云宵(xiāo)呜咽(yiè)持之以恒(béng)B.倔强(jué)安详(xiáng)震憾(hàn)一气呵成(bē)C.星宿(xiù)练达(liàn)拘泥(nì)鲜为人知(xiǎn)D.龟裂(jūn)溃退(kùi)取缔(dì)李代桃疆(jiāng)2.依次填入下面句子横线处的词语最恰当的一项是()(2分)对自己人生的责任心是其余一切责任心的根源。
一个人______对自己的人生负责,建立了真正属于自己的人生目标和生活信念,他才可能自觉地______和______起对他人和社会的责任。
责任就是对自己要求去做的事情有一种爱。
不能想象,一个不对自己负责的人怎么会爱他人和爱事业,一个在人生中______的人怎么会坚定地负起生活中的责任。
A.只要选择承担随波逐流B.只有选择承担随波逐流C.只有承担选择随声附和D.只要承担选择随声附和3.下列各项中分析正确的一项是()(2分)①端午,我们要向野草致敏。
②艾草与天地交互的能量,在这一天达到极致。
③人们用她沐浴,或把她挂在门头。
④无论是在体感、味觉方面,还是在精神方面,她都可以助你过好夏天。
⑤身康心安,是艾草给你的祝愿。
⑧而菖蒲不喜争。
如果水肥,它就壮一些:如果水寡,它就纤一些。
随水而安,附石而定。
不贪天地,淡泊自在。
⑦她从叶到根,都有药用。
⑧一方水土,养一方植物,养一方人。
⑨这些野草,顺应天道地气,有了通达人情之力。
⑩端午,致敬野草,就是致敬天地的给予、自然的馈赠。
A.加点词语“向”“这”“祝愿”“壮”依次是介词,代词、动词和形容词。
新高考语文模拟试卷附答案

一、选择题(每小题3分,共30分)1. 下列词语中字形、字音完全正确的一项是:A. 沉默寡言(yǎn)雅俗共赏(yǎ)B. 恣意妄为(zì)豁然开朗(huò)C. 遥不可及(jí)美轮美奂(huán)D. 炽热如火(chì)碧波荡漾(dàng)2. 下列各句中,没有语病的一句是:A. 随着科技的飞速发展,许多过去无法解决的问题得到了解决。
B. 在这次比赛中,他的表现赢得了观众的热烈掌声,也受到了领导的表扬。
C. 为了实现我们的目标,我们必须团结一致,共同努力。
D. 他的论文在学术会议上引起了热烈的讨论,被认为是一篇有价值的作品。
3. 下列各句中,使用成语正确的一项是:A. 他对工作认真负责,堪称楷模。
B. 这个方案太复杂了,难以实施。
C. 她的成绩一直名列前茅,是班级的骄傲。
D. 他的想法过于简单,没有考虑到实际情况。
4. 下列各句中,句式变换正确的一项是:A. 原句:他的成绩一直在班级中名列前茅。
变换后:他的成绩在班级中一直名列前茅。
B. 原句:我们要发扬艰苦奋斗的精神。
变换后:艰苦奋斗的精神我们要发扬。
C. 原句:这本书是我最喜欢的。
变换后:我最喜欢的这本书。
D. 原句:他不仅成绩优秀,而且乐于助人。
变换后:他成绩优秀,而且乐于助人。
5. 下列各句中,标点符号使用正确的一项是:A. 他走进教室,发现同学们都在认真地学习。
(逗号)B. 我喜欢读《红楼梦》,尤其喜欢林黛玉这个角色。
(顿号)C. 这本书里有许多有趣的故事,让人百读不厌。
(分号)D. 他的发言非常精彩,赢得了大家的掌声和笑声。
(冒号)二、现代文阅读(每小题5分,共20分)阅读下面的文字,完成下列题目。
【甲】在一个宁静的小山村,有一位名叫小明的男孩。
他从小失去了双亲,由奶奶抚养长大。
尽管生活艰辛,小明却始终保持着乐观的心态。
他热爱学习,成绩优异,是村里的骄傲。
一天,小明听说城里有一所著名的中学,决定去那里求学。
2024届湖南省长沙市高三下学期高考模拟(三)语文试卷含答案

湖南2024届模拟试卷(三)语文(答案在最后)命题、审题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。
①中华文明从一开始就具有以人为本的精神,是一种以人本主义为基石的人类文明。
中华民族是世界上最早认识到人类自身的创造力量的民族。
西方人把崇拜的目光对着天庭,中华的先民却对自身的力量充满了自信心。
在中国古代的神话体系中、女娲补天、后羿射日、大禹治水等神话传说其实都是人间英雄和氏族首领的英雄事迹的文学表述。
女娲等人的神格其实就是崇高伟大人格的升华,他们与希腊神话中那些高居天庭俯视人间有时还任意惩罚人类的诸神完全不同。
神话因素与历史因素以传说的方式奇妙地结合起来了。
神话人物主要不是作为人类的异记力量出现,而是人类自身力量的凝聚和升华。
神话人物的主要活动场所是人间,他们的主要事迹是除害安民、发明创造;实即人类早期生产活动的艺术夸张。
请看孟子对大禹治水的叙述:“当尧之时,天下犹未平。
洪水横流,泛滥于天下……禹疏九河。
瀹济漯而注诸海,决汝汉、排淮泗而注之江,然后中国可得而食也。
当是时也,禹八年于外,三过其门而不入。
”这分明是一位人间领袖的英雄事迹,哪里有丝毫的神话色彩?②在中华文化中,人不是匍匐在诸神脚下的可怜虫、更不是生来就负有“原罪”的天国弃儿。
相反,人是宇宙万物的中心,是衡量万物价值的尺度,人的道德准则并非来自神的诫命,而是源于人的本性、人的智慧也并非来自神的启示,而是源于人的内心。
先秦的诸子百家都以人为思考的主要对象,他们的智慧都是人生的智慧,他们关怀的对象都是人生的现实。
四川省遂宁市蓬溪2025届高三上学期模拟考试物理试卷含答案

北京专家卷·物理(三)(答案在最后)本试卷共6页,满分100分。
考试用时75分钟。
注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上。
2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.答主观题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将答题卡交回。
一、单项选择题:本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中只有一项符合题目要求。
1.147N 与元素X 作用后变成元素Y 与11H ,此反应放出的核能为1206;C E 与元素X 作用后变成168O 。
已知714N 、126C 、168O 的比结合能分别为1234E E E E 、、、,下列说法正确的是()A.元素X 是β粒子B.Y 与168O 不是同位素C.X 比结合能为20117144E E E --D.126C 与X 作用释放核能为431612E E -2.如图所示的静电计与带电平行板电容器(右板带正电,左板带负电)相连,把一块薄板向下插入平行板的正中央,规定大地的电势为零,则插入薄板前后,下列说法正确的是()A.静电计是测量电容器带电量的装置B.指针的电势与外壳电势相等C.若薄板是玻璃,则插入后指针的偏角小于插入前D.若薄板是金属板,则插入后的电容小于插入前3.如图所示,光滑的圆弧轨道竖直固定放置,其弧长远小于半径,圆弧的底端切线水平。
现将质量分别为2m m 、的小球甲、乙分别从轨道的顶点和顶点下方的某点由静止释放,然后到达底端,重力加速度为g ,两小球均视为质点,在此过程中,下列说法正确的是()A.若甲重力的冲量大小为I,则圆弧轨道的半径为2 22 4I m gB.若甲重力的冲量大小为I,则乙重力的冲量为0.5IC.若乙下落的高度为h,重力的平均功率为P,则甲重力的冲量为22 m g h PD.若乙下落的高度为h,重力的平均功率为P,则甲运动的时间为mgh P4.如图所示,定滑轮A(形状忽略不计)固定在天花板上,轮轴与表面均光滑,水平地面上固定铰链B(形状忽略不计),B在A的正下方,轻质硬直杆一端连接B,另一端连接质量为m的小球C(视为质点),轻质细线跨过A,左端施加力1F(为未知量),系统处于第一个静止状态,三角形ABC为边长为d正三角形;再让A C、间的距离变为0.5d,系统处于第二个静止状态,轻绳左端施加的力为2F(为未知量),重力加速度为g,则两种静止状态下()A.杆对小球的弹力大小、方向均不同B.杆对小球的弹力大小、方向均相同C.轻绳左端施加的拉力1F是2F的2倍D.小球重力与所受细线拉力的合力不一定沿杆5.随着中国航天科技的飞跃发展,中国将向月球与火星发射更多的探测器。
湖北省武汉市2024届高三下学期5月模拟训练数学试卷含答案

武汉市2024届高三年级五月模拟训练试题数学试卷(答案在最后)武汉市教育科学研究院命制2024.5.21本试题卷共4页,19题,全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合[0,]A a =,(2,3)B =,若A B =∅ ,则()A.02a <≤ B.02a << C.03a << D.03a <≤2.已知向量a = ,(b = ,则a 在b上的投影向量的模为()B.1C.0D.23.设抛物线2:4C y x =,过焦点F 的直线与抛物线C 相交于A ,B 两点,则||AB 的最小值为()A.1B.12C.14D.184.已知一组数据1,2,3,4,x 的上四分位数是x ,则x 的取值范围为()A.{3}B.[2,3]C.[3,4]D.{4}5.若1021001210(12)(1)(1)(1)x a a x a x a x +=+++++++ ,则2a =()A.180B.180- C.90- D.906.已知菱形ABCD ,π3DAB ∠=,将DAC △沿对角线AC 折起,使以A ,B ,C ,D 四点为顶点的三棱锥体积最大,则异面直线AB 与CD 所成角的余弦值为()A.35B.32C.34D.347.抛掷一枚质地均匀的硬币n 次,记事件A =“n 次中既有正面朝上又有反面朝上”,B =“n 次中至多有一次正面朝上”,下列说法不正确的是()A.当2n =时,1()2P AB =B.当2n =时,事件A 与事件B 不独立C.当3n =时,7()8P A B +=D.当3n =时,事件A 与事件B 不独立8.在三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且满足22c a ab -=,2c =,则ABC △面积取最大值时,cos C =()A.12B.14+ C.22D.24二、选择题:本题共3小题,每小题6分,共18分。
2024届浙江省宁波市高三模拟考试语文试卷含答案

高三模拟考语文(答案在最后)考生须知:1.本卷满分150分,考试时间150分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号。
3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成下面小题。
材料一:①《红楼梦》第十八回《皇恩重元妃省父母,天伦乐宝玉呈才藻》中写到元妃省亲,宝玉应命作诗,有“绿玉春犹卷”一句,宝钗一眼瞥见,便劝他改去。
且不说宝玉胶柱鼓瑟地有些学究气,也不说宝钗自呈才博地把钱翊的诗张冠李戴地算到了韩翊名下,值得注意的是,中国古典诗论里尽管有那么多对用典的讽刺贬斥,中国古典诗歌创作中却依然那么喜欢用典。
②一般说来,中国诗,尤其是山水诗乃是一幅幅“以文字构成的图像”的有意味的缀合。
读诗的人在接触这些文字的时候,脑荧屏出现的不是文字而是直接出现了一组组连续不断的流动图像,在这组图像的依次流动中,它所伴生的情感内核也随之凸现,而诗的韵律及内部节奏又调节与控制着这些意象的流动频率。
这种象、意、节奏乃是融于一体的,它们共同构成视境流动与心理快感。
如苏轼《六月二十七日望湖楼醉书》头一句:黑云——翻墨——未——遮山。
在读者的视境中立刻凸现出的就是乌云、乌云翻滚、(未)遮住山头这样一幅连续呈现的动态画面。
这种节奏流畅的视境依次呈现——尤其是全诗引起的连续流动的视觉呈现——在引起读者心理快感上是必不可少的。
如果说,看电影正看到赏心悦目时突然灯光大亮,屏幕上打出“片子未来,请稍候”,或者吃饭吃得正香时忽然来个石头硌牙,必然令人大为扫兴。
事实上读诗也是如此,视境有节奏地连续,就令人感到自然、轻松,就容易“神入”诗境,而视觉突然中断或节奏被突然打乱,则令人感到别扭、难受,也就无法很舒适地进入境界。
③由于作者与读者之间文化对应关系的差异,典故便常常造成了读者读诗时的“视境中断”,比如李贺《感讽五首》之二中有四句:都门贾生墓,青蝇久断绝。
湖南省长沙市2024届高三下学期模拟(二)数学试卷含答案

2024届模拟试卷(二)数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}230xA x x =->,{}0,1,2,3,4B =,则A B = ()A.{0}B.{1,2,3}C.{0,4}D.{3,4}2.在52)-的展开式中,2x 的系数为()A.5- B.5C.10-D.103.设1(1i)1i z ⎛⎫=+- ⎪⎝⎭,i 为虚数单位,则z =()A.2i- B.2iC.2- D.04.若底面半径为r ,母线长为l 的圆锥的表面积与直径为l 的球的表面积相等,则r l=()1- B.312-1- D.512-5.已知2sin cos 3A B +=,cos sin 1A B +=,则sin()A B +=()A.518-B.49C.13- D.166.如图,在OACB 中,E 是AC 的中点,F 是线段BC 上的一点,且3BC BF =,若OC mOE nOF =+,其中m ,n ∈R ,则m n +的值为()A.1B.32C.75D.737.已知数列{}n a 为等差数列,{}n b 为等比数列,444a b ==,则()A.3535b b a a ≥B.3535b b a a +≥+C.3535b b a a ≤ D.3535b b a a +≤+8.设椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0y x C a b a b -=>>有相同的焦距,它们的离心率分别为1e ,2e ,椭圆1C 的焦点为1F ,2F ,1C ,2C 在第一象限的交点为P ,若点P 在直线y x =上,且1290F PF ︒∠=,则221211e e +的值为()A.2B.3二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列命题为真命题的是()A.若样本数据123456,,,,,x x x x x x 的方差为2,则数据131x -,231x -,331x -,431x -,531x -,631x -的方差为17B.一组数据8,9,10,11,12的第80百分位数是11.5C.用决定系数2R 比较两个模型的拟合效果时,若2R 越大,则相应模型的拟合效果越好D.以模型e kx y c =去拟合一组数据时,为了求出经验回归方程,设ln z y =,求得线性回归方程为ˆ20.4zx =+,则c ,k 的值分别是0.4e 和210.已知定义在R 上的偶函数()f x ,其最小正周期为4,当[0,2]x ∈时,()22xf x =-,则()A.(2023)0f = B.()f x 的值域为[1,2]-C.()f x 在[]4,6上单调递减D.()f x 在[6,6]-上有8个零点11.在三棱锥D ABC -中,平面ABC ⊥平面ABD ,2AB AC BC BD AD =====,则()A.三棱锥D ABC -的体积为1B.点C 到直线AD 的距离为4C.二面角B AD C --的正切值为2D.三棱锥D ABC -外接球的球心到平面ABD 的距离为3三、填空题(本大题共3小题,每小题5分,共15分.)12.过椭圆2222:1(0,0)x y C a b a b +=>>的右顶点与上顶点的直线斜率为53-,则C 的离心率为__________.13.函数22()sin cos f x x x =-的最小正周期为__________.14.已知三位正整数n 满足()na b +的展开式中有连续的三项的二项式系数成等差数列,则n 的最大值是__________.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)如图,已知多面体111ABC A B C -,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ︒∠=,14A A =,11C C =,12AB BC B B ===.(1)求证:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成角的正弦值.16.(15分)已知函数2()e xx ax af x -+=,其中a ∈R .(1)当0a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)当0a >时,若()f x 在区间[0,]a 上的最小值为1e,求a 的值.17.(15分)已知椭圆E 中心在原点,左焦点为(1,0)F -,其四个顶点的连线围成的四边形面积为.(1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点F 作斜率存在的两直线AB 、CD 分别交椭圆于A 、B ,C 、D ,且AB CD ⊥,线段AB 、CD 的中点分别为M 、N .求四边形BCMN 面积的最小值.18.(17分)某学校组织数学、物理学科答题竞赛活动,该学校准备了100个相同的箱子,其中第()1,2,,100k k = 个箱子中有k 个数学题,100k -个物理题,每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束.若此轮活动中,三个题目全部答对获得一个奖品.(1)已知学生甲在每一轮活动中,都抽中了2个数学题,1个物理题,且甲答对每一个数学题的概率为p ,答对每一个物理题的概率为q .①求学生甲第一轮活动获得一个奖品的概率;②已知1p q +=,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求此时p 、q 的值.(2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率.19.(17分)集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集{},A B a b a A b B +=+∈∈,用符号()d A B +表示和集A B +内的元素个数.(1)已知集合{}1,3,5A =,{}1,2,6B =,{}1,2,6,C x =,若A B A C +=+,求x 的值;(2)记集合{}1,2,,n A n =,,n B = ,n n n C A B =+,n a 为n C 中所有元素之和,*n ∈N ,求证:12121)nna a a +++< ;(3)若A 与B 都是由()*3,m m m ≥∈N个整数构成的集合,且()21d A B m +=-,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等关数列.2024届模拟试卷(二)数学参考答案题号1234567891011答案C C A D A CAABCDABACD一、选择题(本大题共8小题,每小题5分,共40分.)1.C2.C3.A4.D5.A6.C7.A 【解析】因为数列{}n a 为等差数列,所以35428a a a +==,因为{}n b 为等比数列,所以235416b b b ==,而()()2235555558841616a a a a a a a =-=-+=--+≤,所以3535b b a a ≥,故A 对,C 错;因为358a a +=,而3b ,5b 可同为正数也可同为负数,当3b ,50b <时,3535b b a a +<+,当3b ,50b >时,35358b b a a +≥=≥+,所以35a a +,35b b +.大小不确定,故BD 错误.故选A.8.A二、选择题(本大题共3小题,每小题6分,共18分.)9.BCD 【解析】对A :若样本数据126,,,x x x 的方差为2,则数据131x -,231x -,331x -,431x -,531x -,631x -的方差为2321817⨯=≠,故A 错误;对B :580%4⨯=,则其第80百分位数是111211.52+=,故B 正确;对C :根据决定系数的含义知2R 越大,则相应模型的拟合效果越好,故C 正确;对D :以模型e kxy c =去拟合一组数据时,为了求出经验回归方程,设ln z y =,则ln ln ln e ln kxz y c c kx ==+=+,由题线性回归方程为ˆ20.4zx =+,则ln 0.4c =,2k =,故c ,k 的值分别是0.4e 和2,故D 正确.故选BCD.10.AB 【解析】对于A ,(2023)(50641)(1)(1)0f f f f =⨯-=-==,所以A 正确;对于B ,当[0,2]x ∈时,()22xf x =-单调递增,所以当[0,2]x ∈时,()f x 的值域为[1,2]-,由于函数是偶函数,()f x 在[2,0]-上的值域也为[1,2]-,又()f x 是周期为4的周期函数,所以()f x 的值域为[1,2]-,所以B 正确;对于C ,当[0,2]x ∈时,()22x f x =-单调递增,又()f x 的周期是4,所以()f x 在[]4,6上单调递增,所以C 错误;对于D ,令()220xf x =-=,得1x =,所以(1)(1)0f f =-=,由于()f x 的周期为4,所以(5)(5)0f f =-=,(3)(3)0f f =-=,所以()f x 在[6,6]-上有6个零点,所以D 错误,故选AB.11.ACD 【解析】如图,取AB 的中点G ,连接DG ,CG ,因为平面ABC ⊥平面ABD ,且平面ABC 平面ABD AB =,CG ⊂平面ABC ,所以CG ⊥平面ABD .因为22CG =⨯=1112213322D ABC ABD V S CG -=⋅=⨯⨯⨯⨯△,故A 正确;取AD 的中点E ,连接BE ,取AE 的中点F ,连接FG ,CF ,因为F ,G 分别为AE ,AB 中点,则//FG BE ,所以FG AD ⊥.因为CG ⊥平西ABD ,AD ⊂平面ABD ,所以CG AD ⊥,又CG FG G = ,CG ,FG ⊂平面CFG ,所以AD ⊥平面CFG ,则AD CF ⊥,则点C 到直线AD 的距离为CF =2=,CFG ∠为二面角B AD C --的平面角,tan 2CGCFG FG∠==,B 错误,C 正确;设ABD △,ABC △的外心分别为M ,K ,则GK AB ⊥,又平面ABD ⊥平面ABC ,所以GK ⊥平面ABD .设三棱锥D ABC -外接球的球心为O ,则OK ⊥平面ABC ,OM ⊥平面ABD ,所以四边形OMGK 为矩形,则13OM GK CG ===33.故三棱锥D ABC -外接球的球心到平面ABD 的距离为33,D 正确.故选ACD.三、填空题(本大题共3小题,每小题5分,共15分.)12.4513.π214.959【解析】设连续的三项的二项式系数为1C n -,C rn ,1C r n +,()*11,r n n ≤≤-∈N ,由112C C C rn n n -++=+得22(41)420n r n r -++-=,解得412r n +±=①,因为n 为正整数,所以89r +应为奇完全平方数,设()2*89(21)r k k +=+∈N ,可得24224r kk =+-,代入①,解得2(1)2n k =+-或22n k =-,所以三位整数n 的最大值为959.四、解答题(本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.)15.【解析】(1)由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,即有111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =,由2AB BC ==,120ABC ︒∠=得AC =由1CC AC ⊥,得1AC ,所以2221111AB B C AC +=,即有111AB B C ⊥,又11111A B B C B = ,因此1AB ⊥平面111A B C .(2)[方法一]:向量法设直线1AC 与平面1ABB 所成的角为θ.如图建系,由(1)可知1AC =,AB =,1(0,0,2)BB = ,设平面1ABB 的法向量(,,)n x y z =.由10,0,n AB n BB ⎧⋅=⎪⎨⋅=⎪⎩即0,20,x z ⎧+=⎪⎨=⎪⎩可取(n = ,所以111sin cos ,13AC n AC n AC nθ⋅===⋅ .因此,直线1AC 与平面1ABB 所成的角的正弦值是3913.[方法二]:定义法+等积法设直线1AC 与平面1ABB 所成角为θ,点1C 到平面1ABB 距离为d (下同).因为1//C C 平面1ABB ,所以点C 到平面1ABB 的距离等于点1C 到平面1ABB 的距离.由条件易得,点C 到平面1ABB 的距离等于点C 到直线AB 的距离,而点C 到直线AB所以d =.故139sin 13d AC θ===.16.【解析】(1)当0a =时,2()e x x f x =,则1(1)e f =,()22e x x x f x -'=,所以1(1)ef '=,所以曲线()y f x =在(1,(1))f 处的切线方程为:11(1)e ey x -=-,即e 0x y -=.(2)()2(2)2(2)()e e x xx a x a x x a f x -++---'==-,今()0f x '=,解得2x =或x a =,当02a <<,[0,]x a ∈时,()0f x '≤,则()f x 在[]0,a 上单调递减,所以min 1()()e ea a f x f a ===,则1a =,符合题意;当2a >,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,(2,]x a ∈时,()0f x '>,则()f x 在(2,]a 上单调递增,所以min 241()(2)e ea f x f -===,则4e 2a =-<,不合题意;当2a =,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,所以min 221()(2)e ef x f ==≠,不合题意;综上,1a =.17.【解析】(1)根据题意设椭圆E 的标准方程为22221,0x y a b a b+=>>,由已知得,1222a b ⨯⨯=,即ab =,由1c =可得,221a b -=,联立解得,1a b ==,故椭圆E 的标准方程为2212x y +=.(2)设直线AB 、CD 的料率分别为1,k k-,且A 、B 、C 、D 的坐标分别为()11,x y ,()22,x y ,()33,x y ,()44,x y ,设四边形BCMN 面积为S ,又(1,0)F -,则直线AB 为:(1)y k x =+,直线CD 为:1(1)y x k=-+.联立22(1),12y k x x y =+⎧⎪⎨+=⎪⎩得()()2222214220k x k x k +++-=,知1x ,2x 是该方程两根,所以212221224,2122,21k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩则)2222122222188||112121k k AB k x k k k ++=+-=+++.同理)22221221221||221k k CD k k⎫+⎪+⎝⎭==++.所以)())()()()2222222222121111||||||||282821212k k k S BM CN AB CD k k k k +++=⋅=⋅=⋅=++++,则422424222211111141111252225222225925k k k S k k k k k k ⎡⎤⎢⎥⎛⎫++⎛⎫⎢⎥==-=-≥-= ⎪⎪++++⨯+⎛⎫⎝⎭⎢⎥⎝⎭++ ⎪⎢⎥⎝⎭⎣⎦.(当1k =±时取等)所以四边形BCMN 面积的最小值为49.18.【解析】①记“学生甲第一轮活动获得一个奖品”为事件A ,则2()P A p q =.②学生甲在每一轮活动中获得一个奖品的概率为2232(1)P p q p p p p ==-=-+,今32()f x x x =-+,[0,1]x ∈,()223233f x x x x x ⎛⎫'=-+=--⎪⎝⎭,当203x <<时,()0f x '>,当213x <<时,()0f x '<,所以()f x 在20,3⎡⎤⎢⎥⎣⎦上单调递增,在2,13⎡⎤⎢⎥⎣⎦上单调递减,max 24()327f x f ⎛⎫== ⎪⎝⎭,即当23p =时,32max 2243327P ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.学生甲在n 轮活动中获得奖品的个数~(,)B n P ξ,由max ()4nP =,知27n =.故理论上至少要进行27轮游戏,此时23p =,13q =.(2)设选出的是第k 个箱子,连续三次取出题目的方法数为100(1001)(1002)⨯-⨯-.设数学题为M ,物理题为W ,第三次取出的是物理题W 有如下四种情形:(,,)W W W 取法数为(100)(1001)(1002)k k k -----,(,,)W M W 取法数为(100)(1001)k k k ---,(,,)M W W 取法数为(100)(1001)k k k ---,(,,)M M W 取法数为(1)(100)k k k --,(100)(1001)(1002)(100)(1001)(100)(1001)(1)(100)k k k k k k k k k k k k -----+---+---+--(1001) (1002)(100)k =---则在第k 个箱子中第三次取出的是物理题的概率为100100k kp -=.而选到第k 个箱子的概率为1100,故所求的概率为1001001002922211101100111509999(100)100100100100100100200k k k k i k P p k i ====-⨯'=⋅=⋅=-===∑∑∑∑.19.【解析】(1)由题:{2,3,4,5,6,7,9,11}A B +=,所以1x +,3x +,5x A B +∈+且1,2,6x ≠,从而15x +=,37x +=,59x +=,故4x =.(2)若1i ∃,2n i A ∈12n B ∈,使1122i i =+,其中1i ,2i ,1j ,2{1,2,,}j n ∈ ,)1221j j i i -=-,故12j j =,12i i =.{}*,,1,n C i j i j n ∴=+∈≤≤N,(1(1(1(2(2(2(n a n ∴=++++++++++++++++()23(1)1((22n nn n n n n n+⋅+++++=⋅+⋅+,121211111)11)1223(1)1nna a a n n n⎫⎛⎫∴+++=+++=-<⎪ ⎪⨯⨯++⎝⎭⎭.(3)设集合{}12,,,mA a a a= ,{}12,,,mB b b b= ,其中12ma a a<<<,12mb b b<<<.则112112m m m ma b a b a b a b a b+<+<<+<+<<+,这里共21m-个不同元素,又()21d A B m+=-,所以上面为合集A B+中的所有元素.又11122223m m m ma b a b a b a b a b a b+<+<+<<+<+<<+,这里共21m-个不同元素,也为合集A B+中的所有元素,所以有2112a b a b+=+,即2121a ab b-=-.一般地,由1112121k k m k m m mka b a b a b a b a b a b a b'+<+<<+<+<<+<+<<+,111112111k k k m k m k m ma b a b a b a b a b a b a b+++++<<+<+<+<<+<+<<+,可得211k ka b a b++=+,即()21111k ka ab b k m+-=-≤≤-.。
浙江省金华市十校2024届高三4月模拟考试数学试卷含答案

金华十校2024年4月高三模拟考试数学试题卷(答案在最后)注意事项:1.本试卷分选择题和非选择题两部分,共4页.考试时间120分钟.试卷总分为150分.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3A =,{}220B x x x =-<,则A B = ()A.{}0B.{}1C.{}1,2 D.{}1,2,3【答案】B 【解析】【分析】根据一元二次不等式求解{}02B x x =<<,即可由交集求解.【详解】{}{}22002B x x x x x =-<=<<,故A B = {}1,故选:B2.i2i =+()A.12i 55+ B.12i 55-C.12i 33+ D.12i 33-【答案】A 【解析】【分析】根据复数的除法运算即可求解.【详解】()()()i 2i i 12i 22i 2i 5i -+==++-,故选:A3.设()0,πα∈,条件1:sin 2p α=,条件:cos 2q α=,则p 是q 的()A.充分不要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据必要不充分条件的定义,结合同角三角函数基本关系,即可求解.【详解】由于()0,πα∈,若1sin 2α=,则cos 2α==±,充分性不成立,若cos 2α=,则1sin 2α==,必要性成立,故p 是q 的必要不充分条件.故选:B .4.设直线2:20l x y a --=,圆()()22:121C x y -+-=,则l 与圆C ()A.相交B.相切C.相离D.以上都有可能【答案】C 【解析】【分析】求出圆心和半径,求出圆心到直线l 的距离,与半径比较即可判断求解.【详解】圆22:(1)(2)1C x y -+-=的圆心为(1,2)C ,半径1r =,则圆心C 到直线l 的距离221d r ===,故直线l 与圆C 相离.故选:C .5.等差数列{}n a 的首项为正数,公差为d ,n S 为{}n a 的前n 项和,若23a =,且2S ,13S S +,5S 成等比数列,则d =()A.1B.2C.92D.2或92【答案】B 【解析】【分析】由等比中项的性质得到()22513S S S S =+,结合求和公式得到13d a =-或12d a =,再由23a =,10a >计算可得.【详解】因为2S ,13S S +,5S 成等比数列,所以()22513S S S S =+,即()()()2111510243d a d a d a ++=+,即()()11320a d a d +-=,所以13d a =-或12d a =,又23a =,10a >,当13d a =-,则11133a d a a +=-=,解得132=-a (舍去),当12d a =,则11123a d a a +=+=,解得11a =,则2d =.故选:B6.在ABC △中,sin 7B =,120C =︒,2BC =,则ABC △的面积为()A.B.C.D.【答案】D 【解析】【分析】根据两角差的正弦公式求出sin A ,再由正弦定理求出b ,代入面积公式即可得解.【详解】由题意,()312121sin sin 60sin 60cos cos 60sin 22714A B B B =︒-=︒-︒=⨯⨯,由正弦定理,sin sin a bA B =,即2sin 74sin 2114a Bb A⨯===,所以11sin 24222ABC S ab C ==⨯⨯⨯=△故选:D7.金华市选拔2个管理型教师和4个教学型教师去新疆支教,把这6个老师分配到3个学校,要求每个学校安排2名教师,且管理型教师不安排在同一个学校,则不同的分配方案有()A.72种B.48种C.36种D.24种【答案】A 【解析】【分析】首先取2名教学型老师分配给一个学校,再把剩余老师分成22A 组,然后分给剩余2个不同学校有22A 种不同分法,再由分步乘法计数原理得解.【详解】选取一个学校安排2名教学型老师有1234C C 种不同的方法,剩余2名教学型老师与2名管理型教师,各取1名,分成两组共有22A 种,这2组分配到2个不同学校有22A 种不同分法,所以由分步乘法计数原理知,共有12223422C C A A 362272⋅⋅⋅=⨯⨯⨯=种不同的分法.故选:A8.已知()1cos 3αβ-=,1sin sin 12αβ=-,则22cos sin αβ-=()A.12B.13 C.16D.18【答案】C 【解析】【分析】由已知结合两角差的余弦公式可先求出cos cos αβ,然后结合二倍角公式及和差化积公式进行化简即可求解.【详解】由1cos()3αβ-=得1cos cos sin sin 3αβαβ+=,又1sin sin 12αβ=-,所以5cos cos 12αβ=,所以[][]22cos ()()cos ()()1cos 21cos 2cos 2cos 2cos sin 2222αβαβαβαβαβαβαβ++-++--+-+-=-==cos()cos()αβαβ=+-(cos cos sin sin )(cos cos sin sin )αβαβαβαβ=-+5151111(()12121212236=+⨯-=⨯=.故选:C .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.从某小区抽取100户居民用户进行月用电量调查,发现他们的用电量都在50350KW h ~⋅之间,进行适当分组后(每组为左闭右开区间),画出频率分布直方图如图所示,记直方图中六个小矩形的面积从左到右依次为i s (1i =,2,L ,6),则()A.x 的值为0.0044B.这100户居民该月用电量的中位数为175C.用电量落在区间[)150,350内的户数为75D.这100户居民该月的平均用电量为61(5025)ii i s =+∑【答案】AD 【解析】【分析】根据频率分布直方图中频率之和为1即可判断A ,根据中位数的计算即可求解B ,根据频率即可求解C ,根据平均数的计算即可判断D.【详解】对于A ,由频率分布直方图的性质可知,(0.00240.00360.00600.00240.0012)501x +++++⨯=,解得0.0044x =,故A 正确;对于B ,因为(0.00240.0036)500.30.5+⨯=<,(0.00240.00360.0060)500.60.5++⨯=>,所以中位数落在区间[150,200)内,设其为m ,则0.3(150)0.0060.5m +-⨯=,解得183m ≈,故B 错误;对于C ,用电量落在区间[150,350)内的户数为(0.00600.00440.00240.0012)5010070+++⨯⨯=,故C 错误;对于D ,这100户居民该月的平均用电量为61261(5025)(50225)(50625)(5025)ii s s s i s=++⨯+++⨯+=+∑ ,故D 正确.故选:AD .10.已知01a b <<<,1m n >>,则()A.a bb a > B.n mm n >C .log log b m na > D.log log ab n m>【答案】ACD 【解析】【分析】利用指数函数和对数函数的单调性求解即可.【详解】对于A ,因为01a b <<<,所以指数函数x y b =在R 上单调递减,且a b <,所以a b b b >,因为幂函数b y x =在(0,)+∞上单调递增,且a b <,所以b b a b <,所以a b b a >,故A 正确,对于B ,取5m =,2n =,则2552<,故B 错误;对于C ,因为对数函数log b y x =在(0,)+∞上单调递减,log m y x =在(0,)+∞上单调递增,所以log log 1b b a b >=,log log 1m m n m <=,所以log log b m a n >,故C 正确;对于D ,因为ln y x =在(0,)+∞上单调递增,所以ln ln 0a b <<,ln 0m >,则ln ln log log ln ln a b m mm m a b=>=,因为对数函数log a y x =在(0,)+∞上单调递减,所以log log log a a b n m m >>,故D 正确.故选:ACD .11.在矩形ABCD 中,2AB AD =,E 为线段AB 的中点,将ADE △沿直线DE 翻折成1A DE △.若M 为线段1AC 的中点,则在ADE △从起始到结束的翻折过程中,()A.存在某位置,使得1DE A C ⊥B.存在某位置,使得1CE A D ⊥C.MB 的长为定值D.MB 与CD 所成角的正切值的最小值为12【答案】BCD 【解析】【分析】当1A C DE ⊥时,可得出DE ⊥平面1A OC ,得出OC DE ⊥推出矛盾判断A ,当1OA ⊥平面BCDE时可判断B ,根据等角定理及余弦定理判断C ,建系利用向量法判断D.【详解】如图,设DE 的中点O ,连接,OC OA ,则1OA DE ⊥,若1A C DE ⊥,由111A O A C A = ,11,AO AC ⊂平面1A OC ,可得DE ⊥平面1A OC ,OC ⊂平面1A OC ,则可证出OC DE ⊥,显然矛盾()CD CE ≠,故A 错误;因为CE DE ⊥,所以当1OA ⊥平面BCDE ,由CE ⊂平面BCDE 可得1O A CE ⊥,由1O A DE O = ,1,O A DE ⊂平面1A DE ,即可得CE ⊥平面1A DE ,再由1A D ⊂平面1A DE ,则有1CE A D ⊥,故B 正确;取CD 中点N ,1//MN A D ,112MN A D =,//BN ED ,且1,MNB A DE ∠∠方向相同,所以1MNB A DE ∠=∠为定值,所以BM =C 正确;不妨设AB =,以,OE ON 分别为,x y 轴,如图建立空间直角坐标系,设1A ON θ∠=,则()10,cos ,sin A θθ,()()1cos sin 2,1,0,1,2,0,,1,,(1,0,0)222B C M D θθ⎛⎫+-⎪⎝⎭,()2,2,0DC =,3cos sin ,,,2222BM BM θθ-⎛⎫== ⎪⎝⎭ ,设MB 与CD 所成角为ϕ,则cos 5DC BM DC BMϕ⋅==≤⋅ ,即MB 与CD 所成最小角的余弦值为5,此时1tan 2ϕ=,故D 正确.故选:BCD【点睛】关键点点睛:处理折叠问题,注意折前折后可变量与不变量,充分利用折前折后不变的量,其次灵活运用线面垂直的判定定理与性质定理是研究垂直问题的关键所在,最后不容易直接处理的最值问题可考虑向量法计算后得解.非选择题部分(共92分)三、填空题:本题共3小题,每小题5分,共15分.12.已知单位向量a ,b满足|2|a b -=,则a 与b 的夹角为________.【答案】3π(或写成60︒)【解析】【分析】将等式|2|a b -=两边平方即可.【详解】因为222|2|443a b a a b b -=-⋅+=,所以12a b ⋅= ,所以1cos ,2a b 〈〉=r r ,[],0π,3a b a b π∈=,,.故答案为:3π.13.已知函数()2,0,ln ,0x x f x x x ⎧≤=⎨>⎩若()f x 在点()()1,1f 处的切线与点()()00,x f x 处的切线互相垂直,则0x =______.【答案】12-##0.5-【解析】【分析】分别求出函数在两段上的导数,根据导数的几何意义求出切线斜率,再由切线垂直得解.【详解】当0x >时,1()0f x x'=>,所以(1)1f '=,且点()()00,x f x 不在ln y x =上,否则切线不垂直,故00x ≤,当0x <时,()2f x x '=,所以00()2f x x '=,由切线垂直可知,0211x ⨯=-,解得012x =-.故答案为:12-14.设椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0y x C a b a b -=>>有相同的焦距,它们的离心率分别为1e ,2e ,椭圆1C 的焦点为1F ,2F ,1C ,2C 在第一象限的交点为P ,若点P 在直线y x =上,且1290F PF ∠=︒,则221211e e +的值为______.【答案】2【解析】【分析】设椭圆与双曲线相同的焦距为2c ,先根据题意得出点P 的坐标()0c >,再将点P 分别代入椭圆和双曲线的方程中,求离心率,即可得解.【详解】设椭圆与双曲线相同的焦距为2c ,则2222221122,a b c a b c +=-=,又1290F PF ∠=︒,所以121||||2OP F F c ==,又点P 在第一象限,且在直线y x =上,所以22,22P c c ⎛⎫⎪⎪⎝⎭,又点P 在椭圆上,所以22221122221c c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,即22222112c c a a c +=-,整理得422411240a a c c -+=,即22211112410e e ⎛⎫⋅-⋅+= ⎪⎝⎭,解得2114242e ±±==,因为101e <<,所以21122e =,同理可得点P 在双曲线上,所以22222222221c a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,即22222222c a c a c -=-,解得2122e -=,所以22121122222e e +-+=+=.故答案为:2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.为鼓励消费,某商场开展积分奖励活动,消费满100元的顾客可拋掷骰子两次,若两次点数之和等于7,则获得5个积分:若点数之和不等于7,则获得2个积分.(1)记两次点数之和等于7为事件A ,第一次点数是奇数为事件B ,证明:事件A ,B 是独立事件;(2)现有3位顾客参与了这个活动,求他们获得的积分之和X 的分布列和期望.【答案】(1)证明见解析(2)分布列见解析;152【解析】【分析】(1)根据古典概型分别计算(),(),()P A P B P AB ,由()P AB ,()()P A P B 的关系证明;(2)根据n 次独立重复试验模型求出概率,列出分布列,得出期望.【小问1详解】因为两次点数之和等于7有以下基本事件:()()()()()()1,6,2,5,3,4,4,3,5,2,6,1共6个,所以()61366P A ==,又()12P B =.而第一次点数是奇数且两次点数之和等于7的基本事件是()()()163452,,,,,共3个,所以()313612P AB ==,故()()()P AB P A P B =,所以事件A ,B 是独立事件.【小问2详解】设三位参与这个活动的顾客共获得的积分为X ,则X 可取6,9,12,15,()30311256C 16216P X ⎛⎫==-= ⎪⎝⎭,()21311759C 166216P X ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()223151512C 166216P X ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()3331115C 6216P X ⎛⎫=== ⎪⎝⎭,所以分布列为:X691215P12521675216152161216所以()12575151156912152162162162162E X =⨯+⨯+⨯+⨯=.16.设()sin cos cos f x x x a x =+,π0,2x ⎡⎤∈⎢⎥⎣⎦.(1)若1a =,求()f x 的值域;(2)若()f x 存在极值点,求实数a 的取值范围.【答案】(1)0,4⎡⎢⎣⎦(2)()1,-+∞【解析】【分析】(1)求导,得()()()sin 12sin 1f x x x =-+-',即可根据π0,6x ⎛⎫∈ ⎪⎝⎭和ππ,62x ⎛⎫∈ ⎪⎝⎭判断导数的正负确定函数的单调性,求解极值点以及端点处的函数值即可求解,(2)将问题转化为()0f x '=在π0,2x ⎛⎫∈ ⎪⎝⎭上有解,即可分离参数得12sin sin a x x=-,利用换元法,结合函数单调性即可求解.【小问1详解】若1a =,()πsin cos cos 0,2f x x x x x ⎡⎤=+∈⎢⎥⎣⎦,,()()()222cos sin sin 2sin sin 1sin 12sin 1f x x x x x x x x =--=--+=-+-'当π0,6x ⎛⎫∈ ⎪⎝⎭时,sin 0,2sin 10x x >-<,则()0f x '>,()f x 单调递增;当ππ,62x ⎛⎫∈⎪⎝⎭时,sin 0,2sin 10x x >->,则()0f x '<,()f x 单调递减又π3364f ⎛⎫=⎪⎝⎭,()01f =,π02f ⎛⎫= ⎪⎝⎭所以()0,4f x ⎡∈⎢⎣⎦,即()f x 的值域为0,4⎡⎢⎣⎦【小问2详解】()222cos sin sin 12sin sin f x x x a x x a x =--=--'.()f x 存在极值点,则()0f x '=在π0,2x ⎛⎫∈ ⎪⎝⎭上有解,即12sin sin a x x =-有解.令sin t x =,则12a tt =-在()0,1t ∈上有解.因为函数12y t t=-在区间()0,1上单调递减,所以()1,a ∞∈-+,经检验符合题意.17.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为1AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【小问1详解】分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB AO ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.【小问2详解】因为三棱柱111ABC A B C -的体积为1263AO =,以E 为坐标原点,EA 为x 轴正方向,EB 为y 轴正方向,过点E 且与1OA 平行的方向为z 轴的正方向建立空间直角坐标系,则)()()1,0,1,0,0,1,0,,0,33AB C A ⎛⎫- ⎪ ⎪⎝⎭,设平面11AA B B 的法向量1n,因为()1,,0,33AB AA ⎛⎫==- ⎪ ⎪⎝⎭.则1110033AB n y AA n x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1z =,可得)1n = ,又11,1,33AC AA AC ⎛⎫=+=-- ⎪ ⎪⎝⎭,设直线1AC 与平面11AA B B 所成角为θ,所以111111sin cos ,3n AC n AC n AC θ⋅====.18.设抛物线()2:20C y px p =>,直线=1x -是抛物线C 的准线,且与x 轴交于点B ,过点B 的直线l与抛物线C 交于不同的两点M ,N ,()1,A n 是不在直线l 上的一点,直线AM ,AN 分别与准线交于P ,Q 两点.(1)求抛物线C 的方程;(2)证明:BP BQ =:(3)记AMN △,APQ △的面积分别为1S ,2S ,若122S S =,求直线l 的方程.【答案】(1)24y x =(2)证明见解析(3)10x ±+=【解析】【分析】(1)根据准线方程可得p ,即可求解;(2)设l :1x ty =-,()()1122,,,M x y N x y ,联立直线与抛物线,得出根与系数的关系,再由直线的相交求出,P Q 坐标,转化为求0P Q y y +=即可得证;(3)由(2)可得2S PQ =,再由112S MN d =,根据122S S =可得t ,即可得解.【小问1详解】因为=1x -为抛物线的准线,所以12p=,即24p =,故抛物线C 的方程为24y x=【小问2详解】如图,设l :1x ty =-,()()1122,,,M x y N x y ,联立24y x =,消去x 得2440y ty -+=,则()2Δ1610t =->,且121244y y ty y +=⎧⎨=⎩,又AM :()1111y ny n x x --=--,令=1x -得()1121,1y n P n x ⎛⎫--- ⎪-⎝⎭,同理可得()2221,1y n Q n x ⎛⎫--- ⎪-⎝⎭,所以()()()()12121212222221122P Q y n y n y n y n y y n n n x x ty ty ⎡⎤----+=-+-=-+⎢⎥----⎣⎦()()()()()()1221122222222y n ty y n ty n ty ty --+--=--⋅-,()()()212122212124248882202444ty y nt y y nn nt n n t y y t y y t --++-=-=-=-++-,故BP BQ =.【小问3详解】由(2)可得:()()122122222y n y n S PQ ty ty --==-=--1112222S MN d nt ==⨯-,由122S S =,得:212t-=,解得t =,所以直线l 的方程为10x ±+=.【点睛】关键点点睛:本题第二问中直线较多,解题的关键在于理清主从关系,据此求出,P Q 点的坐标(含参数),第二个关键点在于将BP BQ =转化为,P Q 关于x 对称,即0P Q y y +=.19.设p 为素数,对任意的非负整数n ,记0101kk n a p a p a p =++⋅⋅⋅+,()012p k W n a a a a =+++⋅⋅⋅+,其中{}()0,1,2,,10i a p i k ∈⋅⋅⋅-≤≤,如果非负整数n 满足()p W n 能被p 整除,则称n 对p “协调”.(1)分别判断194,195,196这三个数是否对3“协调”,并说明理由;(2)判断并证明在2p n ,21p n +,22p n +,…,()221p n p +-这2p 个数中,有多少个数对p “协调”;(3)计算前2p 个对p “协调”的非负整数之和.【答案】(1)194,196对3“协调”,195对3不“协调”(2)有且仅有一个数对p “协调”,证明见解析(3)522p p -【解析】【分析】(1)根据n 对p “协调”的定义,即可计算()()()333194,195,196W W W ,即可求解,(2)根据n 对p “协调”的定义以及整除原理可证明引理,证明每一列里有且仅有一个数对p “协调”,即可根据引理求证.(3)将()22222,1,2,,1p n p n p n p n p +++- 这2p 个数分成p 组,每组p 个数,根据引理证明每一列里有且仅有一个数对p “协调”,即可求解.【小问1详解】因为012341942313031323=⨯+⨯+⨯+⨯+⨯,所以()3194210126W =++++=,012341950323031323=⨯+⨯+⨯+⨯+⨯,所以()3195020125W =++++=,012341961323031323=⨯+⨯+⨯+⨯+⨯,所以()3196120126W =++++=,所以194,196对3“协调”,195对3不“协调”.【小问2详解】先证引理:对于任意的非负整数t ,在(),1,2,,1pt pt pt pt p +++- 中有且仅有一个数对p “协调”.证明如下:设012012kk pt b p b p b p b p =++++ ,由于pt 是p 的倍数,所以00b =,所以01212k k pt j jp b p b p b p +=++++ ,即pt j +对于0p 这一项的系数为()01j j p ≤≤-,所以()()()1201p k W pt j b b b j j p +=++++≤≤- ,根据整除原理可知,在()()01p W pt j j p +≤≤-中有且仅有一个数能被p 整除,所以在(),1,2,,1pt pt pt pt p +++- 中有且仅有一个数对p “协调”.接下来把以上2p 个数进行分组,分成以下p 组(每组p 个数):()()()()()()22222222222221211221111121p n p n p n p n p p n p p n p p n p p n p p n p pp n p p p n p p p n p +++-++++++-+-+-++-++-根据引理可知,在以上每组里恰有1个数对p “协调”,所以共有p 个数对p “协调”.【小问3详解】继续考虑()22222,1,2,,1p n p n p n p n p +++- 这2p 个数分成p 组,每组p 个数:()()()()()()22222222222221211221111121p n p n p n p n p p n p p n p p n p p n p p n p pp n p p p n p p p n p +++-++++++-+-+-++-++-由(2)的引理可知每一行里有且只有一个数对p “协调”,下面证明每一列里有且仅有一个数对p “协调”.证明如下:设某一列第一个数为()201,01p n t n p t p +≤≤-≤≤-,则20120p n t tp p np +=++,所以()2p W p n t n t +=+,同理当01s p ≤≤-时,()2p W p n sp t n s t ++=++,所以当01s p ≤≤-时,集合{}201p n sp t s p ++≤≤-中的p 个数中有且只有1个数对p “协调”.注意到数阵中每一个数向右一个数增加1,向下一个数增加p ,所以p个数对p “协调”的数之和为:()()()()232112112112p n p p p p np p p ⋅++++-++++-⋅=+- ,进一步,前2p 个对p “协调”的非负整数之和为:()()()22152323011112222p n p p p p p p np p p p -=---⎡⎤=-=⋅+=⎢⎥⎣⎦∑【点睛】方法点睛:对于新型定义,首先要了解定义所给的关系式的特性,抽象特性和计算特性,抽象特性是将定义可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《CCFA注册品类管理师(助理级)》模拟考试题一、判断题 (共20题,每题1分)1. 品类管理的一个重大突破是改变了工商关系,将零售商与供应商之间的买与卖的关系上升到战略性合作伙伴关系。
(V)2. 购物者决策树是目标购物者群在货架前的选择逻辑。
(V)3. 由于业态很大程度上是以经营商品重点的不同而划分的营业形态,所以业态决定商品定位,一旦选择了经营的业态,就在一定意义上确定了商品组织结构表的大致框架。
(V)4. 品类对购物者的重要性主要是通过购物者的购买频率分析来确定。
顾客购买频率越高,我们认为该品类对购物者越重要。
(V)5. 由于零售商有大量的销售时点数据,所以零售商比供应商更了解品类下一步的发展趋势。
(X)6. 对服装店库存而言,存销比高、新货占比低、基础容量低,意味着有可能是折扣店。
(V)7. 零售商表现评估方面的数据可以从零售商信息系统导出;供应商评估所需的数据可以通过零售商信息系统以及与供应商的沟通中得到。
(V)8. 偶然性品类,其销售额有限,主要是满足消费者一次购足的需求,评估它的指标应以利润为主,而非销售量。
(X)9. 常规性品类,其特点是吸引客流,成为消费者购买首选,评估它的指标应以销售额、人流量为主,而不应以利润为主。
(X)10. 常见的品类策略中,“消费者教育,提高认知度”是指帮助购物者了解品类特征、如何使用等。
通过媒体宣传、现场促销、商品展示等方式加深购物者对商品品类的认知。
(V)11. 零售商在进行品类评估一开始最重要的就是收集数据,并保证数据的准确性,然后找出品类问题的根源所有的数据都是有实质意义的。
(V)12. 目前超市商品的包装越来越大,主要目的是为了提高利润率。
(X)13. 为了给消费者提供更多的商品选择,零售商通常将门店内所有的货架和货架端头都摆放不同的商品来刺激消费者购买。
(X)14. 在品类管理初期,对删除线以上的商品不建议一次删除量太大,一方面因为对采购部的影响较大,另一方面由于执行力度的问题可能带来较大的生意损失。
(V)15. 高效品种组合(Efficient Assortment)主要决定最适合商店的经营品种目录,而高效新品引进则使得精简之后的经营品种组合的高效性得以保持。
(V)16. 一旦门店空间布局经过优化确定后,尽量保持优化的布局,不需再进行重新调整和改变。
(X)17. 消费者年龄越大,对商品的价格敏感度就越高。
(V)18. 供应链管理的基础建立在准确和及时地数据分析和预测的基础上。
(V)19. 通过信息系统、Internet、局域网或EDI连接协调整条供应链是未来供应链管理的基本要求。
(V)20. 有效地执行品类回顾能够增加零供双方的互信,发现价值链差异化的机会,使得品类管理能够真正服务于零售商和供应商的企业战略。
(V)二、单选题 (共30题,每题1分)1. 品类管理下的工商合作关系是(C)。
A. 供应商主导的合作关系B. 零售商主导的合作关系C. 多部门无缝链接的合作关系D. 仅销售和采购之间的买卖关系2. 火车站附近的便利店会把什么商品当做重心(B)。
A. 速冻食品B. 特产C. 保健品D. 生鲜肉类3. 如果不作控制,零售商门店中的单品数会(A)。
A. 越来越多B. 越老越少C. 保持不变D. 不能确定4.下列无法选择开发自有品牌的商品为(D)。
A. 品牌意识不强的商品B. 单价低的商品C. 保鲜保质程度高的商品D. 技术含量高的商品5. 根据品类对零售商销售额和利润的贡献,可以确认以下哪些品类角色(B)。
A. 目标性品类B. 旗舰品类C. 便利性品类D. 常规性品类6. 品类对市场重要性的衡量指标是(A)。
A. 品类增长率B. 销售额C. 利润D. 购买频率7. 便利店中可能的洗发水单品数是(D)。
A. 250B. 400C. 1808. 以下哪项不是目标性品类的特点(A)。
A. 吸引客流B. 优势品类C. 代表门店形象D. 购买量9. 罄率是用来监测(A)。
A. 商品销售速度B. 商品库存情况C. 商品利润高低D. 新旧货品比例10. 以下哪一方面无法评估供应商配送能力(B)。
A. 最小订单量B. 新品效率C. 订单频率D. 到货时间11. 在波士顿矩阵中低市场增长率、高市场占有率是指(B)。
A. 明星B. 金牛C. 瘦狗D. 幼童12. 下列哪一种品类在制定品类目标时,对客户服务水平的要求最为严格(C)。
A. 便利性品类B. 季节性品类C. 目标性品类D. 常规性品类13. 目标性品类不是越多越好,基本上占到门店的(B)的品类。
A. 1%左右B. 5%~10%C. 10%~15%D. 60%~70%14. 根据品类策略与品类角色关系的分析原理,健康与美容护理品类,一般在______承担常规性品类角色,在_______承担便利性角色。
(A)A. 大卖场,社区超市B. 便利店,专卖店C. 大卖场,便利店D. 便利店,大卖场15. 下列哪些无法提高客单价(C)。
A. 成立专门的团购部B. 加大非食品促销力度C. 加大食品促销力度D. 提供高端价格带的商品16. 在促销活动“购物满A就可获得B”中,对A的要求是要(A)。
A.适当高于客单价B. 适当低于客单价C. 等于客单价D. 无所谓17. 在客流量与客单价中,大店更关注(A)。
A. 客流量B. 客单价C. 都重要D. 无所谓18. 下面哪项不是货架陈列的原则?(D)A. 高价/高利润策略B. 大包装陈列方式装C. 着重商品陈列D. 单面陈列原则19. 下面哪个位置会成为被顾客冷落的死角(D)。
A. 通路的尽头B. 楼梯间的平台C. 正对楼梯口的地方D. 职员出入口附近20. 端架属于(C)磁石点。
订A. 第一B. 第二C. 第三D. 第四21. 过渡区可以放置的商品是(C)。
A. 重要的商品B. 时装C. 饮料D. 鞋子22. 在影响服务定价的成本要素中,职员加班费属于(C)。
A. 固定成本B. 准固定成本C. 变动成本D. 准变动成本23. 企业利用消费者具有仰慕名牌商品或名店声望所产生的某种心理,对质量不易鉴别的商品的定价最适宜用(C)法。
A. 尾数定价B. 招徕定价C. 声望定价D. 反向定价24. 下列哪一个选项不是降价这种促销方式的优点(D)。
A. 操作方法简单B. 见效快C. 强化商店低价形象D. 提高客单价25. 促销的目的是引发刺激消费者产生(A)。
A. 购买行为B. 购买兴趣C. 购买决定D. 购买倾向26. 下列哪一项不是促销的效果评估方法(A)。
A. 宏观分析法B. 前后比较法C. 市场调查法D. 观察法27. 供应链的所有环节都是从(B)的需求出发来逐步完成的。
A. 供应商的需求B. 消费者的需求C. 零售商的需求D. 制造商的需求28. 供应链管理(Supply chain management,SCM)是一种集成的管理思想和方法,它执行供应链中从(D)的物流的计划和控制等职能。
A. 供应商到零售商B. 制造商到零售商C. 零售商到最终用户D. 供应商到最终用户29. 品类管理回顾的目的不包括(D)。
a. 能够及时分析品类管理中的方法是否正确,目标是否明确等因素。
b. 品类评分表的回顾能使零售商和供应商更好地满足购物者的需求。
c. 增加零供双方的互信,使品类管理够真正服务于零供双方的企业战略。
d. 可以有效地降低成本,增加效益。
30. 战术层面的品类管理回顾主要是围绕(D)展开。
A. 品类定义品B. 类角色的含义C. 品类评估的结果D. 品类评分表的结果三、简答题 (共4题,每题5分)1. 简述什么是品类管理?品类管理是以消费者为中心,以品类为战略业务单元,以数据为依托,通过零售商与供应商的有效合作,发现并满足消费者需求从而提高业绩的零售管理流程。
2. 促销方案书包括的主要内容有哪些?促销方案书包括内容有促销计划,包括促销的产品选择、促销形式、时间、地点、促销价格等;另外还有促销投入的活动成本和人员配置要求、促销后的定量和定性分析结果等3.提高客单价的策略有哪些?1.现场服务、促销陈列提升客单价2.季节性陈列提升客单价3.节假日促销组合提升客单价4.重大事件营销,提升客单价5.做好团购销售,提升客单价6.礼品、新品、高端商品提升客单价7.高端的品质与服务、互动提升客单价4. 请说明第一磁石卖场的位置及配置的商品类型。
第一磁石位于主通道的两侧,是顾客必经之地,能拉引顾客至内部卖场的商品,也是商品销售的最主要的地方。
此处应配置的商品为:1.消费量多的商品。
2.消费频度高的商品。
(消费量多、消费频度高的商品是绝大多数顾客随时要使用的,也是时常要购买的。
所以将其配置于第一磁石的位置以增加销售量。
)3.主力商品。
四、案例分析 (共2题,每题15分)1. 某超市位于高校区附近,其5-10公里内的商圈客层构成如下:居民占70% 、高校学生占30% ;但根据销售数据统计,在该卖场消费购物的顾客中,学生占60%以上,居民占40% !这是一个典型的偏离目标客层的案例,以致商品结构严重倾斜的问题。
客单价偏低,如何能让店业绩提升?答案:诊断药方:商品结构向高校学生倾斜,减少以家庭主妇的商品。
1.重新评估卖场经营面积,因为占商圈潜在客层30%的高校学生根本支撑不了这么一个大超市门店,要考虑缩小卖场面积,或采取外租、联营方式引入新的经营项目(如游戏机、快餐店、水吧等);2.重新定位商品构成,全部商品结构以学生为核心,缩小以家庭主妇为对象的商品构成,扩大学生消费品。
例如缩小生鲜区中的初级生鲜品(如肉类、鲜鱼、蔬菜经营面积),增大生鲜区中的现场加工品、熟食、主食厨房等即食性商品,增加礼品、办公用品、基建零配件等,以商品构成调整呼应目标客层。
2. 沃尔玛能够迅速发展,除了正确的战略定位以外,也得益于其首创的折价销售策略。
每家沃尔玛商店都帖有天天廉价的大标语。
同一种商品在沃尔玛比其他商店要便宜。
沃尔玛提倡的是低成本、低费用结构、低价格的经营思想,主张把更多的利益让给消费者,为顾客节省每一美元是他们的目标。
沃尔玛的利润通常在30%左右,而其他零售商如凯马特的利润率都在45%左右。
公司每星期六早上举行经理人员会议,如果有分店报告某商品在其他商店比沃尔玛低,可立即决定降。
低廉的价格、可靠的质量是沃尔玛的一大竞争优势,吸引了一批又一批的顾客。
试分析选择每日低价价格策略的条件,并列举其优缺点。
答案要点提示:每日低价策略可以吸引大量客流,带动商品的销售额的上升,但是长期使用会使企业压力过大,难以维持。
在低价品类选择方面也会增加难度同时每日低价的单一性和固定性不利于刺激消费者的随机购买欲望和拓展新的客户群,不利于促进季节性、时尚性较强的产品的销售。