中考数学专题复习折叠题含答案

合集下载

中考数学复习:专题7-2 中考折叠问题的归类解析

中考数学复习:专题7-2 中考折叠问题的归类解析

专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。

2020届中考数学专题复习演练:折叠问题(有答案)

2020届中考数学专题复习演练:折叠问题(有答案)

折叠问题一、选择题1.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A. 78°B. 7 5°C. 60°D. 45°2.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′G的长是A. 1B.C.D. 23.如图,在矩形ABCD中,AB<AD,E为AD边上一点,且AE= AB,连结BE,将△ABE沿BE翻折,若点A 恰好落在CE上点F处,则∠CBF的余弦值为()A. B.C.D.4.如图,在矩形纸片ABCD中,AB=6,AD=8,折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,则线段EF的长为()A. 3B. 4C. 5D. 65.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,沿DE所在直线折叠,使点B恰好与点A重合,若CD=2,则AB的值为()A. B.4 C.D. 8二、填空题6.如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为________.7.如图,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF的周长不变;③点C到线段EF的最大距离为1.其中正确的结论有________.(填写所有正确结论的序号)8.如图,在Rt△ABC中,∠C=90°,BC=2 ,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为________.9.如图,矩形ABCD中,AD=5,AB=6,点E为DC上一个动点,把△ADE沿AE折叠,点F为CD上一个动点,把△BCF沿BF折叠,当点D的对应点和点C的对应点都落在点D′处时,EF的长为________.10.矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=________ cm.11.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.12.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′的度数为________.13.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为________14.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.15.如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则________(结果保留根号).三、综合题16.已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.(1)求证:CE=CF;(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.17.如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围.参考答案一、选择题1. B2. C3.B4.A5. C二、填空题6.或7.①③8.3或9. 10.5.811.3 12.50° 13.80° 14.或15 15.三、综合题16.(1)证明:∵矩形纸片ABCD折叠,顶点A与C重合,折痕为EF,∴∠1=∠2,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CE=CF.(2)解:思路:连接AF① 由矩形纸片ABCD折叠,易证四边形AFCE为平行四边形;② Rt△CED中,设DE为x,则CE为16-x,CD=8,根据勾股定理列方程可求得DE,CE的长;③由CF=CE,可得CF的长;运用平行四边形面积公式计算CF×CD可得四边形AFCE的面积.17.(1)证明:如图,由四边形ABCD是矩形和折叠的性质可知,BE=B′E,∠BEF=∠B′EF,∴在等腰△BEB′中,EF是角平分线,∴EF⊥BB′,∠BOE=90°,∴∠ABB′+∠BEF=90°,∵∠ABB′+∠AB′B=90°,∴∠BEF=∠AB′B;(2)解:①当点F在CD之间时,如图1,作FM⊥AB交AB于点M,∵AB=6,BE=EB′,AB′=x,BM=FC=y,∴在Rt△EAB′中,EB′2=AE2+AB′2,∴(6﹣AE)2=AE2+x2解得AE=,tan∠AB′B==,tan∠BEF==,∵由(1)知∠BEF=∠AB′B,∴=,化简,得y=x2﹣x+3,(0<x≤8﹣2)②当点F在点C下方时,如图2所示.设直线EF与BC交于点K设∠ABB′=∠BKE=∠CKF=θ,则tanθ==.BK=,CK=BC﹣BK=8﹣.∴CF=CK•tanθ=(8﹣)•tanθ=8tanθ﹣BE=x﹣BE.在Rt△EAB′中,EB′2=AE2+AB′2,∴(6﹣BE)2+x2=BE2解得BE=.∴CF=x﹣BE=x﹣=﹣x2+x﹣3 ∴y=﹣x2+x﹣3(8﹣2<x≤6)综上所述,y=.。

中考数学点对点-几何折叠翻折类问题(解析版)

中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。

3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。

(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。

(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。

这对解决问题有很大帮助。

(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。

(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。

一般试题考查点圆最值问题。

(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。

例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答一、选择题1.德州市如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于A.4B.3C.4D.82.江西省如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=°,则在不添加任何辅助线的情况下,图中45°的角虚线也视为角的边有A.6个B.5个C.4个D.3个3.乐山市如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8, PH=6,则矩形ABCD的边BC长为A.20 B.22C.24 D.304.绵阳市当身边没有量角器时,怎样得到一些特定度数的角呢动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:1以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;2将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =A.60° B.° C.72° D.75°5. 绍兴市学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图1~4 .从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④6.贵阳市如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.成都市如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠BEG °.8. 苏州市如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于______ ______度.三、解答题9.荆门市如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O0,0,A4,0,C0,3,点P是OA边上的动点与点O、A不重合.现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设Px,0,E0,y,求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在2的情况下,在该抛物线上是否存在点Q,使△PEQ是以P E为直角边的直角三角形若不存在,说明理由;若存在,求出点Q的坐标.10. 济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上为什么11.威海市如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片AB CD,使点A与点C重合,折痕为EF.已知CE⊥AB.1求证:EF∥BD;2若AB=7,CD=3,求线段EF的长.12. 烟台市生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的阴影部分表示纸条的反面:如果由信纸折成的长方形纸条图①长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状即纸条两端均超出点P,试求x 的取值范围.2如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离用x表示.13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.1求证:△ABE≌△AD′F;2连接CF,判断四边形AECF是什么特殊四边形证明你的结论.14.孝感市在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开如图1;第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN如图2.请解答以下问题:1如图2,若延长MN交BC于P,△BMP是什么三角形请证明你的结论.2在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合1中结论的三角形纸片BM P3设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上E、F分别为AB、CD中点为什么15.邵阳市如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合图②.1在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.画图工具不限,不要求写画法2请你找出完成问题1后所得到的图形中的等腰三角形.不要求证明16.济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如补相似请说明理由;3如果直线EB折叠纸片,点A是否能叠在直线EC上为什么17.临安市如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.1当A′E18.南宁市如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB 边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x0<x<6,以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y点A关于DE的对称点A′落在AH所在的直线上.1分别求出当0<x≤3与3<x<6时,y与x的函数关系式;2当x取何值时,y的值最大最大值是多少19.宁夏回族自治区如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:1BF=DF;2AE∥BD.参考答案一、二、°三、9. 解:1由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P1,0,E0, 1,B4,3.……6分设过此三点的抛物线为y=ax2+bx+c,则∴y=.由2知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点0,-1.将PB向上平移2个单位则过点E0,1,∴该直线为y=x+1.由得∴Q5,6.故该抛物线上存在两点Q4,3、5,6满足条件.10. 证明:1∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.2∵△PBE~△QAB,∴∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能叠在直线EC上.由2得,∠AEB=∠CEB,∴EC 和折痕AE重合.11. 解:1证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.2解:由1得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:1由折纸过程知0<5x<26,,0<x <. 2图④为轴对称图形,∴AM =.即点M与点A的距离是1 3-xcm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC, ∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:1△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知 AB = BN ,∴AN = AB = BN, ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .2要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中, BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BM P.3∵∠M′BC =60°, ∴∠ABM′=90°-60°=30°.在Rt△ABM′中,tan ∠ABM′ =. ∴tan30°= . ∴AM′ =.∴M′,2. 代入y=kx中 ,得k==.设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′, ∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH 中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.图2图315.解:1如图.等腰三角形DAC.16.1证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.2∵△PBE∽△QAB,∴.∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能折叠在直线EC上.由2得,∠AEB=∠CEB,∴EC和折痕AE重合.17. 解:1由已知可得∠A'OE=60o , A'E=AE.由A′E设A′的坐标为0,b,则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是0,1与,1.2因为A'、E在抛物线上,所以所以函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是-,0与,0. 3不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A 三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:1①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图101,重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴. ∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴0<x≤3.②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图102,重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-6-x=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.2当0<x≤3时,y 的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:1能正确说明∠ADB=∠EBD或△ABF≌△ED F,∴BF=DF.2能得出∠AEB=∠DBE或∠EAD=∠BDA,∴AE∥BD.。

2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)

2020年度初三数学专题复习中考 圆的折叠专题(含答案详解)

2020年度初三数学专题复习中考 圆的折叠专题1. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π2. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵ AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .633. 如图,将⊙O 的劣弧︵AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .4. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.25.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π-9 B.9π-63C.9π-18 D.9π-1236.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.7.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A.22B.5C.3 D.118.如图,将半径为12的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为()A.42B.82C.6 D.629. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm10. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.211. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .13012. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB13. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .5314. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .815. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .16. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)17. 如图,将︵ AB 沿着弦AB 翻折,C 为翻折后的弧上任意一点,延长AC 交圆于D ,连接BC .(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.18.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将︵CD 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC (1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为︵ADB 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交︵BC 于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.19.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.20.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将︵CE 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.21.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.2020年度初三数学专题复习中考 圆的折叠专题22. 如图①是半径为2的半圆,点C 是︵AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .4π3B .4π3 -3C .23+π3D .23-23π【分析】连接OC 交MN 于点P ,连接OM 、ON ,根据折叠的性质得到OP=12OM ,得到∠POM=60°,根据勾股定理求出MN ,结合图形计算即可.【解答】解:连接OC 交MN 于点P ,连接OM 、ON ,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OPOM=12,AC=22OP OM =3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN =12×π×22-2×(120π×22360 -12×23×1)=23-23π, 故选:D .【点评】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.23. 如图,AB 是⊙O 的弦,AC 是⊙O 的直径,将︵AB 沿着AB 弦翻折,恰好经过圆心O .若⊙O 的半径为6,则图中阴影部分的面积等于( )A .6πB .93C .9πD .63【分析】由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,根据S 阴=S △OBC 计算即可.【解答】解:如图,连接OB ,BC .由题意△OBC 是等边三角形,弓形OnB 的面积=弓形BmC 的面积,∴S 阴=S △OBC=43×62=93, 故选:B .【点评】本题考查扇形的面积的计算,垂径定理,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 如图,将⊙O 的劣弧︵ AB 沿AB 翻折,D 为优弧︵ADB 上一点,连接AD ,交︵ AB 于点C ,连接BC 、BD ;若BC=5,则BD= .【分析】根据圆周角定理、翻转变换的性质得到∠ADB=∠BCD ,根据等腰三角形的判定定理解答.【解答】解:由翻转变换的性质可知,∠ADB 所对的弧是劣弧︵AB ,∠CAB 所对的弧是劣弧︵ BC ,∠CBA 所对的弧是劣弧︵ AC ,∴∠ADB=∠CAB+∠CBA ,由三角形的外角的性质可知,∠BCD=∠CAB+∠CBA ,∴∠ADB=∠BCD,∴BD=BC=5,故答案为:5.【点评】本题考查的是翻转变换的性质、圆周角定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.25.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈314,2≈1.41,3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.连接AB',∵四边形AMNB'是圆内接四边形,∴∠M'AB'=∠M'NM,∵∠M'=∠M',∴△M'AB'∽△M'NM,∴M′AM′N=M′B′M′M∴M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2-AN2,∴20=100-AN2,∴AN=45.故选:B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.26. 如图,在扇形AOB 中,∠AOB=90°,半径OA=6,将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为( )A .9π-9B .9π-63C .9π-18D .9π-123【分析】首先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,继而求得OC 的长,即可求得△OBC 与△BCD 的面积,又在扇形OAB 中,∠AOB=90°,半径OA=6,即可求得扇形OAB 的面积,继而求得阴影部分面积.【解答】解:连接OD .根据折叠的性质,CD=CO ,BD=BO ,∠DBC=∠OBC ,∴OB=OD=BD ,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=12∠DBO=30°, ∵∠AOB=90°,∴OC=OB•tan ∠CBO=6×33=23, ∴S △BDC =S △OBC =12×OB×OC=12×6×23=63, S 扇形AOB =90360•π×62=9π, ∴整个阴影部分的面积为:S 扇形AOB -S △BDC -S △OBC =9π-63-63=9π-123.故选:D .【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.27.如图,是一个圆心角为90°的扇形,AO=2cm,点P在半径AO上运动,点Q在弧AB上运动,沿PQ将它以上的部分向下翻折,使翻折后的弧恰好过点O,则OP的最大距离为.【分析】作O关于PQ的对称点O′,O′恰好落在⊙O上,于是得到OP=12Rcos∠POE,推出△OO′Q为等边三角形,根据等边三角形的性质得到OQ=O′Q=OO′=R,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°于是得到结论.【解答】解:作O关于PQ的对称点O′,O′恰好落在⊙O上,∴OP=12Rcos∠POE,∵△OO′Q为等边三角形,∴OQ=O′Q=OO′=R,∠POE+∠QOB=30°,当cos∠POE最小时,∠POE最大,当∠QOB=0°时,∠POE=30°,∴OP=1cos30°=332.故答案为:332.【点评】本题考查了翻折变换-折叠问题,等边三角形的判定和性质,正确的在才辅助线是解题的关键.28.如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .22B .5C .3D .11【分析】根据题意先画出图形,可知翻转过后的弧AB 所在的圆和⊙O 全等,且两个圆的圆心相距为6,又已知圆的半径,故根据勾股定理即可求出答案.【解答】解:根据题意画出图形如下所示:BD=4,OB=5,点O′为翻转过后的弧AB 所在圆的圆心,则有O′D=OD=2245-=3.又O′C=5,O′O=6,∴OC=22C ′O O ′O -=2256-=11.故选:D .【点评】本题考查了翻转变换、垂径定理及圆的切线的性质,难度不大,找出翻转过后的弧AB 所在圆的圆心是解题关键.29. 如图,将半径为12的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB长为( )A .42B .82C .6D .62【分析】延长CO 交AB 于E 点,连接OB ,构造直角三角形,然后再根据勾股定理求出AB 的长【解答】解:延长CO 交AB 于E 点,连接OB ,∵CE ⊥AB ,∴E 为AB 的中点,∵OC=6,CD=2OD ,∴CD=4,OD=2,OB=6,∴DE=12(2OC-CD )=12(6×2-4)=12×8=4, ∴OE=DE-OD=4-2=2,在Rt △OEB 中,∵OE 2+BE 2=OB 2,∴BE=22OE OB -=2246-42∴AB=2BE=82.故选:B .【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.30. 已知如图:⊙O 的半径为8cm ,把弧AmB 沿AB 折叠使弧AmB 经过圆心O ,再把弧AOB 沿CD 折叠,使弧COD 经过AB 的中点E ,则折线CD 的长为( )A .8cmB .38cmC .72cmD .47cm【分析】连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,根据翻折的性质得出OF′=6,再由勾股定理得出.【解答】解:连接OE 并延长交CD 于点F ,交C′D′于点F′,交弧AmB 于点G ,∵OC′=8cm ,∴OF′=6cm ,∴C′F′=CF=2268-=27cm ,F∴CD=2CD=47cm .故选:D . 【点评】本题考查了垂径定理和勾股定理以及翻折的性质,是基础知识要熟练掌握. 31. 如图,AB 是⊙O 的直径,且AB=4,C 是⊙O 上一点,将弧AC 沿直线AC 翻折,若翻折后的圆弧恰好经过点O ,π≈314,2≈1.41,3≈1.73,那么由线段AB 、AC 和弧BC 所围成的曲边三角形的面积与下列四个数值最接近的是( )A .3.2B .3.6C .3.8D .4.2【分析】作OE ⊥AC 交⊙O 于F ,交AC 于E ,根据折叠的性质得到OE=12OF ,求出∠ACB 的度数即可解决问题.【解答】解:作OE ⊥AC 交⊙O 于F ,交AC 于E .连接OB ,BC .由折叠的性质可知,EF=OE=12OF , ∴OE=12OA ,在Rt △AOE 中,OE=12OA , ∴∠CAB=30°,∵AB 是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=3BC=23, ∴线段AB 、AC 和弧BC 所围成的曲边三角形的面积为S=12•AC•B C+S 扇形OBC -S △OBC =12×23×2+60π•22360-43×22=3+23π≈3.8,故选:C .【点评】本题考查的是翻折变换的性质、圆周角定理,折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.32. 如图,将弧BC 沿弦BC 折叠交直径AB 于点D ,若AD=6,DB=7,则BC 的长是( )A .91B .37C .134D .130【分析】连接CA 、CD ,根据翻折的性质可得弧CD 所对的圆周角是∠CBD ,再根据AC 弧所得的圆周角也是∠CBA ,然后求出AC=CD ,过点C 作CE ⊥AB 于E ,根据等腰三角形三线合一的性质可得AE=ED=12AD ,根据直径所对的圆周角是直角可得∠ACB=90°,然后求出△ACE 和△CBE 相似,根据相似三角形对应边成比例求出CE 2,再求出BE ,然后利用勾股定理列式计算即可求出BC .【解答】解:如图,连接CA 、CD , 根据折叠的性质,弧CD 所对的圆周角是∠CBD , ∵弧AC 所对的圆周角是∠CBA ,∠CBA=∠CBD ,∴AC=CD (相等的圆周角所对的弦相等),过点C 作CE ⊥AB 于E , 则AE=ED=12AD=12×6=3, ∴BE=BD+DE=7+3=10, ∵AB 是直径,∴∠ACB=90°, ∵CE ⊥AB ,∴∠ACB=∠AEC=90°,∴∠A+∠ACE=∠ACE+∠BCE=90°,∴∠A=∠BCE ,∴△ACE ∽△CBE ,∴AE CE = CE BE, 即CE 2=AE•BE=3×10=30, 在Rt △BCE 中,BC=22CE BE + =30102+= 130,故选:D .【点评】本题考查了翻折的性质,相似三角形的判定与性质,圆的性质,等腰三角形的判定与性质,作辅助线并求出AC=CD 是解题的关键.33. 如图,在⊙O 中,点C 在优弧 AB ︵ 上,将弧︵BC 沿BC 折叠后刚好经过AB 的中点D ,连接AC ,CD .则下列结论中错误的是( )A .AC=CDB .︵ AC +︵ BD =︵ BCC .OD ⊥AB D .CD 平分∠ACB【分析】A 、作辅助线,构建折叠的性质可得AD=CD ;B 、相等两弧相加可作判断;C 、根据垂径定理可作判断;D 、延长OD 交⊙O 于E ,连接CE ,根据垂径定理可作判断.【解答】解:A 、过D 作DD'⊥BC ,交⊙O 于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD ,故①正确;B 、∵AC=CD',∴︵ AC =︵ CD′ ,由折叠得:︵ BD =︵ BD ′,∴︵ AC+︵ BD=︵ BC ,故②正确;C 、∵D 为AB 的中点,∴OD ⊥AB ,故③正确;D 、延长OD 交⊙O 于E ,连接CE ,∵OD ⊥AB ,∴∠ACE=∠BCE ,∴CD 不平分∠ACB ,故④错误;故选:D .【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.34. 如图,点O 是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB 和弧BC 都经过圆心O ,则阴影部分的面积为( )A .2πB .3πC .34πD .53【分析】作OD ⊥AB 于点D ,连接AO ,BO ,CO ,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S 扇形AOC 得出阴影部分的面积是⊙O 面积的13,即可得出答案.【解答】解:作OD ⊥AB 于点D ,连接AO ,BO ,CO ,如图所示:∵OD=12AO ∴∠OAD=30°, ∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S 扇形BOC =13×⊙O 面积=13×π×32=3π,故选:B . 【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.35. 如图,△ABC 内接于⊙O ,BC=22,∠BAC=45°,将劣弧︵ AB 和︵AC 分别沿直线AB 、AC 折叠后交于点M ,点S 、T 是弦AB 、AC 上的动点,则△MST 的周长的最小值为( )A .22B .4C .24D .8【分析】作点M 关于AB 的对称点M ′,关于AC 的对称点M ″,根据折叠的性质得到点M ′,M ″在圆周上,连接M ′M ″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM ′,AM ″,OB ,OC ,根据圆周角定理得到M ′M ″是⊙O 的直径,即可得到结论.【解答】解:作点M 关于AB 的对称点M′,关于AC 的对称点M″,∵将劣弧AB 和AC 分别沿直线AB 、AC 折叠后交于点M ,∴点M′,M″在圆周上,连接M′M″,交AB 于S ,交AC 于T ,则△MST 的周长最小,连接AM′,AM″,OB ,OC ,则∠M′AM″=2∠BAC ,∵∠BAC=45°,∴∠M′AM″=∠BOC=90°,∵BC=22,∴OB=2,∴M′M″=2OB=4,∴△MST 的周长的最小值为4,故选:B .【点评】本题考查了三角形的外接圆与外心,轴对称-最短路线问题,翻折变换(折叠问题),圆周角定理,勾股定理,正确的作出辅助线是解题的关键.36. 如图,在⊙O 中,点C 在优弧⌢ACB 上,将弧沿⌢BC 折叠后刚好经过AB 的中点D ,若⊙O 的半径为5,AB=4,则BC 的长是 .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=12AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到︵ AC=︵CD ,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=32.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,∵D 为AB 的中点,∴OD ⊥AB ,∴AD=BD=12AB=2, 在Rt △OBD 中,OD=22BD OB -=222)5(-=1,∵将弧︵ BC 沿BC 折叠后刚好经过AB 的中点D .∴︵ AC 和︵ CD 所在的圆为等圆,∴︵ AC=︵CD ,∴AC=DC ,∴AE=DE=1,易得四边形ODEF 为正方形,∴OF=EF=1,在Rt △OCF 中,CF=22OF CO -=221)5(-=2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=32.故答案为32.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理和垂径定理.37. 如图,AB 是半径为2的⊙O 的弦,将︵ AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的︵ AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是 .(请将正确答案的序号填在横线上)【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO 的最小值问题是个难点,这是一个动点问题,只要把握住E 在什么轨迹上运动,便可解决问题.【解答】解:如图1,连接OA 和OB ,作OF ⊥AB .由题知:︵AB 沿着弦AB 折叠,正好经过圆心O ∴OF=OA=12OB∴∠AOF=∠BOF=60° ∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD 是等边三角形(有两个角是60°的三角形是等边三角形) 故,①②正确下面研究问题EO 的最小值是否是1 如图2,连接AE 和EF∵△ACD 是等边三角形,E 是CD 中点 ∴AE ⊥BD (三线合一) 又∵OF ⊥AB∴F 是AB 中点即,EF 是△ABE 斜边中线∴AF=EF=BF 即,E 点在以AB 为直径的圆上运动. 所以,如图3,当E 、O 、F 在同一直线时,OE 长度最小 此时,AE=EF ,AE ⊥EF∵⊙O的半径是2,即OA=2,OF=1∴AF=3(勾股定理)∴OE=EF-OF=AF-OF=3-1所以,③不正确综上所述:①②正确,③不正确.故答案为①②.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.38.如图,将︵AB沿着弦AB翻折,C为翻折后的弧上任意一点,延长AC交圆于D,连接BC.(1)求证:BC=BD;(2)若AC=1,CD=4,︵AB=120°,求弦AB的长和圆的半径.【分析】(1)作点C关于AB的对称点C′,连接AC′,BC′.利用翻折不变性,以及圆周角定理即可解决问题;(2)连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.解直角三角形求出AB,OA即可;【解答】(1)证明:作点C关于AB的对称点C′,连接AC′,BC′.由翻折不变性可知:BC=BC′,∠CAB=∠BAC′,∴︵BD=︵BC′,∴BD=BC′,∴BC=BD.(2)解:连接OA,OB,作OM⊥AB于M,AH⊥BC交BC的延长线于H.∵︵AB=120°,∴∠D=12×120°=60°,∴∠AOB=∠ACB=2∠D=120°, ∵BC=BD ,∴△BCD 是等边三角形, ∴BC=DC=4,在Rt △ACH 中, ∵∠H=90°,∠ACH=60°,AC=1,∴CH=12,AH=23,∴AB=22BH AH +=22)29()23(+=21, ∵OM ⊥AB , ∴AM=BM=221,在Rt △AOM 中, ∵∠OAM=30°,∠AMO=90°, ∴OA=AMcos30°=7【点评】本题考查圆心角、弧、弦之间的关系,垂径定理,勾股定理,翻折变换,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.39. 如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将︵CD 沿CD 翻折后,点A与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC (1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为︵ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交︵BC 于点F (F 与B 、C 不重合).问GE•GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC ,根据翻折的性质求出OM ,CD ⊥OA ,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC ,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA 、AF 、GB ,根据等弧所对的圆周角相等可得∠BAG=∠AFG ,然后根据两组角对应相等两三角相似求出△AGE 和△FGA 相似,根据相似三角形对应边成比例可得AG GE =FGAG ,从而得到GE•GF=AG 2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC ,∵︵CD 沿CD 翻折后,点A 与圆心O 重合, ∴OM=12OA=12×2=1,CD ⊥OA ,∵OC=2,∴CD=2CM=222OM OC -=22212-=23;(2)证明:∵PA=OA=2,AM=OM=1,CM=12CD=3,∠CMP=∠OMC=90°,∴PC=22PM MC +=223)3(+=23,∵OC=2,PO=2+2=4,∴PC 2+OC 2=(23)2+22=16=PO 2, ∴∠PCO=90°, ∴PC 是⊙O 的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为︵ADB 的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH ∴△OGE∽△FGH∴OGGF=GEGH∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.40.如图1和图2,AB是⊙O的直径,AB=10,C是⊙O上的一点,将︵BC 沿弦BC翻折,交AB于点D.(1)若点D与圆心O重合,直接写出∠B的度数;(2)设CD交⊙O于点E,若CE平分∠ACB,①求证:△BDE是等腰三角形;②求△BDE的面积;(3)将图1中的︵BD 沿直径AB翻折,得到图2,若点F恰好是翻折后的︵BD 的中点,直接写出∠B的度数.【分析】(1)如图所示:将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,然后证明︵AC =︵CD =︵BD ,则可得到︵AC 的弧度,从而可求得∠B的度数;(2)①将⊙O沿BC翻折得到⊙O′,则⊙O与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由等弧所对的圆周角相等可得到∠CEB=∠E′,依据圆内接四边形的性质可得到E′=∠BDE,故此可证明∠CEB=∠BDE ;②连接OE .先证明∠BOE 为直角,依据勾股定理可求得BE 的长,从而得到BD 的长,最后依据△DBE 的面积=12BD•OE 求解即可;(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明︵AC =︵CD =︵ DF=︵FB ,从而可得到弧AC 的度数,由弧AC 的度数可求得∠B 的度数.【解答】解:(1)如图所示:将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆.∵︵AC 与︵CD 所对的角均为∠CBA ,⊙O 与⊙O′为等圆, ∴︵AC =︵ CD . 又∵CD=BC , ∴︵CD =︵ BD .又∵︵ CDB =︵CO′B ,∴︵ AC =13︵ ACB ,∴∠ADC=13×180°=60°.∴∠B=30°.(2)①将⊙O 沿BC 翻折得到⊙O′,则⊙O 与⊙O′为等圆,在⊙O′上取点E′,连接CE′,BE′.由翻折的性质可知:︵ CFB=︵ CDB ,∴∠CEB=∠E′.∵四边形CDBE′是圆内接四边形, ∴∠E′=∠BDE . ∴∠CEB=∠BDE . ∴BE=BD .∴△BDE 为等腰三角形.②如图2所示:连接OE .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CE 是∠ACB 的角平分线, ∴∠BCE=45°. ∴∠BOE=90°.在Rt △OBE 中,BE=22OB OE =52. ∴BD=52.∴△DBE 的面积=12BD•OE=12×52×5=2225.(3)将⊙O 沿BC 翻折得到⊙O′,将⊙O′沿BD 翻折得到⊙O″,则⊙O 、⊙O′、⊙O″为等圆.∵⊙O 与⊙O′为等圆,劣弧AC 与劣弧CD 所对的角均为∠ABC , ∴︵AC =︵CD . 同理:︵DF =︵CD .又∵F 是劣弧BD 的中点, ∴︵DF =︵ BF . ∴︵AC =︵CD =︵ DF =︵FB .∴弧AC 的度数=180°÷4=45°. ∴∠B=12×45°=22.5°.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.41. 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8.(1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将︵CE 沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.【解答】解:(1)连接AO ,如右图1所示,∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG=12AB=4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=-1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M ,∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°, ∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO•sin60°=5×23=235, ∴S 阴影=S 扇形OMC -S △OMC =120×π×52360 −12×5×235=25π3−435, 即图中阴影部分的面积是:25π3−435. 【点评】本题考查垂径定理、扇形的面积、翻折变换,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.42.如图1,在平面直角坐标系中,已知点M的坐标是(3,0),半径为2的⊙M交x轴于E、F两点,过点P(-1,0)作⊙M的切线,切点为点A,过点A作AB⊥x轴于点C,交⊙M于点B.抛物线y=ax2+bx+c 经过P、B、M三点.(1)求该抛物线的函数表达式;(2)若点Q是抛物线上一动点,且位于P、B两点之间,设四边形APQB的面积为S,点Q的横坐标为x,求S与x之间的函数关系式,并求S的最大值和此时点Q的坐标;(3)如图2,将弧AEB沿弦AB对折后得到弧AE′B,试判断直线AF与弧AE′B的位置关系,并说明理由.【分析】【解答】【点评】本题考查了二次函数解析式的确定、图形面积的求法、圆心角定理、切线的性质与判定、特殊三角形的判定和性质等知识点.。

中考数学折叠剪切问题(含答案)

中考数学折叠剪切问题(含答案)

中考数学-----折叠剪切问题折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题.一.折叠后求度数【1】将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′等于( )A .50°B .55°C .60°D .65° 答案:A【3】 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.答案:36°二.折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4 B .6 C .8 D .10图(1)第3题图CDEBA图 (2)答案:C【5】如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A .2B .4C .8 D.10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。

操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c 。

则△GFC 的面积是( )EAAABBBCCC GDDDFF F 图a图b图cA.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2答案:B三.折叠后求长度【7】如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且E D B C ⊥,则CE 的长是( ) (A )10315- (B )1053- (C )535- (D)20103-答案:D 四.折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A .矩形B .三角形C .梯形D .菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是( )A. B. C. D.答案:D【10】小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )ABCDEF 第7题图第8题图第9题图答案:D【11】如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B '处。

2019-2020年中考数学专题复习题型九折叠旋转问题含解析(最新整理)

2019-2020年中考数学专题复习题型九折叠旋转问题含解析(最新整理)

2019-2020 年中考数学专题复习题型九折叠旋转问题含解析1.(xx 贵州安顺第7 题)如图,矩形纸片ABCD 中,AD=4cm,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O,若AO=5cm,则AB 的长为()A.6cm B.7cm C.8cm D.9cm【答案】C.2.(xx 湖南张家界第 14 题)如图,在正方形ABCD 中,AD=,把边BC 绕点B 逆时针旋转30°得到线段BP,连接AP 并延长交CD 于点E,连接P C,则三角形PCE 的面积为.【答案】.3.(xx·湖北荆门·3分)两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2 cm.4.(xx 甘肃兰州第 14 题)如图,在正方形和正方形中,点在上,,将正方形绕点顺时针旋转,得到正方形,此时点在上,连接,则( )A. B. C. D.【答案】AA5.(xx 浙江嘉兴第16 题)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点,此时线段的长是.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长共为.(结果保留根号)【答案】12-12.12-18.6.(xx 辽宁沈阳第16 题)如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是.【答案】.7.(xx 年重庆A4 分)如图,矩形ABCD 中,连接BD,∠DBC 的角平分线BE 交DC 于点E,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为,当射线和射线都与线段AD 相交时,设交点分别F,G,若△BFD 为等腰三角形,则线段DG 长为▲ .【答案】.8.(xx 年上海4 分)已知在△ABC 中,.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D处.延长线段AD,交原△ABC 的边BC 的延长线于点E,那么线段DE 的长等于▲.【答案】.9.(xx 年福建福州4 分)如图,在中,=90°,,将绕点C逆时针转60°,得到△MNC,则BM的长是▲.【答案】.10.(xx 江苏无锡第10 题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED,连CE,则线段CE 的长等于( D )A.2 B. C. D.11.(xx 新疆乌鲁木齐第 9 题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为( C )A.B. C. D.12.(xx 重庆A 卷第18 题)如图,正方形ABCD 中,AD=4,点E 是对角线AC 上一点,连接DE,过点E 作EF⊥ED,交AB 于点F,连接DF,交AC 于点G,将△EFG 沿EF 翻折,得到△EFM,连接DM,交EF 于点N,若点F 是AB 的中点,则△EMN 的周长是.13.(xx 河南第 15 题)如图,在中,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上. 若为直角三角形,则的长为.【答案】1 或.14.(xx 江苏苏州第18 题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,则(结果保留根号).【答案】.15.(xx 海南第 17 题)如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos∠EFC 的值是.【答案】.16.(xx·黑龙江齐齐哈尔·3分)如图,在边长为2 的菱形ABCD 中,∠A=60°,点M 是AD 边的中点,连接MC,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N,则线段EC 的长为﹣1 .17.(xx·吉林·3分)在三角形纸片ABC 中,∠C=90°,∠B=30°,点D(不与B,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为 3a(用含a的式子表示).18.(xx 河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E 为射线BC 上一个动点,连接AE,将△ABE 沿AE 折叠,点B 落在点B′处,过点B′作AD 的垂线,分别交AD,BC 于点M,N.当点B′为线段MN 的三等分点时,BE 的长为或.19.(xx 年河南3 分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点B、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B′处,若△CDB′恰为等腰三角形,则DB′的长为▲.【答案】16 或.20.(xx 年江苏泰州3 分)如图,矩形中,AB=8,BC=6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP,PE 与CD 相交于点O,且OE=OD,则AP 的长为▲.【答案】.21.(xx 湖北鄂州第8 题3 分)如图,在矩形ABCD 中,AB=8,BC=12,点E 是BC 的中点,连接AE,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC,则sin∠ECF =()A.B.C.D.【答案】D.22.(xx•四川自贡,第10 题4 分)如图,在矩形中,,是边的中点,是线段边上的动点,将△沿所在直线折叠得到△, 连接,则的最小值是( A )B'A DEB F CA.B.6 C. D.423.(xx•绵阳第 12 题,3 分)如图,D 是等边△ABC 边AB 上的一点,且AD:DB=1:2,现将△ABC 折叠,使点C 与D 重合,折痕为E F,点E,F 分别在A C 和B C 上,则C E:CF=(B )A.B.C.D.24.(xx•四川省内江市,第 14 题,5分)如图,在四边形ABCD 中,AD∥BC,∠C=90°,E 为CD 上一点,分别以EA,EB 为折痕将两个角(∠D,∠C)向内折叠,点C,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为.25.(xx•浙江滨州,第17 题4 分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

中考数学折叠,旋转问题专题含答案

中考数学折叠,旋转问题专题含答案

【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。

2021年中考一轮《图形折叠问题》复习试卷及答案

2021年中考一轮《图形折叠问题》复习试卷及答案

2021年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35° C.20° D.15°2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.164.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为()A.3 B.4 C.5 D.65.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12 B.10 C.8 D.67.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8 C.9 D. 108.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A. 10 B. 13 C. 15 D. 1210.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图,在矩形 OABC 中,OA=8,OC=4,沿对角线 OB 折叠后,点 A 与点 D 重合,OD 与 BC交于点 E,则点 D 的坐标是()A.(4,8)B.(5,8)C.(,) D.(,)12.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD 边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B. 2 C. 3 D.13.如图,矩形纸片ABCD中,AD=3cm,点E在BC上,将纸片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,则AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为()A.3或4 B.4或3C.3或4 D.3或415.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE=AB.将矩形沿直线EF折叠,点B恰好落在AD 边上的点P处,连接BP交EF于点Q.对于下列结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B.②③C.①③ D.①④16.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合,若此时=,则△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图,矩形ABCD中,点E是AD的中点,将△ABE折叠后得到△GBE,延长B G交CD于点F,若CF=1,FD=2,则BC的长为( )A.3B.2C.2D.218.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于().A.2 B.3 C.4 D.519.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.20.如图,在矩形纸片ABCD中,AB=3,AD=5.折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC 边上移动时,折痕的端点P,Q也随之移动。

中考数学专题复习《特殊平行四边形中的折叠问题》测试卷-附带答案

中考数学专题复习《特殊平行四边形中的折叠问题》测试卷-附带答案

中考数学专题复习《特殊平行四边形中的折叠问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在矩形纸片ABCD 中 将BCD △沿BD 折叠 C 点落在C '处 则图中共有全等三角形( )A .2对B .3对C .4对D .5对2.如图 对折矩形纸片ABCD 使AB 与DC 重合得到折痕EF 将纸片展平 再一次折叠 使点D 落到EF 上点G 处 并使折痕经过点A 展平纸片后DAG ∠的大小为( )A .40︒B .60︒C .55︒D .75︒3.如图 在矩形ABCD 中 5AB = 8BC = 点E 和F 是边BC 上的两点 连结AE DF 、 将ABE 和CDF 沿AE DF 、折叠后 点B 和点C 重合于点M 则EF 的长是( )A .2.5B .3C .1.5D .44.如图 在矩形纸片ABCD 中 已知8AD = 折叠纸片使AB 边与对角线AC 重合 点B 落在点F 处 折痕为AE 且3EF = 则ABE 的面积为( )A .10B .9C .8D .75.如图 在矩形OABC 中 9OA = 15AB = E 是BC 上一点 沿AE 折叠 使点B 恰好落在x 轴的点D 处.E 点坐标是( )A .()5,15B .()3,15C .()15,2D .()15,4 6.如图 在矩形ABCD 中 点E 是边CD 的中点 将ADE 沿AE 折叠后得到AFE △ 且点F 在矩形ABCD 的内部 将AF 延长后交边BC 于点G 且45CG GB = 则AB AD 的值为( )A .43B .56C .1D .77.如图 把矩形纸片ABCD 沿对角线BD 折叠 设重叠部分为EBD △ 则下列结论不一定成立的是( )A .AB CD = B .BAE DCE ≌△△C .EB ED = D .30ABE ∠=︒ 8.如图 在一张菱形纸片ABCD 中 2AB = 30B ∠=︒ 点E 在BC 边上(不与B C 重合)将ABE 沿直线AE 折叠得到AFE △ 连接BF EF DF 有以下四个结论:AE EF =① 105BFD ∠=︒② ③当AE BC ⊥时 FD AC = ④当FE 平分AFB ∠时 则23FD = 其中正确的结论个数是( )A .1B .2C .3D .4二 填空题9.如图 正方形纸片ABCD 的边长为12 E 是边CD 上一点 连接AE 折叠该纸片 使点A 落在AE 上的点G 并使折痕经过点B 得到折痕BF 点F 在AD 上.若5DE = 则GE 的长为 .10.将一张长方形纸片ABCD 按如图所示方式折叠 AE AF 为折痕 点B D 折叠后的对应点分别为B' 'D 若''4B AD ∠=︒ 则EAF ∠的度数为 .11.如图 在长方形ABCD 中 3AD = 2AB = 点F 是AB 上一点 1AF = 点E 是BC 上一动点 连接EF 将BEF △沿EF 折叠 记点B 的对应点为点B ' 连接DB ' 则FB DB '+'的最小值是 .12.如图 在矩形ABCD 中 5AB = 8AD = 边AD 上有一动点P 连结BP 把ABP沿BP 折叠当点A 的对应点A '刚好落在BC 的垂直平分线上时 点A '到AD 的距离为 .13.如图所示 在完全重合放置的两张矩形纸片ABCD 中 8AB = 16BC = 将上面的矩形纸片折叠 使点C 与点A 重合 折痕为EF 点D 的对应点为点G 连接DG 则图中阴影部分的面积为 .三 解答题14.如图 正方形纸片ABCD 的边长12AB = E 是DC 上一点 5CE = 折叠正方形纸片 使点B 和点E 重合 折痕为FG 试求FG 的长.15.如图 把一张长方形纸片ABCD 折叠起来 使其对角顶点A 与C 重合 D 与G 重合 若长方形的长BC 为8 宽AB 为4(1)求DE 的长(2)求阴影部分的面积.16.如图1 将矩形纸片()ABCD AD AB >折叠 使点C 刚好落在线段AD 上 且折痕分别与边BC AD 相交 设折叠后点C D 的对应点分别为点G H 折痕分别与边BC AD 相交于点E F .(1)求证:四边形CEGF 是菱形(2)如图2 若3AB = 9BC = 当点G 与点A 重合时 求折痕EF 的长.17.如图 在四边形纸片ABCD 中 AD BC ∥ AD CD > 将纸片沿过点D 的直线折叠 使点C 落在AD 上的点C '处 折痕DE 交BC 于点E 连接C E '.(1)请确定四边形CDC E '的形状 并说明理由(2)若30BCD ∠=︒ 2CE = 过点C '作C F BC '⊥于F 连接CC '交DE 于点M 连接FM : ①四边形CDC E '的面积为①2FM = .18.已知矩形ABCD 中 4AB = 6AD = 点P 是边AD 的中点.(1)如图1 连接BP 并延长 与CD 的延长线交干点F 问:线段CF 上是否存在点Q 使得PFQ △是以PF 为腰的等腰三角形 若存在 请直接写出DQ 的长 若不存在 请说明理由.(2)①如图2 把矩形ABCD 沿直线MN 折叠 使点B 落在点D 上 直线MN 与AD BD BC 、、的交点分别为M H N 求折痕MN 的长.①如图3:在①的条件下 以点A 为原点 分别以矩形ABCD 的两条边AD AB 、所在的直线为x 轴和y 轴建立平面直角坐标系 若点R 在x 轴上 在平面内是否存在点S 使以R M N S 为顶点的四边形是菱形?若存在 请求出点S 的坐标 若不存在 请说明理由.(3)如图4:若点E 为CD 边上的一个动点 连结PE 以PE 为边向下方作等边PEG △ 连结AG 则AG 的最小值是______.(请直接写出答案)参考答案:1.C2.B3.B4.B5.D6.A7.D8.B9.491310.43︒111012.213.72514.解:如图 过点F 作FM BC ⊥ 垂足为M 连接BE .①四边形ABCD 为正方形①AB BC CD AD === 90A ABC C D ∠=∠=∠=∠=︒①90A ABC BMF ===︒∠∠∠①四边形ABMF 为矩形①12MF AB BC ===①将正方形纸片ABCD 折叠 使点B 落在边CD 上的点E 折痕为FG ①90C FMG ∠=∠=︒ BE FG ⊥①90BNG C ∠=∠=︒①90MGF CBE BEC CBE ∠+∠=∠+∠=︒ ①MGF CEB ∠=∠在FMG 和BCE 中 MGF CEB FMG C FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS FMG BCE ≌①MG CE =.又①5CE =①5MG =.在Rt MFG 中 根据勾股定理得13FG == 即FG 的长是13.15.(1)设DE EG x == 则8AE x =- 在Rt AEG △中 222AG EG AE +=所以()22168x x +=-解得:3x =即3DE =(2)过点G 作GM AD ⊥于M 则1122AG GE AE GM ⨯=⨯4AG AB == 5AE = 3GE = 所以1143522GM ⨯⨯=⨯⨯所以125GM = 所以11825CED S GM DE =⨯=△. 16.解:(1)证明:①四边形ABCD 是矩形 ①AD ①BC①①GFE =①FEC①图形翻折后点G 与点C 重合 EF 为折线 ①①GEF =①FEC FG =FC EG =EC ①①GFE =①FEG①GF =GE①GE =EC =CF =FG①四边形CEGF 为菱形(2)当G 与A 重合时 由折叠的性质得AE =CE ①①B =90° AB =3 BC =9 BE =9-CE ①Rt ①ABE 中 AE 2=AB 2+BE 2即CE 2=32+(9-CE )2解得 CE =5.AC 222239310AB BC ++=由(1)知四边形CEGF 为菱形 ①12CEGF S EF AC CE AB =⨯=⨯菱形 ①10310EF == 17.(1)解:四边形CDC E '是菱形 理由如下: 根据折叠的性质可得:CD C D C DE CDE '∠=∠ CE C E '= ①AD BC ∥①C DE CED '∠=∠①CDE CED ∠=∠①CD CE =①CD C D C E CE ''===①四边形CDC E '为菱形(2)①①四边形CDC E '是菱形 ①2C E CE '== C E CD '∥ CM C M '= ①30C EF DCB '∠=∠=︒ ①C F BE '⊥ ①112C F C E ''== EF F '=①四边形CDC E '的面积212CE C F '=⨯=⨯= 故答案为:2①①EF = 2CE =①2CF =①(2222218C C C F CF ''=+=+=+①C F BC CM C M ''⊥=, ①12FM C C '=①22124FM C C '==故答案为:2 18.(1)解:存在 理由如下: 四边形ABCD 是矩形 90A ADC ∴∠=∠=︒ AB CD = 90FDP ∴∠=︒点P 是边AD 的中点 AP DP ∴=又APB DPF ∠=∠ ()ASA ABP DFP ∴△≌△ PF PB ∴= AB DF = 4,6AB AD ==4DF AB ∴== 132AP PD AD === 90A ∠=︒在Rt ABP 中:2222345PB AB AP +=+=5PF ∴=PFQ △为等腰三角形 以PF 为腰的等腰三角形分为两种情形: ①当PF PQ =时 此时点Q 与点C 重合 故4DQ DC == ①当FP FQ =时 如图:5PF = 5FQ = FD =4541DQ FQ FD =-=-=综合①① DQ 的长为:4或1(2)解:①如图:连接BM DN根据题意可知:MN 垂直平分BD ,MN BD BH DH ∴⊥= ,NB ND MB MD == 四边形ABCD 是矩形AD BN ∴MDH HBN ∴∠=∠ 又MHD NHB ∠=∠MHD NHB ∴△≌△MH HN ∴= MD NB =∴四边形MBND 是菱形设AM b = 则6MD MB b ==-在Rt AMB △中222BM AM AB =+即:222(6)4b b -=+ 解得:53b = 5513,6333AM BM ∴==-= 在Rt △ABD 中BD 12BH BD ∴=MH BD ⊥∴在Rt MHB △中MH ==2MN MH ∴== ①建立平面直角坐标系如图:由①知:53AM = 133BN MD MB ===4AB = MN = ①5130433M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,, R M N S 为顶点的四边形是菱形 点R 在x 轴上当MR 为对角线时 MR NS ⊥,M R 都在x 轴上 ∴,N S 关于x 轴对称 1343S ⎛⎫∴ ⎪⎝⎭, 当MN 为对角线时 MN RS ⊥ 由(2)知 四边形MBND 是菱形 则S 与点B 重合 ∴此时(0,4)S -当MS 为对角线时 则MR SN ∥ MR SN =MN = 13(,4)3N -①1343S ⎛⎫- ⎪ ⎪⎝⎭综上可知 存在点S 使得以R M N S 为顶点的四边形是菱形 点S 坐标为:134134⎫--⎪⎪⎝⎭ 134134⎫+-⎪⎪⎝⎭ 13,43⎛⎫⎪⎝⎭ (0,4)- (3)解:如图:分别以PD PC 为边向下方作等边,PDF PCH △△ 过点F 作FI AD ⊥垂足为I 连接AF HF P 为AD 中点 ∴132AP PD AD ===PDF △为等边三角形1322PI PD ∴== 60DPF ∠=︒ PD PF =PA PF = 60DPF ∠=︒30PAF PFA ∴∠=∠=︒120APF ∴∠=︒92AI AP PI ∴=+=点E 为CD 边上的一个动点 以PE 为边向下方作等边PEG △ 当点E 与点D 重合时 点G 与点F 重合 当点E 与点C 重合时 点G 与点H 重合 ∴点G 在线段FH 上运动 当AG HF ⊥时 AG 最小 PEG △为等边三角形60EPG ∴∠=︒ PE PG =60 FPG FPE FPE EPD∴∠+∠=∠+∠=︒FPG DPE∴∠=∠∴FPG DPE△≌△PDE PFG∴∠=∠90PDE∠=︒∴90PFG∠=︒PF FH∴⊥当AG HF⊥时AG PF120,30APF PAF∠=︒∠=︒18012060PAG∴∠=︒-︒=︒603030 FAG PAG PAF∠=∠-∠=︒-︒=︒IAF GAF∴∠=∠FI AD⊥90AIF∴=︒在AFI和AFI中AIF AGFAF AFFAG FAI∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASAAFI AFI≌AG AI∴=∴当AG HF⊥时92AG AI==故答案为:92.。

2023年九年级中考数学一轮复习考点专练微专题图形的折叠附答案

2023年九年级中考数学一轮复习考点专练微专题图形的折叠附答案

微专题图形的折叠附答案1.(2021连云港)如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点D 1、C 1的位置,ED 1的延长线交BC 于点G ,若∠EFG =64°,则∠EGB 等于()A.128° B.130° C.132° D.136°第1题图2.如图,已知正方形ABCD 的边长为6,E 、F 分别是边AB 、CD 上的点,且∠EFC =120°,将正方形ABCD 沿EF 折叠,点B 的对应点B ′恰好落在边AD 上,点C 的对应点为点C ′,则AB ′的长为()A.2B.23C.3D.4第2题图3.如图,已知矩形纸片ABCD ,AB =3,BC =1,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则EF 的长为()A.15B.25C.35D.45第3题图4.如图,将▱ABCD 沿EF 对折,使点A 落在C 处,若∠A =60°,AD =4,AB =6,则AE 的长为________.第4题图5.[填空双空]如图,在矩形ABCD 中,AB =20,点E 是BC 边上的一点,将△ABE 沿AE 折叠,点B 恰好落在CD 边上点G 处;点F 在DG 上,将△ADF 沿AF 折叠,点D 恰好落在AG 上点H 处,此时S △GFH ∶S △AFH =2∶3,则AD 的长为________;HF 的长为________.第5题图6.如图,将矩形ABCD 沿对角线AC 折叠,使点B 落在点E 处,连接DE ,若DE AC =35,则AD CD的值为________.第6题图7.如图,在菱形纸片ABCD 中,AB =2,∠A =60°,将菱形纸片翻折,使得点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为________.第7题图8.如图,在正方形ABCD 中,E 是AB 边上一点,将△BCE 沿CE 翻折,点B 的对应点F 恰好落在对角线AC 上,连接DF ,若BE =3,则AC 的长为________.第8题图9.如图,在△ABC 中,点D 是AC 边上的中点,连接BD ,把△ABD 沿BD 翻折,得到△A ′BD ,连接A ′C.若A ′C =6,∠A ′CD =30°,BD =4,则点A ′到直线AB 的距离为________.第9题图10.如图,在正方形ABCD 中,点E 是CD 上一点,将正方形沿BE 折叠,点C 落在点F 处,连接CF ,并延长交AD 于点G .延长BF 交AD 于点H .若HD HF =45,CE =9,则线段DE 的长为________.第10题图11.[填空双空]如图,在Rt △ABC 中,∠ABC =90°,AB >BC ,点D 为边AC 上一点,连接BD ,将△ABD 沿BD 翻折得△EBD ,连接CE ,(1)若DE ⊥AC ,则∠BDC 的度数为________°;(2)若四边形BDEC 是平行四边形,AC =4,则AB =________.第11题图微专题图形的折叠1.A 【解析】∵AD ∥BC ,∠EFG =64°,∴∠DEF =∠EFG =64°,由折叠的性质可得∠FEG =∠DEF =64°,∴∠EGB =∠FEG +∠EFG =64°+64°=128°.2.B 【解析】∵四边形ABCD 是正方形,∴AB ∥CD ,∠A =90°,∵∠EFC =120°,∴∠BEF =180°-∠EFC =60°,∴由折叠的性质得,∠B ′EF =∠BEF =60°,∴∠AEB ′=180°-2∠BEF =60°,∴B ′E =2AE .设AE =x ,则BE =B ′E =2x ,∴x +2x =AB =6,∴x =2,∴EB ′=EB =4,∴AB ′=42-22=2 3.3.B 【解析】根据折叠的性质可知△DCP ≌△DEP ,∴DC =DE =3,CP =EP .在△OEF 和△OBP 中,∠EOF =∠BOP ,∠E =∠B =90°,OF =OP ,∴△OEF ≌△OBP (AAS),∴OE =OB ,EF =BP ,∴BF =EP =CP ,设BF =EP =CP =x ,则AF =3-x ,BP =1-x =EF ,DF =DE -EF =3-(1-x )=x +2,∵∠A =90°,∴在Rt △ADF 中,AF 2+AD 2=DF 2,即(3-x )2+12=(2+x )2,解得x =35,∴EF =25.4.194【解析】如解图,过点C 过CG ⊥AB 交AB 延长线于点G ,在▱ABCD 中,AD ∥BC ,∴∠CBG =∠A =60°.∴在Rt △CBG 中,BG =12BC =2,CG =BC 2-BG 2=2 3.由折叠的性质知AE =CE ,设CE =x ,则BE =6-x ,∴在Rt △CEG 中,EG =BE +BG =8-x .由勾股定理得CE 2=EG 2+CG 2,即x 2=(8-x )2+(23)2,解得x =194.∴AE =194.第4题解图5.12;6【解析】∵S △GFH ∶S △AFH =2∶3,且△GFH 和△AFH 等高,∴GH ∶AH =2∶3,∵将△ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处,∴AG =AB =GH +AH =20,∴GH =8,AH =12,∴AD =AH =12;在Rt △ADG 中,DG =AG 2-AD 2=202-122=16,由折叠的对称性质可设DF =FH =x ,则GF =16-x ,∵HG 2+HF 2=FG 2,∴82+x 2=(16-x )2,解得x =6,∴HF =6.6.2【解析】由折叠的性质可知,∠ACB =∠ACF ,又∵在矩形ABCD 中,AD ∥BC ,∴∠DAC =∠ACB ,∴∠DAC =∠ACF ,∴CF =AF ,又∵AD =BC =CE ,∴AD -AF =CE -CF ,即EF =DF .∴DF AF =EF CF,又∠DFE =∠AFC ,∴△DEF ∽△ACF ,∴DE AC =DF AF =35.设DF =3k ,AF =5k ,由勾股定理得CD =4k ,∴AD =3k +5k =8k ,∴AD CD =8k 4k =2.7.74【解析】如解图,连接BE ,BD ,∵四边形ABCD 为菱形,∠A =60°,∴AB =BC =CD =2,∠A =∠C =60°,∴△BCD 是等边三角形,∵E 是CD 中点,∴DE =CE =1,BE ⊥CD ,∠EBC =30°,∴BE =3CE=3,∵CD ∥AB ,∴∠ABE =∠CEB =90°,由折叠可得AF =EF ,∴在Rt △BEF 中,EF 2=BE 2+BF 2,∴EF 2=3+(2-EF )2,∴EF =74.第7题解图8.6+32【解析】如解图,连接BD 交AC 于点O ,∵ABCD 为正方形,∴∠ABC =90°,AB =BC ,AC ⊥BD ,DO =BO ,∠BAC =45°,由折叠性质,知BE =EF =3,BC =CF ,∠EFC =90°,∵∠BAC =45°,∠EFC =90°,∴∠EAF =∠AEF =45°,∴AF =EF =3,∴AE =32,∴AB =32+3=BC =CF ,∴AC =AF +CF =3+32+3=6+32.第8题解图9.3【解析】如解图,延长AB ,CA ′交于点H ,连接AA ′,过点A ′作A ′E ⊥AH 于点E .∵点D 是AC 边上的中点,∴AD =DC ,∵△A ′BD 是由△ABD 沿BD 折翻所得,∴AB =A ′B ,AD =A ′D =DC ,∠ADB =∠BDA ′,∴∠DCA ′=∠DA ′C ,∴∠ADB +∠A ′DB =∠DA ′C +∠DCA ′,∴∠ADB =∠ACA ′,∴BD ∥CH ,∴△ABD ∽△AHC ,∴AD AC =AB AH =BD CH =12,∴CH =2BD ,AH =2AB ,∵A ′C =6,BD =4,∴CH =8=A ′H +A ′C ,∴A ′H =2,∵AD =A ′D DC ,∴∠AA ′C =90°,∵∠ACA ′=30°,∴A ′C =3AA ′=6,∴AA′=23,∴AH =A ′A 2+A ′H 2=12+4=4,∵S △A ′AH =12AH ·A ′E =12AA ′·A ′H ,∴4A ′E =2×23,∴A ′E = 3.第9题解图10.310【解析】如解图,连接EH .由折叠的性质得,BE ⊥CF ,∴∠ECF +∠BEC =90°,∵四边形ABCD 是正方形,∴∠D =∠BCE =90°,∴∠ECF +∠CGD =90°,∴∠BEC =∠CGD ,∵BC =CD ,∴△BCE ≌△CDG (AAS),∴CE =DG =9,由折叠可知BC =BF ,CE =FE =9,∴∠BCF =∠BFC ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴∠BCG =∠HGF ,∵∠BFC =∠HFG ,∴∠HFG =∠HGF ,∴HF =HG ,∵HD HF =45,DG =9,∴HD =4,HF =HG =5,∵∠D =∠HFE =90°,∴HF 2+FE 2=DH 2+DE 2,∴52+92=42+DE 2,∴DE =310或-310(舍),∴DE =310.第10题解图11.(1)45【解析】∵△ABD沿BD翻折得△EBD,∴△ABD≌△EBD,∴∠EDB=∠ADB,∵DE⊥AC,∴∠EDC=90°,∴90°+∠CDB=∠ADB=180°-∠CDB,∴2∠CDB=90°,∴∠CDB=45°;(2)23【解析】如解图,∵四边形BDEC是平行四边形,∴ED∥BC,∴∠EDB+∠DBC=180°,∵∠ADB +∠CDB=180°,∠EDB=∠ADB,∴∠CDB=∠CBD,∴CD=BC,∵ED=BC,∴ED=AD=BD=CB=CD,∴AC=2BC,∵在Rt△ABC中,AC=4,∴BC=2,∴AB=23.第11题解图。

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)

中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。

初三复习 数学几何中折叠问题 4大类 分类 含答案

初三复习 数学几何中折叠问题 4大类 分类 含答案

初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

2019-2020学年浙江省中考数学(浙教版)专题复习八: 图形折叠问题训练(含答案)

2019-2020学年浙江省中考数学(浙教版)专题复习八: 图形折叠问题训练(含答案)

∴∠DOF=60°.
同理可得∠EOG=60°,
∴∠FOG=60°=∠DOF=∠EOG,
∴△DOF≌△GOF≌△GOE,
∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,
∴△OAD≌△OCG,△OAF≌△OCE,
∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项 A 正确;
DC 边上的点 F 处,折痕为 DE,点 E 在 AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点 C 落在线 段 AE 上的点 H 处,折痕为 DG,点 G 在 BC 边上.若 AB=AD+2,EH=1,则 AD=________.
【分析】设 AD=x,则 AB=x+2,利用折叠的性质得 DF=AD,EA=EF,∠DFE=∠A=90°,则可判断 四边形 AEFD 为正方形,所以 AE=AD=x,再根据折叠的性质得 DH=DC=x+2,则 AH=AE-HE=x- 1,然后根据勾股定理得到 x2+(x-1)2=(x+2)2,再解方程求出 x 即可. 【自主解答】
计算出 CD=5,接着证明△OBM≌△ODN 得到 DN=BM,然后根据折叠的性质得 BM=B′M=1,从而有
DN=1,于是计算 CD-DN 即可.
【自主解答】
折叠是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.对于菱形的折 叠,还要明确菱形的基本性质,在解题过程中要抓住菱形的性质进行分析. 2.(2018·贵州遵义中考)如图,在菱形 ABCD 中,∠ABC=120°,将菱形折叠,使点 A 恰好落在对角线 BD 上的点 G 处(不与 B,D 重合),折痕为 EF,若 DG=2,BG=6,则 BE 的长为__________.
∠MBO=∠NDO, OB=OD, ∠BOM=∠DON,

2020-中考数学几何变形题归类辅导 专题04 折叠问题(解析版)

2020-中考数学几何变形题归类辅导 专题04 折叠问题(解析版)

【2019年中考数学几何变形题归类辅导】专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明见解答.【分析】(1)由折叠可得AB=AB′,BE=B'E,再根据四边形ABCD是正方形,易证B'E=B'F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B'E,∵四边形ABCD是正方形,∴AB=DC=DF,∠CB'E=45°,∴B'E=B'F,∴AF=AB'+B'F,即DF+BE=AF;(3)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B'AE,∴∠B'AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∴∠BAM=∠FAD,AF=AM ∵ΔABE≌AB'E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAE,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合,然后展开铺平,得到折痕DE;第二步:将△ABC 沿折痕DE 展开,然后将△DEC 绕点D 逆时针方向旋转得到△DFG,点E,C 的对应点分别是点F,G,射线GF 与边AC 交于点M(点M 不与点A 重合),与边AB交于点N,线段DG 与边AC 交于点P.数学思考:(1)求DC 的长;(2)在△DEC 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点D 旋转的过程中,探究下列问题:①如图2,当GF∥BC 时,求AM 的长;②如图3,当GF 经过点B 时,AM 的长为③当△DEC 绕点D 旋转至DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线GF,并直接写出AM 的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)【答案】(1) DC=5;(2)相等,理由见解析;(3)①AM=3;②AM=74;③AM=10 3√5【分析】(1)理由勾股定理求出BC即可解决问题.(2)结论:MF=ME.证明Rt△DMF≌Rt△DME(HL),即可解决问题.(3)①如图2中,作AH⊥BC于H,交FG于K.由KM∥CH,推出AK AH =AMAC,求出AK,AH即可解决问题.②证明BM=MC,设BM=MC=x,在Rt△ABM中,根据BM2=AB2+AM2,构建方程即可解决问题.③尺规作图如图4-1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4-1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.【解答】解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC=√AB2+BC2=√62+82=10,∴CD=12BC=5.下载后可编辑可打印(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH=AB⋅ACBC =245,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH-KH=95,∵KM∥CH,∴AKAH =AMAC,∴95245=AM8,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C , ∴∠MBC=∠C ,∴BM=MC ,设BM=MC=x , 在Rt △ABM 中,∵BM 2=AB 2+AM 2, ∴62+(8-x )2=x 2, ∴x=254∴AM=AC-CM=8-254=74. 故答案为74.③尺规作图如图4-1所示.作DR 平分∠CDF ,在DR 上截取DG=DC ,分别以D ,G 为圆心,DE ,CE 为半径画弧,两弧交于点F ,△DFG 即为所求.如图4-1中,连接DM ,设DG 交AC 于T ,作TH ⊥CD 于H ,作DK 平分∠CDG 交TH 于K ,作KJ ⊥DG 于J .易证△DEM ≌△DHK (AAS ),推出EM=HK ,只要求出HK 即可. ∵TE ⊥DE ,TH ⊥DC ,DG 平分∠CDE ,∴TE=TH ,设TE=TH=x ,在Rt △TCH 中,x 2+22=(4-x )2, ∴x=32,∴DT =√32+(32)2=32√5,∵DK 平分∠CDT ,KJ ⊥DT ,KH ⊥CD , ∴KJ=KH ,设KJ=KH=y ,在Rt △KTJ 中,y 2+(32√5−3)2=(32−y)2∴y =3√5−6, ∴EM=3√5−6∴AM =AE −EM =4−(3√5−6)=10−3√5.2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF 的值.【答案】(1)52;(2)①四边形AE M F 为菱形;②4√109;(3)32. 【分析】试题分析:(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ; (3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(4)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;【解答】(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴,∴,∴4y2+2xy﹣x2=0,∴,∴(负根已经舍弃),∴.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴,∴,即∴PC=1. 4.Rt △ABC 中,∠ACB =90°,AC =3,BC =7,点P 是边AC 上不与点A 、C 重合的一点,作PD ∥BC 交AB 边于点D .(1)如图1,将△APD 沿直线AB 翻折,得到△AP 'D ,作AE ∥PD .求证:AE =ED ;(2)将△APD 绕点A 顺时针旋转,得到△AP 'D ',点P 、D 的对应点分别为点P '、D ',①如图2,当点D '在△ABC 内部时,连接P ′C 和D 'B ,求证:△AP 'C ∽△AD 'B ;②如果AP :PC =5:1,连接DD ',且DD '=√2AD ,那么请直接写出点D '到直线BC 的距离.【答案】(1)见解析;(2)①见解析;②点D '到直线BC 的距离为176或536【分析】(1)由折叠的性质和平行线的性质可得∠EAD =∠ADP =∠ADP ',即可得AE =DE ;(2)①由题意可证△APD ∽△ACB ,可得AP AC =AD AB ,由旋转的性质可得AP =AP ',AD =AD ',∠PAD =∠P 'AD ',即∠P 'AC =∠D 'AB ,,则△AP 'C ∽△AD 'B ;②分点D '在直线BC 的下方和点D '在直线BC 的上方AP′AC =AD′AB 两种情况讨论,根据平行线分线段成比例,可求PD =356,通过证明△AMD '≌△DPA ,可得AM =PD =356,即可求点D '到直线BC 的距离.【解答】证明:(1)∵将△APD 沿直线AB 翻折,得到△AP 'D ,∴∠ADP '=∠ADP ,∵AE ∥PD ,∴∠EAD =∠ADP ,∴∠EAD =∠ADP ',∴AE =DE(2)①∵DP ∥BC ,∴△APD ∽△ACB ,∴AP AC =AD AB ,∵旋转,∴AP =AP ',AD =AD ',∠PAD =∠P 'AD ',∴∠P 'AC =∠D 'AB ,AP′AC =AD′AB ,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴APAC =PDBC=56,∵BC=7,∴PD=356,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=12D'D,∠ADF=∠AD'F,∵cos∠ADF=DFAD =12D′DAD=√22ADAD√22,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=356,∵CM=AM﹣AC=356﹣3,∴CM=176,∴点D'到直线BC的距离为176若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD '≌△DPA , ∴AM =PD =356,∵CM =AC +AM ,∴CM =3+356=356,∴点D '到直线BC 的距离为356综上所述:点D '到直线BC 的距离为176或536;。

折叠题型分类

折叠题型分类

C DEB A图 (2) 中考数学专题复习——折叠剪切问题折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题. 一、折叠后求度数1、将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( )A .600B .750C .900D .9502、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°3、用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所 示的正五边形ABCDE,其中∠BAC= 度.【练习】1、长方形如图折叠,D 点折叠到D′的位置,已知∠D′FC=88°,则∠FED=( )A . 34°B . 44°C . 45°D . 46°2、将一矩形纸条按如图所示折叠,则∠1的度数为( )A . 72°B . 84°C . 63°D . 76°3、(2006•淄博)将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后A′B 与E′B 在同一条直线上,则∠CBD 的度数( )图(1)A.大于90°B.小于90°C.等于90°D.不能确定4、如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°5、把矩形纸片ABCD沿BE折叠,使得BA边与BC重合,然后再沿着BF折叠,使得折痕BE也与BC边重合,展开后如图所示,则∠DFB等于()A.22.5°B.67.5°C.112.5°D.120°6、如图,△ABC首先沿DE折叠△CDE与△BDE完全重合,然后沿BD折叠△ABD与△EBD也完全重合,则∠ABC的度数为()A.30°B.40°C.50°D.60°7、将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,∠1=_________度;△EFG的形状是_________三角形.8、将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD=_________度.9、将一长方形纸条按如图所示折叠,∠2=54°,则∠1=_________.10、将一长方形纸条按如图所示折叠,则∠1=_________度.11、(2009•吉林)将一张矩形纸片折叠成如图所示的形状,则∠ABC=_________度.12、(2006•长春)将一矩形纸条,按如图所示折叠,则∠1=_________度.13、一个宽度相等的纸条,如下图这样折叠,则∠1等于_________.14、将一张长方形纸片按如图所示折叠,如果∠1=64°,那么∠2等于_________.15、如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED'等于_________.16、如图,将长方形纸片折叠后再展开,折痕AB和CB的夹角是_________度.17、如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,再将另一角折叠,使顶点B落在EA′上的B′点处,折痕为EG,则∠FEG等于_________.18、如图,把Rt△ABC(∠C=90°)折叠,使A,B两点重合,得到折痕ED,再沿BE折叠,C点恰好与D点重合,则CE:AE=_________.19、图1长方形纸带,∠CEF=25°,将纸带沿EF折叠成图2再沿AF折叠成图3,图3中的∠DFE的度数是_________.20、如图,将平行四边形ABCD折叠,使得折叠后点C落在AB边上的C′处,点B落在B′处,EF是折痕,若∠CEF=65°,则∠EC′F=_________.二、折叠后求面积1、如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为 折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( )A .4B .6C .8D .102、如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右 图的一座“小别墅”,则图中阴影部分的面积是( )A .2B .4C .8D .103、如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm 。

中考数学几何图形折叠试题典题和解答[1]

中考数学几何图形折叠试题典题和解答[1]

中考数学几何图形折叠试题典题及解答一、选择题1.(德州市)如图.四边形ABCD为矩形纸片.把纸片ABCD折叠.使点B恰好落在CD边的中点E处.折痕为AF.若CD=6.则AF等于()A.4B.3C.4D.82.(江西省)如图.将矩形ABCD纸片沿对角线BD折叠.使点C落在C′处.BC′交AD于E.若∠DBC=22.5°.则在不添加任何辅助线的情况下.图中45°的角(虚线也视为角的边)有()A.6个B.5个C.4个D.3个3.(乐山市)如图.把矩形纸条ABCD沿EF.GH同时折叠.B.C两点恰好落在AD边的P点处.若∠FPH=90°.PF=8.PH=6.则矩形ABCD的边BC长为()A.20 B.22C.24 D.304.(绵阳市)当身边没有量角器时.怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图.已知矩形ABCD.我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕.折叠纸片.使点B落在AD上.折痕与BC交于E;(2)将纸片展平后.再一次折叠纸片.以E所在直线为折痕.使点A落在BC 上.折痕EF交AD于F.则∠AFE =()A.60° B.67.5° C.72° D.7 5°5. (绍兴市)学习了平行线后.小敏想出了过己知直线外一点画这条直线的平行线的新方法.她是通过折一张半透明的纸得到的(如图(1)~(4)).从图中可知.小敏画平行线的依据有()①两直线平行.同位角相等;②两直线平行.内错角相等;③同位角相等.两直线平行; ④内错角相等.两直线平行.A .①②B .②③C .③④D .①④6.(贵阳市)如图6-1所示.将长为20cm.宽为2cm 的长方形白纸条.折成图6-2所示的图形并在其一面着色.则着色部分的面积为( )A .34cm2B .36cm2C .38cm2D .40cm2二、填空题7.(成都市)如图.把一张矩形纸片ABCD 沿EF 折叠后.点C.D 分别落在C′.D′的位置上.EC′交AD 于点G .已知∠EFG =58°.那么∠BEG °.8. (苏州市)如图.将纸片△ABC 沿DE 折叠.点A 落在点A′处.已知∠1+∠2=100°.则∠A 的大小等于____________度.三、解答题9.(荆门市)如图1.在平面直角坐标系中.有一张矩形纸片OABC.已知O(0.0).A(4.0).C(0.3).点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折.得到△PDB ;再在OC 边上选取适当的点E.将△POE 沿PE 翻折.得到△PFE.并使直线PD 、PF 重合.设P(x.0).E(0.y).求y 关于x 的函数关系式.并求y 的最大值;如图2.若翻折后点D 落在BC 边上.求过点P 、B 、E 的抛物线的函数关系式;在(2)的情况下.在该抛物线上是否存在点Q.使△PEQ 是以PE为直角边的直角三角形?若不存在.说明理由;若存在.求出点Q的坐标.10. (济宁市)如图.先把一矩形ABCD纸片对折.设折痕为MN.再把B点叠在折痕线上.得到△ABE.过B点折纸片使D点叠在直线AD上.得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明.如不相似请说明理由;如果沿直线EB折叠纸片.点A是否能叠在直线EC上?为什么?11.(威海市)如图.四边形ABCD为一梯形纸片.AB∥CD.AD=BC.翻折纸片ABCD.使点A与点C重合.折痕为EF.已知CE⊥AB.(1)求证:EF∥BD;(2)若AB=7.CD=3.求线段EF的长.12. (烟台市)生活中.有人喜欢把传送的便条折成形状.折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 cm.宽为xcm.分别回答下列问题:为了保证能折成图④的形状(即纸条两端均超出点P).试求x的取值范围.(2)如果不但要折成图④的形状.而且为了美观.希望纸条两端超出点P的长度相等.即最终图形是轴对称图形.试求在开始折叠时起点M与点A的距离(用x表示).13. 将平行四边形纸片ABCD按如图方式折叠.使点C与A重合.点D落到D′处.折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF.判断四边形AECF是什么特殊四边形?证明你的结论.14.(孝感市)在我们学习过的数学教科书中.有一个数学活动.其具体操作过程是:第一步:对折矩形纸片ABCD.使AD与BC重合.得到折痕EF.把纸片展开(如图1);第二步:再一次折叠纸片.使点A落在EF上.并使折痕经过点B.得到折痕BM.同时得到线段BN(如图2).请解答以下问题:(1)如图2.若延长MN交BC于P.△BMP是什么三角形?请证明你的结论.(2)在图2中.若AB=a.BC=b.a、b满足什么关系.才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?(3)设矩形ABCD的边AB=2.BC=4.并建立如图3所示的直角坐标系. 设直线BM′为y=kx.当∠M′BC=60°时.求k的值.此时.将△ABM′沿B M′折叠.点A是否落在EF上(E、F分别为AB、CD中点)?为什么?15.(邵阳市)如图①.△ABC中.∠ACB=90°.将△ABC沿着一条直线折叠后.使点A与点C重合(图②).(1)在图①中画出折痕所在的直线l.设直线l 与AB,AC分别相交于点D,E.连结CD.(画图工具不限.不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰三角形.(不要求证明)16.(济宁市)如图.先把一矩形ABCD纸片对折.设折痕为MN.再把B点叠在折痕线上.得到△ABE.过B点折纸片使D点叠在直线AD上.得折痕PQ. 求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗?如果相似给出证明.如补相似请说明理由;(3)如果直线EB折叠纸片.点A是否能叠在直线EC上?为什么?17.(临安市)如图.△OAB 是边长为的等边三角形.其中O是坐标原点.顶点B在y轴正方向上.将△OAB 折叠.使点A落在边OB上.记为A′.折痕为EF.(1)当A′E//x轴时.求点A′和E的坐标;(2)当A′E//x轴.且抛物线经过点A′和E时.求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动.但不与点O、B重合时.能否使△A′EF成为直角三角形?若能.请求出此时点A′的坐标;若不能.请你说明理由.18.(南宁市)如图.在锐角△ABC中.BC=9.AH⊥BC于点H.且AH=6.点D为AB边上的任意一点.过点D作DE∥BC.交AC于点E.设△ADE的高AF为x(0<x<6).以DE为折线将△ADE翻折.所得的△A′DE与梯形DBCE重叠部分的面积记为y (点A关于DE的对称点A′落在AH所在的直线上).(1)分别求出当0<x≤3与3<x<6时.y与x 的函数关系式;(2)当x取何值时.y的值最大?最大值是多少?19.(宁夏回族自治区)如图.将矩形纸片ABCD沿对角线BD 折叠.点C落在点E处.BE交AD于点F.连结AE.证明:(1)BF=DF;(2)AE∥BD.参考答案一、1.A 2.B 3.C 4.B 5.C 6.B二、7.64 8.50°三、9. 解:(1)由已知PB平分∠APD.PE平分∠OPF.且PD、PF重合.则∠OPE+∠APB=90°.又∠APB+∠ABP=90°.∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时.y 有最大值.由已知.△PAB、△POE均为等腰直角三角形.可得P(1.0).E(0.1).B(4.3).……6分设过此三点的抛物线为y=ax2+bx+c.则∴y=.由(2)知∠EPB=90°.即点Q与点B重合时满足条件.直线PB为y=x-1.与y轴交于点(0.-1).将PB向上平移2个单位则过点E(0.1).∴该直线为y=x+1.由得∴Q(5.6).故该抛物线上存在两点Q(4.3)、(5.6)满足条件.10. 证明:(1)∵∠PBE+∠ABQ=180°-90°=90°.∠PBE+∠PEB=90°.∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°.∴△PBE~△QAB. (2)∵△PBE~△QAB.∴∵B Q=P B.∴.又∵∠ABE=∠BPE=90°.∴△PBE~△BAE.(3)点A能叠在直线EC上.由(2)得.∠AEB =∠CEB.∴EC和折痕AE重合.11. 解:(1)证明:过C点作CH∥BD.交AB的延长线于点H;连结AC.交EF于点K.则AK=CK.∵AB∥CD.∴BH=CD.BD=CH.∵AD=BC.∴AC=BD=CH.∵CE⊥AB.∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.(2)解:由(1)得BH∥CD.EF∥BD.∴∠AEF=∠ABD.∵AB=7.CD=3. ∴AH=10.∵AE=CE.AE=EH.∴AE=CE=EH=5.∵CE⊥AB.∴CH=5=BD.∵∠EAF=∠BAD.∠AEF=∠ABD.∴△AFE∽△ADB.∴.∴.12. 解:(1)由折纸过程知0<5x<26.,0<x<.(2)图④为轴对称图形.∴A M=.即点M与点A的距离是(13-x)cm.13. 证明:⑴由折叠可知:∠D=∠D′.CD=A D′.∠C=∠D′AE.∵四边形ABCD是平行四边形.∴∠B=∠D.AB=CD.∠C=∠BAD.∴∠B=∠D′.AB=AD′.∠D′AE=∠BAD.即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC.∠4=∠5.∵四边形ABCD是平行四边形.∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC. ∴AF=EC.又∵AF∥EC.∴四边形AECF是平行四边形.∵AF=AE.∴四边形AECF是菱形.14. 解:(1)△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB.∴AN = BN.由折叠知 AB = BN .∴AN = AB = BN. ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°.∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .(2)要在矩形纸片ABCD上剪出等边△BMP.则B C ≥BP.在Rt△BNP中. BN = BA =a.∠PBN =30°. ∴BP =.∴b≥.∴a≤b .∴当a≤b时.在矩形上能剪出这样的等边△BMP.(3)∵∠M′BC =60°. ∴∠ABM′=90°-60°=30°.在Rt△ABM′中.tan ∠ABM′ =. ∴tan3 0°=. ∴AM′ =.∴M′(.2). 代入y=kx中 .得k== .设△ABM′沿BM′折叠后.点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′. ∴∠A′BM′=∠AB M′=30°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH中.A′H =A′B =1.BH= .∴.∴A'落在EF上.(图2)(图3)15.解:(1)如图.等腰三角形DAC.16.(1)证明:∵∠PBE +∠ABQ =180°-90°=90°.∠PBE +∠PEB =90°.∴∠ABQ =∠PEB.又∵∠BPE =∠AQB.∴△PBE ∽△QAB.(2)∵△PBE ∽△QAB.∴.∵BQ =PB.∴.又∵∠ABE =∠BPE =90°.∴△PBE ~△BAE.(3)点A 能折叠在直线EC 上.由(2)得.∠AEB =∠CEB.∴EC 和折痕AE 重合.17. 解:(1)由已知可得∠A'OE=60o , A'E=A E.由A′E//x 轴,得△OA'E 是直角三角形.设A′的坐标为(0.b ).则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E 的坐标分别是(0.1)与(.1).(2)因为A'、E 在抛物线上.所以所以 函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是(-.0)与(.0).(3)不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A三点共线.O与A重合.与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:(1)①当0<x≤3时.由折叠得到的△A'ED落在△ABC内部如图10(1).重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B.∠AED=∠C.∴△ADE∽△ABC.∴.∴.即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴(0<x≤3).②当3<x<6时.由折叠得到的△A'ED有一部分落在△ABC外.如图10(2).重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-(6-x)=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.(2)当0<x≤3时.y的最大值;当3<x<6时.由,可知当x=4时.y的最大值y2=9.∵y1<y2.∴当x=4时.y有最大值y最大=9.19. 证明:(1)能正确说明∠ADB=∠EBD(或△ABF≌△EDF),∴BF=DF.(2)能得出∠AEB=∠DBE(或∠EAD=∠BDA),∴AE∥BD.。

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有以下四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是〔〕A.①②③B.①②④C.②③④D.①②③④解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF〔ASA〕,∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.应选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,假设EB为∠AEG的平分线,EF和BC的延长线交于点H.以下结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤假设,那么.以上命题,正确的有〔〕A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,那么G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,那么有y2+〔2y﹣2x〕2=〔2y﹣x〕2,解得x1=y〔不合题意舍去〕,x2=y.那么,故正确.故正确的有3个.应选B.点评:此题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答此题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,假设CF=1,FD=2,那么BC的长为〔〕A.3B.2C.2D.2解答:解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM〔AAS〕,∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.应选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.那么以下结论:①BG=DE且BG⊥DE;②△ADG 和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的选项是〔〕A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=〔CW+FJ〕=WC=〔BH+HE〕=BE;易证:△ABE≌△DAQ〔SAS〕,∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S▱ADQG,②正确.所以,①②③④都正确;应选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MN∥AB,MC=6,NC=,那么四边形MABN的面积是〔〕A.B.C.D.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.应选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,那么∠A′的大小是〔〕A.40°B.36°C.32°D.30°解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.应选B.点评:此题考查了折叠的性质,解答此题的关键是掌握翻折前后的对应角相等,注意此题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB 与AC重合,得△AB′D,那么△ABC与△AB′D重叠局部的面积为〔〕A.B.C.3﹣D.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C•cos∠B′=〔2﹣2〕×=3﹣,∴DE===,∴S阴影=AC•DE=×2×=.应选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,那么BD的长度为〔〕A.B.C.D.解答:解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,那么CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.应选B.点评:此题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是〔〕A.1 B.C.D.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×〔﹣1〕+×〔﹣1〕〔﹣1〕=1.应选A.点评:此题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。

中考数学专题考试——折叠剪切问题

中考数学专题考试——折叠剪切问题

图 (2) 中考数学专题复习——折叠剪切问题折叠剪切问题是考察学生地动手操作问题,学生应充分理解操作要求方可解答出此类问题.一、折叠后求度数【1】将一张长方形纸片按如图所示地方式折叠,BC 、BD 为折痕,则∠CBD 地度数为( )A .600 B .750 C .900 D .950答案:C【2】如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′地位置,若∠EFB=65°,则∠AED ′等于( )A .50° B .55° C .60° D .65° 答案:A【3】 用一条宽相等地足够长地纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示地正五边形ABCDE,其中∠BAC=度.答案:36°二、折叠后求面积【4】如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 地面积为( )A .4B .6 C .8 D .10图(1)第3题图答案:C【5】如图,正方形硬纸片ABCD 地边长是4,点E 、F 分别是AB 、BC 地中点,若沿左图中地虚线剪开,拼成如下右图地一座“小别墅”,则图中阴影部分地面积是A .2 B .4 C .8 D .10答案:B【6】如图a ,ABCD 是一矩形纸片,AB =6cm ,AD =8cm ,E 是AD 上一点,且AE =6cm.操作:(1)将AB 向AE 折过去,使AB 与AE 重合,得折痕AF ,如图b ;(2)将△AFB 以BF 为折痕向右折过去,得图c.则△GFC 地面积是( )E A A A B B C C C GD D D F F 图a 图b 图c 第6题图A.1cm 2B.2 cm 2C.3 c m 2D.4 cm 2答案:B三、折叠后求长度【7】如图,已知边长为5地等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上地点D 地位置,且ED BC ⊥,则CE 地长是( )(A)15 (B)10-(C)5 (D)20-答案:D 四、折叠后得图形【8】将一张矩形纸对折再对折(如图),然后沿着图中地虚线剪下,得到①、②两部分,将①展开后得到地平面图形是( )A .矩形B .三角形C .梯形D .菱形答案:D【9】在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形地是( )A. B. C. D.答案:D【10】小强拿了张正方形地纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中地虚线(虚线与底边平行)剪去一个角,再打开后地形状应是( )第7题图第8题图第9题图第10题图答案:D 【11】将一圆形纸片对折后再对折,得到图1,然后沿着图中地虚线剪开,得到两部分,其中一部分展开后地平面图形是( )答案:C【12】如图1所示,把一个正方形三次对折后沿虚线剪下,则所得地图形是( )答案:C【13】 如图,已知BC 为等腰三角形纸片ABC 地底边,AD ⊥BC ,AD=BC. 将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等地四边形地个数是( )A.1B.2A B CD 图3图1第12题图C.3D.4答案:D五、折叠后得结论【14】亲爱地同学们,在我们地生活中处处有数学地身影.请看图,折叠一张三角形纸片,把三角形地三个角拼在一起,就得到一个著名地几何定理,请你写出这一定理地结论:“三角形地三个内角和等于_______°.”答案:180【15】从边长为a 地正方形内去掉一个边长为b 地小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证地等式是(A.a 2–b 2 =(a+b)(a-b) B.(a –b)2 = a 2–2ab+b 2C.(a+b)2 =a 2+2ab+ b 2 D.a 2+ ab = a (a+b) 答案:A【16】如图,一张矩形报纸ABCD 地长AB =a cm ,宽BC =b cm ,E 、F 分别是AB 、CD 地中点,将这张报纸沿着直线EF 对折后,矩形AEFD 地长与宽之比等于矩形ABCD 地长与宽之比,则a ∶b 等于( ). A .1:2B .2:1C .1:3D .3:1答案:A六、折叠和剪切地应用【17】将正方形ABCD 折叠,使顶点A 与CD 边上地点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图).(1)如果M 为CD 边地中点,求证:DE ∶DM ∶EM=3∶4∶5;第15题图(1)第17题图 (2)ABCDEF MG第19题图(2)如果M 为CD 边上地任意一点,设AB=2a ,问△CMG 地周长是否与点M 地位置有关?若有关,请把△CMG 地周长用含DM 地长x 地代数式表示;若无关,请说明理由.答案:(1)先求出DE=AD 83,AD DM 21=,AD EM 85=后证之. (2)注意到△DEM ∽△CMG ,求出△CMG 地周长等于4a ,从而它与点M 在CD 边上地位置无关.【18】同学们肯定天天阅读报纸吧?我国地报纸一般都有一个共同地特征:每次对折后,所得地长方形和原长方形相似,问这些报纸地长和宽地比值是多少?答案:2∶1.【19】用剪刀将形状如图1所示地矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 地中点.用这两部分纸片可以拼成一些新图形,例如图2中地Rt △BCE 就是拼成地一个图形.(1)用这两部分纸片除了可以拼成图2中地Rt △BCE外,还可以拼成一些四边形.请你试一试,把拼好地四边形分别画在图3、图4地虚框内.(2)若利用这两部分纸片拼成地Rt △BCE 是等腰直角三角形,设原矩形纸片中地边AB 和BC 地长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 地方程01)1(2=++--m x m x 地两个实数根,试求出原矩形纸片地面积.答案:(1)如图(2)由题可知AB =CD =AE ,又BC =BE =AB +AE∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 地两根E B A C B A M C D M 图3 图4 图1 图2 第21题图 BACBAMCE M图3图4E第21题答案图∴⎩⎨⎧+=⋅-=+1212m a a m a a消去a ,得 071322=--m m 解得 7=m 或21-=m 经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去. 7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片地面积为8c m 2.【20】电脑CPU 蕊片由一种叫“单晶硅”地材料制成,未切割前地单晶硅材料是一种薄型圆片,叫“晶圆片”.现为了生产某种CPU 蕊片,需要长、宽都是1cm 地正方形小硅片若干.如果晶圆片地直径为10.05cm.问一张这种晶圆片能否切割出所需尺寸地小硅片66张?请说明你地方法和理由.(不计切割损耗)答案:可以切割出66个小正方形. 方法一:(1)我们把10个小正方形排成一排,看成一个长条形地矩形,这个矩形刚好能放入直径为10.05cm 地圆内,如图中矩形ABCD.∵AB =1 BC =10∴对角线2AC =100+1=101<205.10(2)我们在矩形ABCD 地上方和下方可以分别放入9个小正方形.GFH E D C B A∵新加入地两排小正方形连同ABCD 地一部分可看成矩形EFGH ,矩形EFGH 地长为9,高为3,对角线9098139222=+=+=EG <205.10.但是新加入地这两排小正方形不能是每排10个,因为:109910031022=+=+>205.10(3)同理:8925645822=+=+<205.1010625815922=+=+>205.10∴可以在矩形EFGH 地上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层.(4)再在原来地基础上,上下再加一层,共7层,新矩形地高可以看成是7,那么新加入地这两排,每排都可以是7个但不能是8个.∵9849497722=+=+<205.1011349647822=+=+>205.10(5)在7层地基础上,上下再加入一层,新矩形地高可以看成是9,这两层,每排可以是4个但不能是5个.∵9781169422=+=+<205.1010681259522=+=+>205.10现在总共排了9层,高度达到了9,上下各剩下约0.5cm 地空间,因为矩形ABCD 地位置不能调整,故再也放不下一个小正方形了.∴10+2×9+2×8+2×7+2×4=66(个) 方法二:学生也可能按下面地方法排列,只要说理清楚,评分标准参考方法一. 可以按9个正方形排成一排,叠4层,先放入圆内,然后: (1)上下再加一层,每层8个,现在共有6层.(2)在前面地基础上,上下各加6个,现在共有8层. (3)最后上下还可加一层,但每层只能是一个,共10层. 这样共有:4×9+2×8+2×6+2×1=66(个)【21】在一张长12cm 、宽5cm 地矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点地方法折出菱形EFGH (见方案一),张丰同学沿矩形地对角线AC 折出∠CAE=∠DAC ,∠ACF=∠ACB 地方法得到菱形AECF (见方案二),请你通过计算,比较李颖同学和张丰同学地折法中,哪种菱形面积较大?答案:(方案一)4151254622AEHS S S=-=⨯-⨯⨯⨯矩形菱形230(cm )=(方案二)设BE=x ,则CE=12-xAE ∴由AECF 是菱形,则AE 2=CE 22225(12)x x ∴+=-11924x ∴=2ABES S S-矩形菱形=111912525224=⨯-⨯⨯⨯35.21(m)≈比较可知,方案二张丰同学所折地菱形面积较大.【22】正方形提供剪切可以拼成三角形.方法如下:(方案一)ADEFBC (方案二)第23题图仿上面图示地方法,及韦达下列问题: 操作设计:(1)如图(2),对直角三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形等面积地矩形.(2)如图(3)对于任意三角形,设计一种方案,将它分成若干块,再拼成一个原三角形等面积地矩形.答案:(1)(2)略.【23】如图,⊙O 表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到地扇形面中地一个再等分成4个扇形;以后按第2次剪裁地作法进行下去.(1)请你在⊙O 中,用尺规作出第2次剪裁后得到地7个扇形(保留痕迹,不写作法). (2)请你通过操作和猜想,将第3、第4和第n 次裁剪后所得扇形地总个数(S)填入下表第24题图(2) 第24题图(3) 方法一: 方法二:第24题答案图(1) 第24题答案图(2)第25题图 O(3)请你推断,能不能按上述操作过程,将原来地圆形纸板剪成33个扇形?为什么? 答案:(1)由图知六边形各内角相等. (2) 七边形是正七边形.(3)猜想:当边数是奇数时(或当边数是3,5,7,9,…时),各内角相等地圆内接多边形是正多边形.【24】如图,若把边长为1地正方形ABCD 地四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1.试问怎样剪,才能使剩下地图形仍为正方形,且剩下图形地面积为原正方形面积地95,请说明理由(写出证明及计算过程).答案:剪法是:当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1为正方形,且S=95.在正方形ABCD 中, AB=BC=CD=DA=1,∠A=∠B=∠C=∠D=90°. ∵AA 1=BB 1=CC 1=DD 1, ∴A 1B=B 1C=C 1D=D 1A.∴△D 1AA 1≌△A 1BB 1≌△B 1CC 1≌△C 1DD 1. ∴D 1A 1=A 1B 1=B 1C 1=C 1D 1,∴∠AD 1A 1=∠BA 1B 1=∠CB 1C 1=∠DC 1D 1. ∴∠AA 1D+∠BA 1B 1=90°,即∠D 1A 1B 1=90°. ∴四边形A 1B 1C 1D 1为正方形.设AA 1=x , 则AD 1=1-x.∵正方形A 1B 1C 1D 1地面积=95, ∴S △AA1D1=91 即21x(1-x)=91, 整理得9x 2-9x+2=0.解得x 1=31,x 2=32. 当AA 1=31时,AD 1=32,当AA 1=32时,AD 1=31.∴当AA 1=BB 1=CC 1=DD 1=31或32时, 四边形A 1B 1C 1D 1仍为正方形且面积是原面积地95.折叠问题专题研究上虞市滨江中学 潘建德一、教学目标:1、理解折叠问题地本质2、了解折叠问题解题策略,学会应用这些策略解决折叠问题3、渗透方程思想及中考复习以“本”为本地导向 二、教学重点:通过动手操作、应用轴对称性解决折叠问题 三、教学难点:折叠型综合题地分析 四、教学过程:1、引入:出示08绍兴8题:将一张纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ(如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1地形状,则CPD ∠地大小是( )A .120 B .90 C .60 D .45此题凸显地主题是图形地折叠,折叠问题在近几年地中考中越来越常见,据统计,在08年我省11个地区地中考卷中有7个地区都出现了折叠型考题,其中有5个地区中考卷地压轴题是折叠型问题,包括绍兴地区,折叠问题已成为中考地热门问题之一.点出课题.2、解题策略(一)——重过程“折”(1)如何迅速且准确地解决08绍兴卷第8题?(学生:动手折一折)学生动手操作,后教师归纳:题型一:考察空间想象能力与动手操作能力地实践操作题.解题策略:重过程——“折”.(2)学生进一步尝试.题2:(2008山东东营)将一正方形纸片按下列顺序折叠,然A.B.C.D.AB CDFE 后将最后折叠地纸片沿虚线剪去上方地小三角形.将纸片展开,得到地图形是()3、解题策略(二)——重本质“叠”(1)本质探究:题3:如图,长方形ABCD沿AE折叠,使D落在边BC上地F点处,如果∠BAF=30°,AD=2,则∠DAE=___,EF=_______.学生解决后讲解方法,教师:显然,折叠问题不能只靠动手操作来解决,我们必须透过现象看本质.那么折叠地本质是什么呢?学生讨论后教师归纳:折叠问题地实质是图形地轴对称变换,所以在解决折叠问题时可以充分运用轴对称地思想和轴对称地性质.根据轴对称地性质可以得到:(1)轴对称是全等变换:折叠重合部分一定全等(有边、角地相等);(2)点地轴对称性:互相重合两点(对称点)之间地连线必被折痕(对称轴)垂直平分(有Rt△,可应用勾股定理得方程).(2)初步应用:题4:08丽水8:如图,在三角形ABC中,AB>AC,D、E分别是AB、AC上地点,△ADE沿线段DE翻折,使点A落在边BC上,记为A'.若四边形ADA E'是菱形,则下列说法正确地是()A.DE是△ABC地中位线B.AA'是BC边上地中线C.AA'是BC边上地高D.AA'是△ABC地角平分线分析:此题虽有多种说明方法,即可应用折叠地全等性得到,也可根据折叠地点轴对称性得到.(3)题5:09绍兴市属期末23.(本题满分12分)课堂上,老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:在一张长方形ABCD纸片中,AD=25cm, AB=20cm.现将这张纸片按如下列图示方式折叠,分别求折痕地长.(1) 如图1, 折痕为AE;(2) 如图2, P,Q分别为AB,CD地中点,折痕为AE;(3) 如图3, 折痕为EF.ACDEA'(第8题)分析:题(1)题(2)主要应用折叠地全等性,题(3)连结对称点地连线BD ,根据折叠中点地轴对称性得EF 是BD 地中垂线,BO=4125,同时根据矩形地中心对 称性知,EF=2E0,在Rt △CDE 中,根据勾股定理可解得DE=241,根据折叠全等性得BE=DE=241,在Rt △BOE 中根据勾股定理得EO=412,故EF=414.由此题得心得:在解决折叠类计算题时,根据Rt △地勾股定理应用方程思想是常用方法. 题后说明:此题(2)是课本习题原题,(1)、(3)都根据课本原题改变而成.根据课本原题改变成中考题,是中考卷出题地一个新地方向,所以我们在中考复习中仍应以“本”为本,不断对课本习题进行探索和挖掘.(4)题6:08绍兴24题(2)(3)(简述):将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.6OP t =-,23OQ t =+. (1)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上地点D 处,求点D地坐标;(2)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PE 与AC 能否垂直?此题(1)让学生自己解决,教师适当点拨.题(2)根据情况可留作课后解决,教师点透解题地着眼点.4、反思小结:折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力地实践操作题,到直接运用折叠相关性质地说理计算题,发展到基于折叠操作地综合题,甚至是压轴题.其中“折”是过程,“叠”是结果.折叠问题地实质是图形地轴对称变换,所以在解决有关地折叠问题时可以充分运用轴对称地思想和轴对称地性质.借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.图1 (第24题图)初中几何综合复习(讲稿)—矩形折叠问题同学们好,今天我和大家一起研究平面图形地折叠问题.首先,在最近几年地中考中题折叠问题中频频出现,这对于我们识别和理解几何图形地能力、空间思维能力和综合解决问题地能力都提出了比以往更高地要求.希望通过今天地讨论,使同学们对折叠问题中有关地几何图形之间地位置关系和数量关系有进一步认识;在问题分析和解决地过程中巩固头脑中已有地有关几何图形地性质以及解决有关问题地方法;并在观察图形和探索解决问题地方法地过程中提高分析问题和解决问题地能力.那么,什么是折叠问题呢?这个问题应分两个方面,首先什么是折叠,其次是和折叠有关地问题.下面我们将对它们分别进行讨论一. 折叠地意义1.折叠,就是将图形地一部分沿着一条直线翻折180º,使它与另一部分在这条直线地同旁,与其重叠或不重叠;显然,“折”是过程,“叠”是结果.如图(1)是线段AB沿直线l折叠后地图形,其中OB'是OB在折叠前地位置;图(2)是平行四边形ABCD沿着对角线AC折叠后地图形,△ABC是△AB'C在折叠前地位置,它们地重叠部分是三角形;(2)图形在折叠前和折叠后翻折部分地形状、大小不变,是全等形如图(1)中OB'=OB;如图(2),△AB'C≌△ABC;(3) 图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称如图(1)OB'和OB关于直线l成轴对称;如图(2)△AB'C和△ABC关于直线AC成轴对称.二.和折叠有关地问题图形经过折叠,其翻折地部分折叠前地图形组合成新地图形,新地图形中有关地线段和角地位置、数量都有哪些具体地关系呢?这就是我们今天要重点讨论地问题.下面,我们以矩形地折叠为例,一同来探讨这个问题.问题1:将宽度为a地长方形纸片折叠成如图所示地形状,观察图中被覆盖地部分△A'EF.(a)△A'EF是什么三角形?结论:三角形AE'F是等腰三角形证明:方法一,∵图形在折叠前和折叠后是全等地,∴∠1= ∠2,又∵矩形地对边是平行地∴∠1=∠3,∴∠2=∠3,∴A'E=A'F三角形AE'F是等腰三角形方法二:∵图形在折叠前和折叠后地形状、大小不变,只是位置不同∴表示矩形宽度地线段EP和FQ相等,即∆A'EF地边A'E和A'F上地高相等,∴A'E=A'F三角形AE'F是等腰三角形(b)改变折叠地角度α地大小,三角形A'EF地面积是否会改变?为什么?答:不会改变.分析:α地改变影响了A'E地长度,但却不能改变边A'E上地高,三角形A'EF地面积会随着α地确定而确定.例一:在上面地图中,标出点A'在折叠前对应地位置A,四边形A'EAF是什么四边形?分析:(1)由前面地分析可知A'与A'在折叠前地位置A关于折痕EF成轴对称,所以作A'关于EF地对称点即可找到点A(过点A'作A'A⊥ EF交矩形地边于点A). 同学们还可以动手折叠一下,用作记号地方法找到点A.(2)四边形AEA'F是菱形证法一:∵ A是A'在折叠前对应地位置,∴A和A'关于直线EF轴对称,∴AA'⊥EF,且AO=A'O,又∵AE∥A'F,∴EO∶OF=AO∶OA',∴EO=OF∴四边形AEA'F是菱形证法二:A是A'在折叠前对应地位置,∴∆AEF≌∆A'EF,A'E=A'E,AF=AF,又∵∆AEF是等腰三角形(已证),A'E=A'F,∴A E=AF=A'E=A'F,∴四边形AEA'F是菱形.例2.在上题地图中,若翻折地角度α=30°,a=2,求图中被覆盖地部分△A'EF.地面积..分析:图中被覆盖地部分△A'EF是等腰三角形,其腰上地高就是原矩形地宽度2,所以,本题地解题关键就是要求出腰A'F 或A'E地长.答:S四边形AEA'F=2S△A'EF=(8/3)√3(解答过程略)练一练:当α地大小分别45°、60°时,图中被覆盖地部分△A'EF.地面积是多少?例题3. 如图:将矩形ABCD对折,折痕为MN,再沿AE折叠,把B点叠在MN 上,(如图中1地点P),若AB=√3,则折痕AE地长为多少?分析:折痕AE为直角三角形ABE地斜边,故解决本题地关键是求PE(或BE)地长.解法一:由折叠地意义可知,AP⊥EP,延长EP交AD于F, 则FE=FA(在问题一中已证)∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶1,又∠APE= ∠D=90°, ∴AE=AF∴AE=AF=EF,∴ ∠1= ∠2=30°,∠1=30°∴AE=2.∵ M、N分别是矩形地边AB和CD地中点,∴MN∥AD ∥BC且AN是AP地一半∴ MN⊥AN∴AE=AF又FE=FA(问题1地结论)∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴AE=2.由BC∥MN∥DA且M、N分别为CD和AB地中点可得EP=PF,EO=AO∴PO=AF,又PO=AE,∴AE=AF∴AE=AF=EF,∠EAF=60°(其余同上)例题4.在例3中,若M、N分别为CD、AB地三等分点(如图),AB=√5,其他条件不变,折痕AE地长为多少?分析:本题与上一题略有不同,MN由原来地二等分线变为三等分线,其他条件不变.所以本题地解题关键还是求出EB(或EP)地长解:延长EP交AD于F, 则FE=FA(已证)∵ M、N分别是矩形地边AB和CD地三等分点∴MN∥AD∥BC且EP∶PF=BN∶NA=1∶2,设EP=x, 则PF=2x, AF=EF=3x,在直角三角形APF中有AP²+PF²=AF²∴5+(2x)²=(3x)²,∴x=1, ∴AE²=1+5=6,∴AE=√6例4 如图3,有一张边长为3地正方形纸片(ABCD),将其对折,折痕为MN,再将点B折至折痕MN上,落在P点地位置,折痕为AE.(1)求MP地长;(2)求以PE为边长地正方形地面积.分析:将本题与例题2比较,不难看出它们地共同之处,显然,解决本题地关键是求PE和PN地长解法一:延长EP交AD地延长线于F, 则FE=FA(已证)M、N分别是矩形地边AB和CD地中点,∴ MN∥AD ∥B C且AN是AP地一半∴MN⊥AN∴AE=AF∴AE=AF=EF, ∴ ∠1=∠2=30°,∠1=30°∴PN=(3/2)√3,(1)∴MP=1-PN=3-(3/2)√3,又AP=3,∴EP=√3,(2)∴以EP为边长地正方形地面积为3.其他解法请同学们思考.例5.如图,将矩形ABCD折叠,使C点落在边AB上,(如图中地M点),若AB=10,BC=6,求四边形CNMD地面积分析:本题与上一题区别在于点C折叠后落在矩形地边AB上,由折叠地意义可以知道,ΔACN和ΔAMN是全等地,所以,求四边形CNMD地面积地关键就是求ΔDCN或ΔDMN地面积,所以本题地解题关键还是求出NC(或BN)地长.解:在直角三角形ADM中,AD=6,DM=DC=10,由勾股定理可以求得AM=8.BM=10-8=2. 设NC=x,则MN=x,BN=6-x,在Rt△BMN中,MN2=BN2+BM2∴x2=(6-x)2+4∴x=10/3S四边形CNMD =2S△DCN=(10/3)*10=100/3例6.将长为8,宽为6地矩形ABCD折叠,使B、D重合,(1)求折痕EF地长.(2)求三角形DEF地面积分析:由矩形折叠地意义可知,EF垂直平分BD(O为BD地中点由AB//DC可得EO:FO=BO:DO=1:1 ∴O为EF地中点,所以可设法先求出EO地长,或直接求EF地长,进而求三角形DEF面积.解(法一):∵D、B关于EF成轴对称∴EF垂直平分DB,又DC⊥CB,∴△DOE∽△DCB在Rt△DCB中,由勾股定理可得BD=10又AB∥DC∴EO:OF=DO:OB∴DO=5(1)由△DOE∽△DCB得DO:DC=DE:BC∴EO:6=5:8∴EO=15/4∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=75/4(2)S△DEF解(法二):(1)过C作CP∥EF,交AB于P∵EF⊥DB∴CP⊥DB易得△CBP∽△DCB∴CP:BD=CB:DC∴CP=10*6/28=15/2∴EF=15/2=(1/2)EF•DO=(1/2)×(15/2)×5=(2)S△DEF75/4同学们,图形折叠问题中题型地变化比较多,但是经过研究之后不难发现其中地规律,从今天我们对矩形折叠情况地讨论中可以得到以下几点经验:1.图形地翻折部分在折叠前和折叠后地形状、大小不变,是全等形;2图形地翻折部分在折叠前和折叠后地位置关于折痕成轴对称;3.将长方形纸片折叠成如图所示地形状,图中重叠地部分△AE'F是等腰三角形;4.解决折叠问题时,要抓住图形之间最本质地位置关系,从而进一步发现其中地数量关系;5.充分挖掘图形地几何性质,将其中地基本地数量关系,用方程地形式表达出来,并迅速求解,这是解题时常用地方法之一.今天地讨论就到这里,最后祝同学们在中考中取得好地成绩.中考专题复习——折叠问题动手折一折,并思考:(1)用一张矩形地纸,通过折叠,使较短地边AB 落在较长地边AD 上,分析重叠部分展开后地形状.(2)将一张正方形纸,通过两次对折,成为一个正方形,再折叠一次,分析折痕所围成地图形.题组一:(1)如图(1),点E 是矩形ABCD 地边CD 上地点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上地F 点处,如果∠BAF =60o ,则∠DEA =____________.(2)如图(2),已知:点E 是正方形ABCD 地BC 边上地点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.(3)如图(3),AD 是△ABC 地中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C ´地位置,若BC =2,则BC ´=_________. 图(1)图(2)题组二: 图(3)(4)如图(4),已知矩形ABCD 中,AD =8,AB =4.沿着对角线BD 将矩形ABCD 折叠,使点C 落在C ´处,BC ´交AD 于E .求出未知地线段. A BCDEABCDA BCD(5)如图(5),矩形ABCD 地长、宽分别为5和3,将顶点C 折过来,使它落在AB 上地C ´点(DE 为折痕),那么阴影部分地面积是________.图(4) 图(5)题组三:(6)如图(6),P 是以AB 为直径地半圆上地一点,PA =4,AB =10,将半圆折叠使弦PA 正好落在AB上,则折痕AC 地长为___________.图(6)(7)如图(7),把正三角形ABC 地外接圆对折,使点A 落在弧BC 地中点A ´,若BC =6,则折痕在△ABC 内地部分DE 地长为_____.提高题:(1)一张宽为3、长为4地矩形纸片ABCD ,先沿对角线BD 对折,点C 落在C ´地位置,BC ´交AD 于G (如图8).再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M (如图9),则ME 地长为__________.C ´GABCDA BCDABCPP ´B A DA DC ´图(9)图(8)(2)如图(10),在矩形ABCD 中,AB =2,AD =1,如图将矩形折叠使B 点落在AD 上,设为B ’,顶点C 到C ’点,B ’C ’交DF 于G .(1) 求证:△AB ’E ∽△C ’GF ;(2)若AB ’=x ,S B ’EFC ’=y ,求y 关于x 之间地函数解析式; (3)当B ’在何处时,y 地值最小,y 地最小值是多少?图(10)折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质.轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上. 压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠地选择题填空题,很有必要.1、(2009年浙江省绍兴市)如图,D E ,分别为ABC △地AC ,BC 边地中点,将此三角形沿DE 折叠,使点C 落在AB 边上地点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°C ´A BC D EFB ´G图(7)(第18题图)AC B2、(2009湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=()A .40° B .30°C .20°D .10°3、(2009年日照市)将三角形纸片(△ABC )按如图所示地方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点地三角形与△ABC 相似,那么BF 地长度是.4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上地高.将△ABC 按如图所示地方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 地周长为A .9.5B .10.5C .11D .15.55、(2009泰安)如图,在Rt △ABC 中, ∠ACB=90°,∠A <∠B ,沿△ABC 地中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 地值为.6、(2009年上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上地点,联结AM(如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 地中点处,那么点M 到AC 地距离是.第2题图 A 'BD AC7、(2009宁夏)如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上地中线,将ADC △沿AC 边所在地直线折叠,使点D 落在点E 处,得四边形ABCE . 求证:EC AB ∥.8、(2009年清远)如图,已知一个三角形纸片ABC ,BC 边地长为8,BC 边上地高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 地长为x ,MN 上地高为h .(1)请你用含x 地代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面地点为1A ,1A MN △与四边形BCNM 重叠部分地面积为y ,当x 为何值时,y 最大,最大值为多少?A图3BM C BC NM AE C B A D。

中考数学复习---矩形中的折叠变换专题训练(含答案)

中考数学复习---矩形中的折叠变换专题训练(含答案)

中考数学复习---矩形中的折叠变换专题训练1.如图,将矩形ABCD折叠,使点A与点C重合,折痕交BC、AD分别于点E、F.若AB=4,BC=8,则菱形AECF的面积为______,OE的长为_______。

2.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于_______3.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________4.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.若△OCP与△PDA的面积比为1:4,则边AB的长为_____.5.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.连接DE,交AF与O点,则线段EG、GF、AF之间的数量关系是__________。

6.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕的长为AE________.7.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为______8.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE 折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为________.9.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为________.10.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C 的对应点为C′.(1)若点C′刚好落在对角线BD上时,BC′=________;(2)若点C′刚好落在线段AB的垂直平分线上时,则CE的长为_______;(3)若点C′刚好落在线段AD的垂直平分线上时,则CE的长为_______.11.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AB与CD重合,折痕为MN,展平后再过点B折叠矩形纸片,使点A落在MN上的点G处,折痕BE与MN相交于点H;再次展平,连接BG,EG,延长EG交BC于点F.有如下结论:①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF =3S△DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF(ASA),∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF =3S△EMF=3S△DEF;故④正确.故选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G 处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有()A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,则G是BH边的中线,∴△BEG和△HEG 的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,则有y2+(2y﹣2x)2=(2y﹣x)2,解得x1=y(不合题意舍去),x2=y.则,故正确.故正确的有3个.故选B.点评:本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3B.2C.2D.2解答:解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.故选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是()A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ ,∴WB=EJ,又WN=NJ ,∴WN﹣WB=NJ ﹣EJ ,∴BN=NE,③正确;∵MN 是梯形WGFC 的中位线,WB=BE=BH+HE , ∴MN=(CW+FJ )=WC=(BH+HE )=BE ;易证:△ABE≌△DAQ(SAS ),∴AK=AQ=BE ,∴MN∥AK 且MN=AK ;四边形AKMN 为平行四边形,④正确.S △ABE =S △ADQ =S △ADG =S ?ADQG ,②正确.所以,①②③④都正确;故选D .点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN 的面积是()A.B.C.D.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM?CN=×6×2=6,∴S△CAB =4S△CMN=4×6=24,∴S四边形MABN =S△CAB﹣S△CMN=24﹣6=18.故选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,则∠A′的大小是()A.40°B.36°C.32°D.30°解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.点评:本题考查了折叠的性质,解答本题的关键是掌握翻折前后的对应角相等,注意本题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,已知△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为()A.B.C.3﹣ D.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C?cos∠B′=(2﹣2)×=3﹣,∴DE===,∴S=AC?DE=×2×=.阴影故选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,已知△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,则BD的长度为()A.B.C. D.解答:解:作CF⊥AB于点F.∵∠CA B=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CD E中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,则CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.故选B.点评:本题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB 沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1 B.C.D.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE =S△ABD+S△BED+S△ADE=2S△ABD +S△ADE=2×BC?AD+AD?ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选A.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。

相关文档
最新文档