八年级下册数学《分式》分式方程 知识点整理
第16讲 分式方程八年级数学下册同步讲义(北师大版)
![第16讲 分式方程八年级数学下册同步讲义(北师大版)](https://img.taocdn.com/s3/m/37ea3c1186c24028915f804d2b160b4e767f81ca.png)
第16讲分式方程目标导航2.通过将简单的分式方程转化为整式方程进行求解,领会分式方程“整体化”的化归思想和方法;3.理解增根的概念,会检验分式方程的根;4.会用分式方程解决相关问题,并进行简单的应用.知识精讲知识点01 分式方程的定义分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【知识拓展】(2021秋•平罗县期末)下列方程中,不是分式方程的是()A.B.C.D.【即学即练】(2021秋•西峰区期末)下列关于x的方程是分式方程的是()A.B.C.D.知识点02 分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.【知识拓展】(2022春•北碚区校级月考)若实数a使关于x的分式方程有正整数解,且使关于y的一元一次不等式组至少有4个整数解,则符合条件的所有整数a之和为()A.12B.15C.19D.22【即学即练】(2022春•沙坪坝区校级月考)若关于x的不等式组有且只有四个整数解,且关于y的分式方程的解为非负整数,则所有满足条件的整数a的值的和是()A.2B.0C.1D.﹣1知识点03 解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.【知识拓展】(2022•德城区校级开学)方程的解为()A.B.﹣4或1C.﹣4D.无解【即学即练1】((2022•江汉区模拟)方程的解为.【即学即练2】((2021秋•利通区校级期末)若分式值相等,则x的值为.知识点04换元法解分式方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.【知识拓展】(2021春•淮安月考)用换元法解分式方程x2+2x﹣=8,若设x2+2x=y,则原方程可化为()A.20y2+8y﹣1=0B.y2﹣8y﹣20=0C.y2+8y﹣20=0D.8y2﹣20y+1=0【即学即练】(2021春•宝山区校级月考)用换元法解方程时,设,则原方程可变形为()A.y2+y=4B.y2+y=2C.y2+y=6D.y2﹣y=4知识点05分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.【知识拓展】(2021秋•开福区校级期末)若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6【即学即练】(2021秋•德江县期末)关于x的方程有增根,则m的值是()A.0B.2或3C.2D.3知识点06由实际问题抽象出分式方程由实际问题抽象出分式方程的关键是分析题意找出相等关系.(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.【知识拓展】(2022•罗山县校级模拟)郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x人,则依题意,可列方程为()A.B.C.D.【即学即练】(2021秋•和硕县校级期末)在新农村建设中,为了美化乡村,八年级同学积极参加植树造林,已知八(1)班每天比八(2)班每天多植5棵树,八(1)班植80棵树所用的天数与八(2)班植70棵树所用的天数相等,若设八(1)班每天植x棵,根据题意列出的方程是()A.B.C.D.知识点07分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【知识拓展】(2022•麻栗坡县校级模拟)根据云南省《关于加快推进城镇老旧小区改造工作的指导意见》,在2021年底要基本完成云南全省城镇老旧小区改造提升工作.某小区计划对面积为1200m2的区域进行停车位改造,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的2倍,如果两队各自独立完成面积为400m2区域的改造时,甲队比乙队少用4天.求甲、乙两工程队每天各能完成多少面积的停车位改造?【即学即练1】(2021秋•利通区校级期末)“阅读陪伴成长,书香润泽人生,”吴忠市第四中学为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同,求每本A类图书和每本B类图书的价格各为多少元?【即学即练2】(2021秋•绵阳期末)精强硅谷,有众多高科技产业,红旗电子科技公司是通讯设备、电源设备及消费类电子产品生产厂商,提供各类高分子材料、热传导材料、绝缘材料、缓冲及防尘材料.该公司今年承包了一手机品牌某一热传导材料零部件的生产任务,原计划在规定时间内生产24000个热传导材料零部件,由于此零件紧缺,需要提前5天供货,该公司经商议后,决定将工作效率比原计划提高25%,结果按预期刚好提前5天完成任务,求原计划每天生产的零件个数和规定的天数.能力拓展一.选择题(共3小题)1.(2021•大渡口区自主招生)如果关于x 的分式方程+=1有非负整数解,关于y 的不等式组有且只有三个整数解,则所有符合条件的整数m的个数为()A.0B.1C.2D.32.(2020•渝北区自主招生)若a为整数,关于x 的不等式组有且只有两个整数解,且关于y的分式方程﹣=1有整数解,则满足上述条件的整数a的和为()A.﹣1B.﹣3C.﹣5D.﹣63.(2020•武昌区校级自主招生)若关于x 的方程++=0只有一个实数根,则实数a的所有可能取值的和为()A.7B.15C.31D.以上选项均不对二.填空题(共4小题)4.(2021•黄州区校级自主招生)黄冈首届半程马拉松于5月6日在遗爱湖公园起跑,小林与小雨两名同学为参加比赛,在学校运动场400米环形跑道上进行训练,两人各自以恒定的速度沿逆时针方向跑步,已知每隔12分钟小林追上小雨一次,小林每圈花费的时间比小雨少10秒,则小林跑步的速度为每秒米.5.(2019•顺庆区校级自主招生)已知x满足﹣x2﹣2x=1,那么x2+2x=.6.(2020•巴南区自主招生)若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.7.(2019•达州自主招生)已知a2﹣6a+1=0且=2,则m=.三.解答题(共5小题)8.(2020•宝山区校级自主招生)解关于x的方程a(x﹣1)++3=0.9.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?10.(2020•浙江自主招生)已知关于x的方程﹣=恰好有一个实数解,求k的值及方程的解.11.(2020•渝中区校级自主招生)2020年2月,因新冠肺炎确诊病例不断增加,湖北某医疗救治中心计划购买一批无创呼吸机和双向呼吸机,两款共200台,预算分别为56万元和156万元.已知每台双向呼吸机的售价是每台无创呼吸机售价的2倍少1000元.(1)求该救治中心计划分别购进无创呼吸机和双向呼吸机各多少台?(2)为了表达对湖北疫区人民支持,呼吸机生产厂家立即对两款呼吸机均进行打折零利润销售,实际售价均在原售价的基础上下降了a%,根据救治中心一线医护人员的实际需求,双向呼吸机的实际购买量比原计划增加了a%,结果购买双向呼吸机比购买无创呼吸机多花费了90.4万元,求a的值.12.(2020•谷城县校级自主招生)若关于x的方程只有一个解(相等的解也算作一个),试求k的值与方程的解.分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•樊城区期末)随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x套,根据题意,下列方程正确的是()A .B .C .D .2.(2021秋•河西区期末)方程的解为()A.1B.3C.4D.无解3.(2021秋•惠州期末)把分式方程=转化成整式方程时,方程两边同乘()A.x B.x﹣2C.x(x﹣2)D.3x(x﹣2)4.(2021秋•公安县期末)已知关于x 的方程的解为正数,则k的取值范围为()A.k>﹣2且k≠﹣1B.k>﹣2C.k>0且k≠1D.k<﹣25.(2021秋•德江县期末)关于x 的方程有增根,则m的值是()A.0B.2或3C.2D.3二.填空题(共5小题)6.(2021秋•孟村县期末)现有6000米的钢轨需要铺设,为确保通车时间,实际施工时每天铺设的长度是原计划的2倍,结果提前15天完成任务.设原计划每天铺设钢轨x米.(1)根据题意,可列分式方程为;(2)实际施工时每天铺设钢轨的长度为米.7.(2022•仁寿县模拟)已知关于x的方程=5的解不是正数,则m的取值范围为.8.(2021秋•宜城市期末)若关于x的分式方程无解,则m的值为.9.(2021秋•新田县期末)解关于x的分式方程=时不会产生增根,则m的取值范围是.10.(2021秋•曲阳县期末)A、B两地相距1350km,两辆汽车从A开往B地,大汽车比小汽车晚到30min,已知小汽车与大汽车的速度之比为5:3,求两车的速度,设大汽车的速度为3xkm/h,小汽车的速度为5xkm/h,所列方程是.三.解答题(共2小题)11.(2021秋•昌吉市校级期末)解方程:(1)=;(2)﹣=1.12.(2022•淮北模拟)解分式方程:+3=.题组B 能力提升练一.选择题(共5小题)1.(2022•开州区模拟)若关于x的一元一次不等式组的解集为x<﹣2,且关于y的分式方程的解为负整数,则所有满足条件的整数a的值之和是()A.﹣15B.﹣13C.﹣7D.﹣52.(2021秋•钢城区期末)若关于x的分式方程有正数解,则m的取值范围为()A.m<2B.m≠3C.﹣3<m<﹣2D.m<2且m≠﹣33.(2021秋•平舆县期末)若关于x的方程=a无解,则a的值为()A.1B.﹣1C.0D.±14.(2022•北碚区校级开学)若关于x的一元一次不等式组的解集恰好有3个负整数解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为()A.6B.9C.﹣1D.25.(2021秋•晋安区期末)若关于x的分式方程=无解,则k的值为()A.1或4或﹣6B.1或﹣4或6C.﹣4或6D.4或﹣6二.填空题(共2小题)6.(2022•任城区一模)关于x的分式方程的解是正数,则a的取值范围是.7.(2021秋•绵阳期末)若关于x的方程的解为整数,则满足条件的所有整数a的和等于.三.解答题(共8小题)8.(2021秋•江源区期末)学习分式方程应用时,老师板书的问题和两名同学所列的方程如下:15.3分式方程甲乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度?聪聪:=明明:﹣=20根据以上信息,解答下列问题:(1)选择:聪聪同学所列方程中的x表示,明明同学所列方程中的y表示;A.甲队每天修路的长度;B.乙队每天修路的长度;C.甲队修路400米所用的时间.(2)你喜欢列的方程,该方程的等量关系为;(3)解(2)中你所选择的方程,并回答老师提出的问题.9.(2021秋•濮阳期末)为了做好防疫工作,保障员工安全健康,某公司用480元购进一批某种型号的口罩.由于质量较好,公司又用720元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜4元,问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?10.(2021秋•密山市期末)(1)已知x(x﹣1)﹣(x2﹣y)=﹣6,求﹣xy的值.(2)虎林市政府倡导开展“共建绿色家园”,八年级甲、乙两个班的同学参加植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?(用方程解答)11.(2021秋•青县期末)为响应“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?12.(2021秋•老河口市期末)某商家预测一种商品能畅销市场,就用4000元购进一批这种商品,这种商品面市后果然供不应求,商家又用8800元购进了第二批这种商品,所购数量是第一批购进数量的2倍,但单价贵了4元.该商家购进的两批商品的数量分别是多少件?13.(2021秋•渌口区期末)某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?14.(2021秋•普兰店区期末)一项工程需要限期完成,若用甲工程队单独做正好如期完成,若用乙工程队单独做,需要逾期3天才能完成(比期限多3天).现在甲、乙两工程队合做2天,余下由乙工程队单独做,刚好如期完成,求甲、乙两工程队单独完成工程各需要多少天?15.(2021秋•民权县期末)某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?题组C 培优拔尖练一.选择题(共1小题)1.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是()A.13B.15C.20D.22二.填空题(共2小题)2.(2022春•渝中区校级月考)某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵树相同且大于3棵小于10棵,高二年级平均每人植树的棵树为初一、初二平均每人植树的棵树之和的2倍,上午四个年级平均每人植树的棵树总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵树都有所降低,高一年级平均每人植树的棵树降低50%,高二年级平均每人植树的棵树降为原来的.若初一年级人数及人均植树的棵树不变,高一高二年级人数不变,且四个年级平均每人植树的棵树为整数,则四个年级全天一共植树棵.3.(2020秋•滨州月考)若=+++++,则a的值是.三.解答题(共10小题)4.(2021秋•望城区期末)已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1的解为整数时,求b的值.5.(2021秋•临河区期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.7.(2021春•射洪市月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.8.(2021秋•宜城市期末)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.10.(2021秋•饶平县期末)在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了y天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?11.(2021秋•上思县期末)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?12.(2020秋•庆云县校级期末)进入防汛期后,某地驻军在河堤加固的工程中出色完成任务,下面是记者与驻军工程指挥官的对话:记者:“你们是用9天时间完成4800米长的大坝加固任务的?”驻军指挥官:“我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.”通过上面的对话,请你求出该驻军原来每天加固河堤的米数.13.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?。
北师大版八年级数学下册第五章分式与分式方程
![北师大版八年级数学下册第五章分式与分式方程](https://img.taocdn.com/s3/m/a95e3bc50b4e767f5acfcee3.png)
八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。
例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。
(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。
检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。
八年级分式方程数学知识点
![八年级分式方程数学知识点](https://img.taocdn.com/s3/m/0760b3d618e8b8f67c1cfad6195f312b3069eb72.png)
八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
八年级下册数学知识点归纳笔记
![八年级下册数学知识点归纳笔记](https://img.taocdn.com/s3/m/abb84974fbd6195f312b3169a45177232f60e4e7.png)
人教版八年级下册数学知识点总结第十六章分式1.分式的概念:若A、B表示两个整式,且分母B中含有字母,A称为分式。
分式有意义的条件是分母B≠0;分式值为则式子B0的条件是分子A=0且分母B≠0。
2.分式的基本性质:分式的分子与分母同乘(或除以)同一个不为0的整式,分式的值不变。
3.分式的运算:1.乘除运算:分式乘分式,分子相乘的积作积的分子,分母相乘的积作积的分母;分式除以分式,等于把除式的分子、分母颠倒后与被除式相乘。
2.加减运算:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分变为同分母分式,再加减。
4.分式方程:1.增根:分式方程化为整式方程后,未知数取值范围扩大,可能产生使原分式方程分母为0的根,即增根。
2.验根:解分式方程必须验根,将整式方程的解代入最简公分母,若最简公分母为0,则是增根,原方程无解;若最简公分母不为0,则是原方程的解。
第十七章勾股定理1.勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+。
2.勾股定理的逆定理:若三角形三边长a 、b 、c 满足222c b a =+,则此三角形是直角三角形。
第十八章平行四边形1.平行四边形:1.定义:两组对边分别平行的四边形叫平行四边形。
2.性质:对边相等,对角相等,对角线互相平分。
3.判定:两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等、对角线互相平分的四边形是平行四边形。
2.三角形中位线:连接三角形两边中点的线段,平行于第三边且等于第三边的一半。
3.特殊的平行四边形:1.矩形:有一个角是直角的平行四边形,四个角都是直角,对角线相等且互相平分。
判定方法有一个角是直角的平行四边形、有三个角是直角的四边形、对角线相等的平行四边形。
2.菱形:有一组邻边相等的平行四边形,四边都相等,两条对角线互相垂直且每一条对角线平分一组对角。
判定方法有一组邻边相等的平行四边形、四条边相等的四边形、对角线互相垂直的平行四边形。
八年级下数学知识点归纳笔记
![八年级下数学知识点归纳笔记](https://img.taocdn.com/s3/m/cb192ab1cf2f0066f5335a8102d276a2002960d5.png)
1. 无理数的性质(无限不循环小数)2. 实数的运算(有理数和无理数的加、减、乘、除运算)3. 实数的开方运算(正数和负数的平方根和立方根)
函数
1. 一次函数的图象和性质(一条直线,斜率和截距是关键参数)2. 反比例函数的图象和性质(双曲线,位于两个象限,常与坐标轴相交)3. 一次函数与反比例函数的实际应用(如速度、时间、距离等问题)
二次根式
1. 二次根式的定义和性质(非负性、算术平方根的性质)2. 二次根式的乘除法(通过将根号内的数相乘或相除,进行乘除运算)3. 二次根式的加减法(先将根号内的数化为最简形式,再进行加减运算)
勾股定理
1. 勾股定理的表述(直角三角形的两条直角边a、b的平方和或其他方法证明)3. 勾股定理的应用(利用勾股定理解决实际问题)
八年级下数学知识点归纳笔记
章节/主题
主要知识点
分式
1. 分式的定义(分母中含有字母的整式)2. 分式的基本性质3. 分式的约分(通过约去分子和分母中的公因式,将分式化为最简形式)4. 分式的通分5. 分式的乘除法(通过将分式相乘或相除,将分子和分母分别相乘或相除)6. 分式的加减法(通过通分,将分式化为同分母,再进行加减运算)7. 分式方程(含有分式的等式,通过去分母转化为整式方程)
平行四边形
1. 平行四边形的性质(对边相等、对角相等、对角线互相平分)2. 平行四边形的判定(一组对边平行且相等、两组对边分别相等、对角线互相平分)3. 特殊平行四边形(矩形、菱形、正方形)的性质和判定
轴对称、中心对称和旋转对称
1. 轴对称(关于一条直线对称的两个图形完全重合)2. 中心对称(关于一点对称的两个图形完全重合)3. 旋转对称(绕某点旋转一定角度后与另一个图形重合)
八年级数学分式与分式方程
![八年级数学分式与分式方程](https://img.taocdn.com/s3/m/ed62b2b4541810a6f524ccbff121dd36a32dc49a.png)
八年级数学分式与分式方程分式与分式方程学习资料。
一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。
2. 分式有意义的条件。
- 分式(A)/(B)有意义的条件是B≠0。
例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。
3. 分式值为零的条件。
- 分式(A)/(B)的值为零的条件是A = 0且B≠0。
例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。
二、分式的基本性质。
1. 性质内容。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
2. 约分。
- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。
3. 通分。
- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。
三、分式的运算。
1. 分式的乘除法。
- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。
例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。
八年级数学分式方程
![八年级数学分式方程](https://img.taocdn.com/s3/m/08452db348649b6648d7c1c708a1284ac9500575.png)
八年级数学分式方程一、分式方程的概念。
1. 定义。
- 分式方程是方程中的一种,是指分母里含有未知数(字母)的方程。
例如:(1)/(x)+1 = 2,(x)/(x - 1)-(1)/(x)=1等都是分式方程。
2. 与整式方程的区别。
- 整式方程的分母中不含有未知数,如2x+3 = 5是整式方程。
而分式方程的分母含有未知数,这是两者最本质的区别。
二、分式方程的解法。
1. 基本思想。
- 分式方程的基本思想是将分式方程转化为整式方程来求解。
这一转化过程通常是通过去分母来实现的。
2. 去分母的方法。
- 给分式方程两边同时乘以各分母的最简公分母。
例如,对于方程(2)/(x)+(x)/(x - 1)=1,分母x和x - 1的最简公分母是x(x - 1),方程两边同时乘以x(x - 1)得到:2(x - 1)+x· x=x(x - 1)。
- 找最简公分母的方法:- 取各分母系数的最小公倍数。
- 凡单独出现的字母连同它的指数作为最简公分母的一个因式。
- 同底数幂取次数最高的。
例如,对于分式(1)/(3x),(1)/(2x^2),最简公分母是6x^2。
3. 求解整式方程。
- 按照整式方程的解法求解去分母后的整式方程。
如上面得到的整式方程2(x - 1)+x^2=x(x - 1),展开式子得2x-2 + x^2=x^2-x,移项合并同类项得2x+x = 2,解得x=(2)/(3)。
4. 检验。
- 分式方程可能会产生增根,所以必须检验。
把求得的整式方程的解代入原分式方程的最简公分母中,如果最简公分母不等于0,则这个解是原分式方程的解;如果最简公分母等于0,则这个解是增根,原分式方程无解。
例如,对于上面解得的x = (2)/(3),代入最简公分母x(x - 1)=(2)/(3)×((2)/(3)-1)=(2)/(3)×(-(1)/(3))=-(2)/(9)≠0,所以x=(2)/(3)是原分式方程的解。
数学八下分式
![数学八下分式](https://img.taocdn.com/s3/m/a9260b5b6d175f0e7cd184254b35eefdc8d315a4.png)
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)
![北师大版八年级下册数学 第五章 分式与分式方程(知识点)](https://img.taocdn.com/s3/m/a58e072ec381e53a580216fc700abb68a882ad42.png)
第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
分式方程知识点归纳总结
![分式方程知识点归纳总结](https://img.taocdn.com/s3/m/9ff0590b43323968011c9244.png)
分式方程知识点归纳总结1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
C B C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a 7223-++-例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件
![北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件](https://img.taocdn.com/s3/m/f4779868f68a6529647d27284b73f242336c31a1.png)
探究新知
(2)如果设特快列车的平均行驶速度为xkm/h,那么x满足怎
样的方程?
1400 1400
9
x
2.8 x
(3)如果设小明乘高铁列车从甲地到乙地需y h.那么y满足怎
样的方程?
1400
1400
2.8
y
y9
探究新知
问题2 为了帮助遭受自然灾害的地区重建家园,某校团总支号
1. 理解分式方程的概念和意义,掌握解分式
方程的基本思路和解法.
探究新知
知识点
分式方程的概念及列分式方程
问题1 甲、乙两地相距1400km,乘高铁列车从甲地到乙地比
乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车
的2.8倍.
(1)你能找出这一问题中的所有等量关系吗?
等量关系:①乘高铁列车所用时间=乘特快列车所用时间-9,
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么? “去分母”
90
60
=
30 + 30 −
方程各分母的最简公分母是:(30+x)(30-x)
解:方程①两边同乘(30+x)(30-x),得
x=6是原分式
90(30-x)=60(30+x),
成计划任务.原计划每月固沙造林多少公顷?
1.这一问题中有哪些已知量和未知量?
已知量:造林总面积2400公顷;实际每月造林面积比原计
划多30公顷;提前4个月完成原任务.
未知量:原计划每月固沙造林多少公顷.
人教版八年级数学第十六章分式知识点总结
![人教版八年级数学第十六章分式知识点总结](https://img.taocdn.com/s3/m/b511efceaa00b52acfc7caed.png)
第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。
二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
当x_________时,分式2361x x -+的值为负数。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。
约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。
最简分式:分子与分母没有____________的分式,叫做最简分式。
(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。
北师大版八年级下册数学《分式方程》分式与分式方程研讨说课复习课件巩固
![北师大版八年级下册数学《分式方程》分式与分式方程研讨说课复习课件巩固](https://img.taocdn.com/s3/m/3fd5bdb427fff705cc1755270722192e4436580d.png)
90 60 30+x 30 x
方程各分母最简公分母是:(30+x)(30-x). 解:方程①两边同乘(30+x)(30-x),得
90(30-x)=60(30+x),
解得 x=6.
x=6是原分式方程的解吗?
检验:将x=6代入原分式方程中,左边=
5 2
=右边,
因此x=6是原分式方程的解.
探究新知
结论 解分式方程的基本思路 将分式方程化为整式方程,具体做法是“去分母” 即
北师大版 八年级 数学 下册
5.4 分式方程 第2课时课件Fra bibliotek导入新知
1.还记得什么是方程的解吗? 使方程左右两边相等的未知数的值,叫做方程的解.
2.还记得求解一元一次方程的基本步骤吗? 去分母、去括号、移项、合并同类项、系数化为1
3.二元一次方程组呢? 加减消元法、代入消元法
转化
二元一次方程组
一元一次方程
连接中考
(2020·海南)分式方程
x
3
2
1
的解是
(
C
)
A. x=-1 C. x=5
B. x=1 D. x=2
课堂检测
基础巩固题
1.关于x的方程
2ax 3 ax
3 4
的解为x=1,则a=(
D
)
A. 1
B. 3
C. -1
D. -3
2.关于x的分式方程
7x x 1
+5=
2m 1 x 1
有增根,则m的值为
x+5=10
结论:分式两边同乘了等于0的式子,所得整式方程的解使 分母为0,这个整式方程的解就不是原分式方程的解.
八年级数学下册教学课件《5.4.2 分式方程的解法》
![八年级数学下册教学课件《5.4.2 分式方程的解法》](https://img.taocdn.com/s3/m/fc87a5b132d4b14e852458fb770bf78a65293a23.png)
3
x2
x
. 2
3
,
x 2x 1
方程两边同时乘以最简公分母(x+2)(x-1),
得x(x+2)-(x-1)(x+2)=3.
去括号,得x2+2x-x2-x+2=3.
解得x=1.
经检验,x=1不是原分式方程的根,
所以原分式方程无解.
新课讲解
练一练
解方程:(1)
3= x-1
4 x
;
(2)
检验不是原分式方程的解,此时原分式方程无解.
新课讲解
典例分析
例
已知关于x的方程
2ax ax
2 3
的根是x=1,求a的值.
分析:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
解: 把x=1代入方程 得 2a 2 ,
a
x
2, 3
a1 3
解得a= 1
2 经检验,a= ∴a的值为
解:(1)去分母并整理,得(a+2)x=3.
∵1是原方程的增根,∴(a+2)×1=3,a=1.
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a=3.∴a=1.
新课讲解
(3)去分母并整理得:(a+2)x=3. ①当a+2=0时,该整式方程无解,此时a=-2. ②当a+2≠0时,要使原分式方程无解, 则x(x-1)=0,得x=0或1. 把x=0代入整式方程,a的值不存在; 把x=1代入整式方程,a=1. 综合①②得:a=-2或1.
1
1
2 .
是分式方程
2a a1
2
2的解. 3
新课讲解
练一练
已知x=3是分式方程
分式方程知识点的总结
![分式方程知识点的总结](https://img.taocdn.com/s3/m/cd2fb0336ad97f192279168884868762caaebb1e.png)
分式方程知识点的总结分式方程知识点的总结关于分式方程知识点的总结,列分式方程解应用题的关键是列出分式方程,难点是找出等量关系,易错点是检验。
下面由小编为您整理出的相关内容,一起来看看吧。
(一)分式方程知识点的总结分式方程同前面讲到的分式知识是完全不同的两个概念,同学们不要弄混淆了。
分式方程分母中含有未知数的方程叫做分式方程。
分式方程的解法①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。
不要忘了改变符号};②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。
一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。
若解出的根是增根,则原方程无解。
在分式方程中,如果分式本身约分了,也要代进去检验。
分式方程的解法:(1)解分式方程的基本思想方法是:分式方程→整式方程。
(2)解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!上面对分式方程的解法知识的讲解,希望同学们都能很好的掌握,并在考试中很好的备战考试工作。
(二)初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的`掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
八年级数学分式考点解析
![八年级数学分式考点解析](https://img.taocdn.com/s3/m/fa4574deba4cf7ec4afe04a1b0717fd5360cb2c0.png)
八年级数学分式考点解析一、知识框架:二、知识概念:1.分式:形如,A/B是整式,B中含有字母且不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:8.整数指数幂:9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)一、分段分步法例1、计算:分析:若一次通分,计算量太大,注意到相邻分母之间,依次通分构成平方差公式,采用分段分步法,则可使问题简单化。
解:原式二、分裂整数法例2、计算:分析:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。
解:原式三、拆项法例3、计算:分析:对形如上面的算式,分母要先因式分解,再逆用公式,各个分式拆项,正负抵消一部分,再通分。
华师大版八年级下册数学知识点总结
![华师大版八年级下册数学知识点总结](https://img.taocdn.com/s3/m/d55c951a25c52cc58bd6be91.png)
八年级华师大版数学(下)第16章分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式A叫做分式。
子B2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:A=0的当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使B条件是:A=0,B≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:==,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
八年级数学《分式方程》知识点
![八年级数学《分式方程》知识点](https://img.taocdn.com/s3/m/5edf0451a9114431b90d6c85ec3a87c241288a4e.png)
一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。
2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。
二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。
2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。
三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。
2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。
四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。
2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。
五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。
2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。
六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。
2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。
总结:。
北师大版初二数学下册分式与分式方程知识点梳理
![北师大版初二数学下册分式与分式方程知识点梳理](https://img.taocdn.com/s3/m/5e1a703ba0116c175e0e4872.png)
第五章分式与分式方程复习总结第一课时知识点梳理肇州三中黄国庆教学目标1•将本章知识点形成知识脉络。
2. 培养学生如何建立完整的知识体系的能力。
教学重点1. 分式的概念及其基本性质。
2. 分式的运算法则。
3. 分式方程的概念、解法。
教学难点分式的运算及分式方程的解法.教学过程一、知识点梳理:1. 分式的定义:如果A B表示两个整式,并且B中含有字母,那么式子A叫做分式。
B1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母2)分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3)分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示A^C I A-C其中A B、C为整式(C 0)B BC B B C注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C M0,以及隐含的B M0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2)最简分式:分子与分母没有公因式的分式3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4)最简公分母:取“各个分母”的“所有因式”的最高次幕的积做公分母,它叫做最简公分母4. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母 的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置 后,与被除式相乘a c ac a c ad ad■b d bd b d be be3)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减异分母的分式相加减,先通分,变为同分母分式,然后再加减a b a b a c ad be ad be c c c ,b d bd bd bd5. 分式方程:含分式,并且分母中含未知数的方程 分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.3分式方程
一、本节学习指导
解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点
1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:
解分式方程的基本思想方法是:分式方程转化
去分母整式方程.
解分式方程的一般方法和步骤:
①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;
②解这个整式方程;
③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;
②解分式方程必须要验根,千万不要忘了!
(2)、解分式方程的步骤:
(1)能化简的先化简;
(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;
(4)验根.
(3)、分式方程检验方法:将整式方程的解带入最简
公分母,如果最简公分母的值不为
0,
则整式方程的解是原分式方程的解;否则,这个解不
是原分式方程的解。
(4)、含有字母的分式方程的解法:
在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知
数表示未知数,不要混淆。
2、列分式方程解应用题
(1)列分式方程解应用题的步骤:
①审:审清题意;
②找: 找出相等关系;
③设:设未知数;
④列:列出分式方程;
⑤解:解这个分式方程;
⑥验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;
⑦答:写出答案。
(2)应用题有几种类型;基本公式是什么?
常见的有以下五种:
①行程问题基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
②数字问题:在数字问题中要掌握十进制数的表示法.
③工程问题基本公式:工作量=工时×工效.
④顺水逆水问题
=+•=-
v v v v v v
顺水静水水逆水静水水
3、科学记数法:把一个数表示成的形式10n
a⨯(其中
≤a,n是整数)的记数方法叫做科学记数法.
1<
10
(1)、用科学记数法表示绝对值大于1的数时,应
当表示为10n
a⨯的形式,其中1≤︱a︱<10,n为原整数部分的位数减1;
(2)、用科学记数法表示绝对值小于1的数时,则
可表示为10n
⨯的形式,其中n为原数第1个不为0的
a-
数字前面所有0的个数(包括小数点前面的那个0),1≤︱a︱<10.
三、经验之谈:
这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
科学计数法有两种情况,不要混淆了,填空题中还是比较容易被考到的,并且这一点在物理中用得也比较多,希望同学们掌握好。