人教版数学八年级下册——分式练习题

合集下载

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(2)

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测题(答案解析)(2)

一、选择题1.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .72.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x =3.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数5.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 6.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-17.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .38.下列各分式中,最简分式是( ) A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 9.若a =1,则2933a a a -++的值为( )A .2B .2-C .12D .12- 10.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -1 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.在围棋盒中有x 颗白色棋子和若干颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25;如果再往盒中放进9颗黑色棋子,取得白色棋子的概率是14.则原来围棋盒中有白色棋子________颗. 15.若55||11m m m m m --⋅=--,则m =_______. 16.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 17.计算:262393x x x x -÷=+--______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.当x _______时,分式22x x -的值为负. 20.已知1112a b -=,则ab a b -的值是________. 三、解答题21.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中 1x =. 22.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.解下列分式方程(1)42122x x x x++=--; (2)()()21112x x x x =+++-. 24.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?25.应用题(步骤要完整)(1)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地.求前一小时的行驶速度.(2)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工快?26.根据已知条件,求下列各式的值: ()1已知3,2m n x x ==,求32m n x +的值;()2先化简:2211121x x x x x x ⎛⎫ ⎪+++÷--⎝+⎭,然后从22x -≤≤中选取一个合适的整数作为x 的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.2.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 3.C解析:C【分析】先由不等式组无解,求解8,a ≤ 再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠ 再逐一确定a 的值,从而可得答案.【详解】解:52+11{231x x a >-<()①②由①得:25x +>11, x >3,由②得:3x <1a +, x <1,3a + 关于x 的不等式组52+11{231x x a >-<()无解, 1+3,3a ∴≤ 19,a ∴+≤ 8,a ∴≤ 34122y a y y++=--, ()342,y a y ∴-+=-2,2a y +∴= 20,y -≠22,2a +∴≠ 2,a ∴≠ 关于y 的分式方程34122y a y y++=--有非负整数解, 20,2a +∴≥ 2,a ∴≥- 22a +为整数, 2a ∴=-或0a =或4a =或6a =或8.a =2046816.∴-++++=故选:.C【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 6.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 7.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.8.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy ++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y -+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.9.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】原式=211m mm m---=21m mm--=(1)1m mm--=m,故选:A.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II卷(非选择题)请点击修改第II卷的文字说明11.C解析:C【分析】根据a b,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a bA、22a ab b+≠+,故该选项错误;B、22a ab b-≠-,故该选项错误;C、33a ab b=,故该选项正确;D、22a ab b≠,故该选项错误;故选:C.【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x个,则实际每小时生产口罩2x个,依题意得:3000300052x x-=故选:D.【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92【分析】 解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.6【分析】先根据白色棋子的概率是得到一个方程再往盒中放进9颗黑色棋子取得白色棋子的概率变为再得到一个方程解方程组即可求得答案【详解】解:设原来盒中有白色棋子x 颗黑色棋子y 颗则有解得则原来围棋盒中有白 解析:6【分析】 先根据白色棋子的概率是25,得到一个方程,再往盒中放进9颗黑色棋子,取得白色棋子的概率变为14,再得到一个方程,解方程组即可求得答案. 【详解】解:设原来盒中有白色棋子x 颗,黑色棋子y 颗,则有25194x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩, 解得69x y =⎧⎨=⎩. 则原来围棋盒中有白色棋子6颗.故答案为:6.【点睛】本题考查概率的应用问题,利用概率公式求数量,掌握列举法求概率的方法,通过黑、白两色棋子设未知数,利用概率构造方程组是解题关键.15.5或-1【分析】分m-5=0和m-5≠0两种情况分别求解【详解】解:若m-5=0∴m=5若m-5≠0∵∴∴m=-1或1(舍)故答案为:5或-1【点睛】本题考查了等式的性质分式有意义的条件解题的关键是解析:5或-1【分析】分m-5=0和m-5≠0两种情况分别求解.【详解】解:若m-5=0,∴m=5,若m-5≠0, ∵55||11m m m m m --⋅=--, ∴||1m =, ∴m=-1或1(舍),故答案为:5或-1.【点睛】本题考查了等式的性质,分式有意义的条件,解题的关键是注意分类讨论.16.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键17.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=,∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.11x +,2【分析】根据分式的运算法则先进行化简,然后代入1x =计算即可.【详解】 原式22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭, ()()()211111x x x x +-=⨯-+ 11x =+当1x =时,原式==. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.23.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.6天【分析】设该工程期限是x 天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x 天 根据题意,得1122133x x x x -⎛⎫++=⎪++⎝⎭ 解得6x =经检验,6x =是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.25.(1)60km /h ;(2)乙队快【分析】(1)直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案; (2)由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为13,设乙队如果单独施工x 个月能完成总工程,则乙的工作效率为1x ,根据(甲的工作效率+乙的工作效率)×12=1-13,由此可列方程,从而问题得解. 【详解】解:(1)设前一小时的行驶速度为xkm/h ,根据题意可得:1801804011.560x x x -+=-,解得:x=60, 检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h .(2)设乙队如果单独施工x 个月能完成总工程.依题意列方程:( 113+x )×12=1-13. 解方程得:x=1.经检验:x=1是原分式方程的解.答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.【点睛】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.26.()1108;()2221x x -+;x=-2时,6或x=2时,23 【分析】(1)利用幂指数运算的逆运算原式()()32mn x x =⋅,当3,2m n x x ==时,整体代入求值即可;(2)先化简分式,从不等式中可选取-2或2,可任选一个代入求值即可.【详解】解: ()1原式=32m n x x ⋅()()32mn x x =⋅, 当3,2m n x x ==时,原式108=;()2原式=22112111x x x x x x x x ⎛⎫ +--+⎝⨯-⎭+-+⎪,=()()21211x x x x x -⨯-+, 221x x -=+, 在22x -≤≤范围内有整数x=-2,-1,0,1,2,使分式有意义的x 的值:x=-2,2,当2x =-时,原式6=;当2x =时,原式23=. 【点睛】本题考查幂指数运算求值,和分式化简求值,掌握幂指数运算求值的方法,和分式化简求值方法是解题关键.。

广西玉林市八年级数学下册 第16章 分式复习练习题(二)及答案 新人教版

广西玉林市八年级数学下册 第16章 分式复习练习题(二)及答案 新人教版

第16章 分式复习练习题(二)一、填空题1.填空:()2a b aba b+=, ()22x xyx yx ++=,)(222xx x x =-- 2.若果2ab =a -b ,则分式11a b -的值是 . 若3,111--+=-baa b b a b a 则的值是 .3.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”).4.化简:224442x x xx x ++-=-- .;化简211x x x ÷-的结果是 . 5.()221112211x x x +--把分式、、通分,最简公分母是 . 6.计算:(1)22255(2)3a b a b -- = ; (2)42321()()x y x y y--÷ = 7.当m=____时,关于x 的分式方程213x m x +=-- 无解;方程0211=+-x 的解是8.化简:a b a b b a a -⎛⎫-÷= ⎪⎝⎭;化简:b a aa b a -⋅-)(2= . 9.计算22()ab a b -的结果是 ;分式方程3131=---xx x 的解是_____________. 10.在下列三个不为零的式子x 2-4,x 2-2x ,x 2-4x +4中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 . 11.某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).12.若分式35511322x x m x m x+----无意义,当=0时,则m=_______. 13.观察下面一列分式:, (16),8,4,2,15432xx x x x --(1)计算一下这里任一个分式与前面的分式的商是 。

(2 ) 根据你发现的规律写出第10个分式. 14.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,如2※4113244=+=.根 据这个规则,则方程x ※(2x -)=1的解为 。

(完整版)八年级数学下册分式方程应用题专题训练(答案)

(完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为 米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

初二八年级数学下册:分式测试题24

初二八年级数学下册:分式测试题24

遵义市天义学校八年级数学单元水平测试第十六章 分 式(完成时间45分钟,满分100分)八年级( )班 姓名: 评分:一、 填空题:(每小题5分,共30分)1、当x 时,分式2134x x +-无意义. 2、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是 .3、当x 时,分式2212x x x -+-的值为零. 4、当x 时,分式435x x +-的值为1; 5、计算222a ab a b+-= . 6、已知a+b =3,ab =1,则a b +b a的值等于 .二、 选择题:(每小题5分,共30分)7、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 8、(-3a b)÷6ab 的结果是( ) A .-8a 2 B .-2a b C .-218a b D .-212b9、下列公式中是最简分式的是( )A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y --10、不改变分式2323523x xx x-+-+-的值,使分子、分母最高次项的系数为正数,正确的是(•)A.2332523x xx x+++-B.2332523x xx x-++-C.2332523x xx x+--+D.2332523x xx x---+11、根据分式的基本性质,分式aa b--可变形为()A.aa b--B.aa b+C.-aa b-D.aa b+12、化简1x+12x+13x等于()A.12xB.32xC.116xD.56x三、解答题:(每小题5分,共20分)13、已知y=123xx--,x取什么值时:(1)y的值是正数;(2)y的值是零;14、计算:22696x x x x -+--÷229310x x x ---·3210x x +-.15、已知x+1x=3,求2421x x x ++的值.16、先化简,再求值:232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.四、应用题:(每小题10分,共20分)17、冯明英到桂头集市买了5千克香蕉,用了9元钱,又买了3千克鲜橙,•也用了9元钱。

初二八年级数学下册分式方程应用题训练题含答案

初二八年级数学下册分式方程应用题训练题含答案

分式方程应用题一、单选题(共4题;共8分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B.C. D.3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.4.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣个物件,则可列方程为()A. B. C. D.二、填空题(共2题;共2分)5.某班学生从学校出发前往科技馆参观,学校距离科技馆15km,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是________km/h.6.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为________ km/h.三、计算题(共1题;共10分)7.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,己知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?四、解答题(共11题;共55分)8.列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?9.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.10.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?11.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.12.甲、乙两人每小时共做个零件,甲做个零件所用的时间与乙做个零件所用的时间相等.甲、乙两人每小时各做多少个零件?13.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.14.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.15.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.17.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?18.为建国70周年献礼,某灯具厂计划加工9000套彩灯。

八年级数学下册第十六章《分式》单元 应用题大全 新课标人教版 (20)

八年级数学下册第十六章《分式》单元  应用题大全 新课标人教版 (20)

八年级数学下册第十六章《分式》单元应用题大全新课标人教版1. 乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地.求甲、乙的速度.2. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?3.4. 比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。

蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。

已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。

5. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理.6. 大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?7. 某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?8. 在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?9. 两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 乙队单独完成这项工程要多少天?10. 超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?11. 某花店老板用400元购买一批花瓶,途中不慎打碎了2个,他把余下的以每个高出成本30%的价格售出,一共获利68元,问:他购买了多少个花瓶?12. 某地决定新修一条公路,甲、乙两工程队承包此项工程。

人教版八年级数学上课时训练 从分数到分式)同步练习试卷含答案

人教版八年级数学上课时训练   从分数到分式)同步练习试卷含答案

第十五章分式第50课时从分数到分式1.下列式子:3a-2b,,,,中,分式的个数是()A.2个B.3个C.4个 D.5个2.填空:(1)长方形的面积为S,长为a,则宽为;(2)小龙买了m支钢笔共花了n元,则每支钢笔的价格为元;(3)边长为a米的正方形水稻田共产水稻500千克,则每平方米水稻田的产量为千克.3.填空:(1)当x时,分式有意义;(2)当x时,分式有意义;(3)当x时,分式无意义;(4)当x时,分式的值为0.变式训练4.下列式子中,哪些是分式?哪些是整式?,,,,,.5.填空:(1)某村有,x个人,耕地40公顷,则人均耕地面积为公顷;(2)△ABC的面积为S,BC边长为a,则高AD为;(3)一辆汽车行驶a千米用b小时,它的平均车速为千米/小时;一列火车行驶a千米比这辆汽车少用1小时,它的平均车速为千米/小时.6.填空:(1)当x时,分式有意义;(2)当x时,分式有意义;(3)当x时,分式无意义;(4)当x时,分式的值为0.7.下列各式中,是分式的是()A.3x2+x-1B.C.D.8.下列各式:(1-x),,,,,其中分式的个数为()A.2个B.3个 C.4个 D.5个9.当x时,分式有意义.10.当x时,分式无意义.11.当x时,分式的值为0.12.下列分式中一定有意义的是()A.B.C.D.13.分式有意义,则x的取值范围为()A.x≠1 B.x≠-1 C. x≠1或x≠-1 D.全体实数14.当x=2时,分式的值为0,则a= ,b= .15.下列各式中,分式的个数是(),,,,,A.2 B.3 C.4 D.516.若3x-2y=0,则等于()A.B.C.D.或无意义17.自主学习教材P129-131内容,完成下列练习:(1)把下列分数化成最简分数:= ;= ;= .(2)将下列各式因式分解:①-25a2b c3+ 15a b2c= ,②x3-4x= ,③2a2 +8a+8= .拓展升华18.当x为何值时,下列分式的值为零?(1);(2);(3).第50课时 从分数到分式 答案1. B2. (1)S a (2) n m (3) 2500a3. (1) 0≠ (2) 1≠ (3) 53= (4) 3=-4. 分式: 22214,,,35x m n x b x y m n -+-+; 整式: 25,33x a -5. (1)40n (2) 2s a (3) a b 1a b - 6. (1) 3≠ (2) 12≠- (3) 53=- (4) 3=7. C 8. A 9. 3≠ 10. 12=- 11. 1=-12. A 13. D 14. 2=- 2≠- 15. B16. D17. (1) 23 5323 (2) ① 25(53)abc ac b -- ② (2)(2)x x x -+ ③ 22(2)a +18. (1) 0 (2) -2 (3) 2。

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

八年级数学下册第十六章《分式》单元计算题大全新课标人教版(6)

⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版(6)⼋年级数学下册第⼗六章《分式》单元计算题⼤全新课标⼈教版1. 计算:(1)11123x x x ++(2)3xy 2÷x y 262.2223189218a a a a a +-÷-+-+, 2221()2444x x xx x x x x+----+- 3. 计算题⑴22124a aa +-- ⑵22233mn mn n p p ÷ ?⑶112---x x x ⑷2222x y xy y x x x ??--÷-⑸ 121200523-??-+ ?⑹()()23323a b ab ----?(结果只含正整数指数幂)a cb ac ÷÷(4)42232)()()(abc ab c c b a ÷-?- (5)22233)()()3(x y x y y x y x a +-÷-?+5. 计算:x x x x -+--+11211 21211+++-+x x x xx x x x x x 13632+-+--)2122()41223(2+--÷-+-a a a aaa a a a a -?+--4)22( 6. 计算(1)3223322a b a c cd d a÷? ?-7. 计算:??+--- ++11111212x x x x x x 8. 22326123()()y y xy x x÷-.22234()()()x y y y x x ÷-, 9. 22222a b ab b a a ab a ?? -+÷+ ?-??10. 计算:()2222x 2xy+y x yxy+x xy x++÷-÷a a a 2122+-12.6532----x x x x x ; 211a a a +-+ 42()a a a a+-÷; 13. 计算:22()x y- 22)2(4yx y x -÷ 14. 计算(1)168422+--x x x x (2)mn nn m m m n n m -+-+--2 15. 计算:(1)232223(4)(2)x y z xy z -?- ;(2)9323496222-?+-÷-+-a a b a ba a .(3)2221()244x x x x x -+÷+--(4) 44()()xy xy x y x y x y x y -++--+16.化简:1441312-+-÷?--+x x x x x17. 22a b b a b a b a b a b --??÷ ?+-+??-18.2121()2a bca bc ---÷ 221()()x x x x ---÷- 30(0.25)(0.25)--+-332p mn p n n m ÷???? ??? ⑵2)22444(22-÷+-++--x xx x x x x (3)11141+-???? ??-+-a a a a a (4)()1632125.00 2+--?-?-π20. 计算:(1)222x y xy x y x y +--- (2)???? ??-÷??? ?-y x x y 1121. 22[()]33x y x yx y x x y x x +----÷+ 222212111a a a a a a a a --÷++++; 22.??-÷x y y x 346342;-y x x y x y x 22426438; 23. 化简:232224a a aa a a ??-÷ ?+--??. 24. 计算:(1)130)21()2()21(----÷- ;(2)329122---m m . 25.xy x xz xy x z y x y xy x z y x y x --+?--++÷---2222222222)(2)(; () yy y x xy xy -+?+-33212.27. 计算:)12()23()344(222222---÷++-?+--x x x x x x x x 28.215()()x xy x y x x x y x --+-÷- 42321()()x y x y y--÷29.(1+1m)÷22121m m m --+30. 计算⑴2332)2(2ab c d a cd b a ?÷-)((2)2228224a a a a a a +-??+÷ ?--??(3)44()()xy xy x y x y x y x y-++--+ (4)2233x y x y x y x x y x x ??+-??---÷ +? 31. 计算:()()()()()() c a a b b ca b b c b c c a c a a b ---++------32.222()111a aa a a ++÷++- 33.1)111(2-÷-+x x x34. 计算:(1))141)(141(+-+-+-a a a a a a (2) 1211111222+-+-÷??? ??---x x x x x 35. 计算:32)(y x y x --? 32232)()2(b a c ab ---÷)102.3()104(36- 2125)103()103(--?÷?36.624)373(+-÷+--a a a a 37. 计算下列各式:(1)22 33222)(b a ab ba b a b a ba -+--+÷(2)a a a a a a a a 444122)(22-+---+÷-38.计算(1)ab c 2cb a 22?(2)322542n m m n- (3)-÷x x y 27(4)-8xy xy 52÷ (5)39. 化简(1)2232129x y x y (2)222x x y xy -- (3)222221x x x --+ (4) 22 39m m m-- (5)()()2222x y z x y z --+-40. 计算: ()3322232n m n m --? 41.计算:33xx 1x 1+++ ⑵.计算:223x 1x 36x 6x x +-?-+ 42. 计算⑴5331111x x x x+---- ⑵22y xy x y y x -+- ⑶()432562b ab a ÷- (4)()113423-??--+--(5)(1a x -)÷22x a x -43. 计算:23011)31(64)3()1(4-+--?-+-π计算:y x yx28712÷ 44. 计算2222444(1)(4);282a a a a a a a --+÷-+--(2)0)1(213=-+--x x x x 45. 计算:(3)96312-++a a (4) 96-22; 46. 22211()961313a a a a a a -÷++++ 13(1)224a a a --÷-- 47.223252224x x x x x +??+÷ ?-+-??48. 计算:(1);(2)()2442444222-+-?-÷++-a a a a a a a(3)a b a ab ab a b a b a b a -+÷--?-2232 (4)2216168m m m -++÷428m m -+·2 2m m -+(5)(2b a )2÷(b a -)·(-34b a)3(6)a b ab a b a b ab a b 2222121121-+---÷---++49. 化简:221211241x x x x x x --+÷++-- 2121a a a a a -+?-÷50. 计算:(1)22424422x x xx x x x ??--+÷ ?-++-??(2) 121a a a a a --??÷- ,(3)()2111211x x x ??+÷-- ?--?(4)232224xx x x x x ??-÷ ?-+-??,51. 计算:(1)423223423b a d c cd ab ? (2)m m m m m --?-+-3249622 (3).(xy -x 2)÷xy y x - (4).24244422223-+-÷+-+-x x x x x x x x (5).12--x x ÷(x +1-13-x )(6).x x x x 3922+++969(8)x y y x y x y x y y x ----+-+2. (9).232323194322---+--+x x x x x 52. 计算:)2(121y x x yx y x x --++- 53.2243312()()22a a b a b b -÷- 2221644168282m m m m m m m ---÷++++,54. 计算:cd b a c ab 4522223-÷ 411244222--?+-+-a a a a a am m m 7149122-÷- 228241681622+-?+-÷++-a a a a a a a 55.计算3223322a b a c cd d a÷? ?-56. 计算:24424441622++++-÷++-m m m m m m m 57.11)1111(-÷--+a a a 58. 计算:(1) ()()322322y x z xy ---÷ (2) x yx y x xy x y x x -÷211111222+-+-÷??? ??---x x x x x 59. 化简下列各式1. 212312+-÷??? ??+-x x x2.2111a a a a -++-3. 22(1)b a a b a b-÷+-4.352242a a a a -??÷-- ?--??5.)2422(4222+---÷--x x x x x x6. (x 2+4x -4)÷ x 2-4 x 2+2x7. 1-aa a a a 21122+-÷- 8. 2211(1).a a a a--÷+ 9. 2112()x x xx x x +++÷+ 10. 6931x x x x --÷- ? ??11. 21(1)1xx x x x ??-÷+ ?--??12.39631122-+÷+---+x xx x x x x 13. 432112--÷??? ??--a a a 14. 1224422++÷--a a a a15.22444()2x x x x x x -+÷-- 16. ,1 11122--+÷-x xx x x 17. 260. 计算: aa --+242 61. 计算与化简:(1)222)2222(x x x x x x x --+-+- (2) 1- aa a a a 21122+-÷- 62. 2301()20.1252005|1|2---?++- ()3 22514-++-÷13-, 63. 2141326a a a -??+÷--64.(112-+a a +1)? a a a 122+-65. 计算与化简:(1)222x y y x ?;(2)22211444a a a a a --÷-+-;(3)22142a a a ---;(4)211a a a ---;(5)()()222142y x x y xy x y x +-÷-.66.计算43222??? ?-÷ - -x y x y y x 67. 计算 1、y x axyx y x y 2211-+- 3、1111-÷??--x x x 4、22224421y xy x y x y x y x ++-÷+-- 5、2 2221106532xyx y y x ÷? 6、m n n n m m m n n m -+-+--2 7、4412222+----+x x x x x x 8、x x x x x x x x 4)44122(22-÷+----+ 9.xx x x x x x x 4)44122(22-÷+----+ 10.2144122++÷++-a a a a a 68. 化简下列分式(1)232123ab b a - (2)232213n m nm - (3))1(9)1(322m ab m b a ---(4))(12)(2222x y xy y x y x -- (5)22112mm m -+- (6)222963a ab b aba +-- 69. 计算:(1)b a ab a b --- (2)324332??x y y x (3)()1302341200431-??--+- - (4)()()222234a a a a -÷-70. 211()(3)31a a a a +---- 71.计算:22121124x x x x ++?72. 计算:221.111x x x x x ??-÷ ?-+-?? 73. 计算(1) 22)2(4y x y x -÷ (2) 432221??--ab a b b a(3)2222255343m n p q mnp pq mn q ?÷ (4)??÷ - -a bc ab c c b a 223274. 计算:(1)(2x y )2·(2y x )3÷(-y x )4;(2)(2b a )2÷(b a -)·(-34b a)375. 计算:①3333x x x x -+-+-;②212211933a a a +--+-;③2111111x x x ++-+-. 76. 计算:(4a a -)÷2a a+.77.233()()()24b b b a a a -÷- 22136932x x x x x x +-÷-+-+ 78. 计算:①2114()22x x x x --?-+;②22214()244x x x x x x x x+---÷--+;③11x x x -?-;④211(1)(1)11x x x +---+;⑤342n m n m n m ÷-? (2)2324222263ab a c c d b b ??-??÷? ? ?-?80.??--+÷--252423x x x x 23111x x x x -??÷+- ?--??81. 计算:(1)1111-÷??? ?--x x x (2)4214121111xx x x ++++++- 82. 计算:11)121(2+-÷+-x x x 83.化简:(1-44822+++a a a )÷aa a 2442+-84. 计算:(1)222x y xy x y x y +--- (2)-÷ -y x x y 11 (3).)1(1aa a a -÷- (4). )(22ab b a a ab a -÷- 85.21(1)(2)x x x++÷+86. 计算:(1)44223x y c ??-(2) mn a a n m 4322? (3) 222 324835154b a n n b a -?。

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

一、选择题1.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 5.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2 B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣2 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 8.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 9.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- 10.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题13.化简2242()44224x x x x x x -+÷++++的结果是_______. 14.已知5,3a b ab -==,则b a a b +的值是__________. 15.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 16.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.17.当x _______时,分式22x x-的值为负. 18.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 19.如果分式126x x --的值为零,那么x =________ .20.()052019π-+- =__________三、解答题21.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1.23.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送)24.(建构模型)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =. (应用模型)利用上面建构的模型,解决下列问题: (1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值. 25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.2.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.3.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 5.C解析:C【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可.【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1, ∴满足条件的整数x 可能是0、﹣2、﹣3,故选:C .【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键. 6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.8.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 11.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦=()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.-2【分析】直接利用算术平方根的意义绝对值和零指数幂的性质分别化简得出答案【详解】原式=2−5+1=−3+1=−2故答案为:-2【点睛】点评:此题主要考查了实数运算正确化简各数是解题关键解析:-2【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=2−5+1=−3+1=−2.故答案为:-2【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.三、解答题21.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+,整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.24.(1)4-,3;(2)1【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x += ,代入所求式子可得结论; 【详解】 解:(1)∵方程p x q x+= 的两个解分别为:121=4x x =-, , ∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3. (2)由222221n n x n x +-+=+,可得 22212121n n x n x +-++=++. ∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=. 或211x n +=-,解得22n x -=. ∵12x x <, ∴122n x -=,212n x +=. ∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】(1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可; (2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天,根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;。

新人教版八年级下数学课堂练习题(上)

新人教版八年级下数学课堂练习题(上)

讲义01分式及分式方程一、选择题:1.分式区I中,当曰1时,下列结论正确的是()A.分式的值为零B,分式无意义C.若区]时,分式的值为零D.若区]时,分式的值为零2.如果分式区的值恒为正数,则的x取值范围是()A.曰B.日C.日D.I—■3.已知[x|,则□的值是()A.0B--0 C.2 D.—24.已知5^—1997=(x-2)2-(x-一1)2+1z)。

,则代数式X—2A.1999B.2000C.2001D.-25.设m>n>0,m2+n2=4mn,贝!][x]的值等于()A.20B.图 c.H D.36.已知,则直线1x]一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限7.若a使分式没有意义,那么a的值为()A.0B.目或0C.m d.8.甲乙两人相距k千米,他们同时乘摩托车出发。

若同向而行,则r小时后并行;若相向而行,则t小时后相遇,则较快者的速度与较慢者速度之比是()A.区B.日C.团D.因二、填空题:vQ--V---69.当x=时,分式二的值为零.(1—x)(x—3)10.若巨]的值为目,则巨]的值为11.若分式区的值为正整数,则整数日的值为12.如果分式不论x取何值都有意义,那么m的取值范围是13.已知I*I,化简分式[x]的结果为b c a14.化简分式e=r砧后tee的结魅——15.如果记目二f(x),并且f⑴表示当x=1时y的值,即f⑴=[X[;f(日)表示当x二日时y的值,即f(0)=;……那么f⑴+f(2)+f(@)+f(3)+f(3)+-+f(n)+f(0)=(结果用含n的代数式表示).三、综合题:16.化简:(1)17.解分式方程:(1)(2)(3)18,已知的值。

,求19.如果x2-3x+1=0,求a的值。

a a20.已知a、b、c为实数,,求分式巨]的值。

21.已知a、b均为正数,且,求的值。

22.已知a+b+c=0,求1—■的值。

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)
当a取m时,① ,当a取-m时,② ,
①=②,故A正确;
B、当a取互为倒数的值时,即取m和 ,则 ,
当a取m时,① ,当a取 时,②
①=②,故B正确;
C、可举例判断,由 >1得,取a=2,3(2<3)
则 < ,
故C正确;
D、可举例判断,由 得,取a= , ( > )

故D错误;
故选:D.
【点睛】
本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.
【详解】
25.计算题:
(1)因式分解: ;
(2)计算: ;
(3)解分式方程: ;
(4)先化简 ,然后从 , ,1,2中选择一个合适的整数作为 的值代入求值.
26.列分式方程解应用题:
2020年玉林市倡导市民积极参与垃圾分类,某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元,求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?
9.B
解析:B
【分析】
最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;
【详解】
A、 ;
B、 的分子分母不能再进行约分,是最简分式;
C、 ;
D、 ;
故选:B.
【点睛】
本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.
A.1个B.2个C.3个D.4个

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(含答案解析)

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(含答案解析)

一、选择题1.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( ) A .93010-⨯米 B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米2.使分式21xx -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数3.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .55.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a cN b+=,a bP c+=,则M ,N ,P 之间的大小关系是( ) A .M P N << B .M N P <<C .N P M <<D .P M N <<9.若ab ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b-=- C .33a a b b = D .22a a b b=10.不改变分式的值,下列各式变形正确的是( )A .11x x y y +=+B .1x yx y-+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭11.若数a 使关于x 的分式方程2311ax x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .812.若分式211a a +-的值等于0,则a 的值为( )A .±1B .0C .1-D .无解二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______.14.若分式11x -值为整数,则满足条件的整数x 的值为_____. 15.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.16.若113m n+=,则分式225m n mn m n +---的值为________ .17.计算:()1211xx x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.计算:22112a a a a a--÷+=____.19.如果2y =,那么y x =_______________________. 20.如果方程322x mx x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:2111224x x x -⎛⎫+÷⎪--⎝⎭,其中3x =.22.先化简,再求值:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中2x =.23.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 24.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间; (2)求m 的取值范围. 25.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+.原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可. 【详解】解:1纳米=0.000 000 001米=10-9米, 30纳米=30×10-9米=3×10-8米. 故选:B . 【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数.2.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2, 解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<,解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0, 解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.6.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】0.0000025=62.510-⨯,故选:D . 【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.A解析:A 【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答. 【详解】 解:∵a+b+c=1,∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c ,∴1110,0,c b b c bc a --=>< ∴111a c b <<, ∴M<P<N ,故选A . 【点睛】本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.B解析:B 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、11x x y y ++≠,不符合题意; B 、=1x yx y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意;故选:B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.11.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.12.D解析:D 【分析】根据分式的值为零的意义具体计算即可. 【详解】∵分式211a a +-的值等于0,∴21a +=0, ∵21a +≥1>0,∴21a+=0是不可能的,∴无解,故选D.【点睛】本题考查了分式的值为零的条件,熟记基本条件和实数的非负性是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键解析:16 3【分析】将原分式化简得163n m mn-=,再两边同时除以mn即可得结果.【详解】由22227m mn nm n mn--=-+得24414m mn n m n mn--=-+所以163n m mn-=,则11163m n-=故答案为:16 3【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键.14.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】解:因为分式11x-有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.15.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a |<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn -=13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22112a a a a a--÷+()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】 本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键. 19.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.22.2x --;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】 解:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭ =222244(2)22x x x x x x--+++- =222(2)(2)22x x x x x x --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=, ∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.24.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m >【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程求解即可; (1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天. 由题意,得11151330x ⎛⎫++⨯= ⎪⎝⎭, 解得10x =.经检验10x =是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得1115133m x ⎛⎫++⨯= ⎪⎝⎭, 解得1525m x m =-. 0x ,0m >,250m ∴->,2.5m ∴>.即m的取值范围是 2.5m>.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.25.(1);(2)3 2【分析】(1)变形已知条件得到x+1x2+2x=1,再利用降次和整体代入的方法把原式化为−x+1,然后把x的值代入计算即可;(2)变形已知条件,把2x=+x2−4x=−1或x2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。

八年级数学下册第十六章《分式》单元 填空题 大全 新课标人教版 (6)

八年级数学下册第十六章《分式》单元 填空题 大全 新课标人教版 (6)

八年级数学下册第十六章《分式》单元 填空题 大全 新课标人教版1. 计算222a aba b+-=____________.2. 若关于x 的分式方程1x aa x +=-无解,则a 的值为___________________.3. 在下列三个不为零的式子x 2-4,x 2-2x ,x 2-4x +4中,任选两个你喜欢的式子组成一个分式是___________,把这个分式化简所得的结果是_________________________.4. 若2,1=+-=b a ab ,则ba a b+=_________。

5. 若分式方程21=++ax x 的一个解是x=1,则a=_______6. 若分式2242x x x ---的值为零,则x 的值是______________.7. 某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程________________________.8. 当x_____时,分式51-x 有意义;当x_______时,分式11x 2+-x 的值为零。

9. 当x=_______时,分式x -51与x 3210-互为相反数.10. 当n 为正整数时,计算下列各式:(1)=⎪⎪⎭⎫ ⎝⎛na b 32_______________; (2)=⎪⎪⎭⎫⎝⎛-+31q n n a b _______________;11. 已知0532≠==c b a ,求c b a c b a -++-223的值.12.分式222439xx x x --与的最简公分母是_______________. 13. 当x_____时,分式2212x x x -+-的值为零;当x ____值时,分式2(2)(3)x x x --+的值为零 14. “循环赛”是指参赛选手间都要互相比赛一次的比赛方式.如果一次乒乓球比赛有x 名选手报名参加,比赛方式采用“循环赛”,那么这次乒乓球比赛共有____________场 15. 若关于x 的分式方程131=---xx a x 无解,则a =____. 16. 分式,21x xyy 51,212-的最简公分母为________________; 17. 如果分式方程11x mx x =++无解,则m 的值为_________ 18. 在下列各式的括号内填上恰当的整式.ba ac 296=()ab 3 ()y x -=222)(y x y x +-19. 计算:222a a bb b a ⎛⎫-÷= ⎪⎝⎭_________. 20. 一公路全长s km,骑自行车ah 可到达,为了提前2h 到达,自行车每小时多行____km.. 21. 设0a b >>,2260a b ab +-=,则a bb a+-的值等于___.计算:()3322232n mn m --⋅_.22. 计算: (xy -x 2)÷xy y x -=__________; 3)(bca-=___________(-223a b c) 3=_________________;(-2b a)2n=_________________;23. 已知x 2+2x -1=0,则式子221x x +的值是_______. 24. 把分式0.030.20.30.01x yx y-+改为整数系数而值不变,得_______.25. 当x =_________时,分式xx 11-无意义.新课标第一网26. 方程xx 527=-的解是_______________; 27.已知实数a b ,满足:=1ab ,那么221111a b +++的值为_____.28. ⑴计算(x+y)·2222x y x y y x +-- =____________;dd c c b b a 111⋅÷⋅÷⋅÷=____________.29. 已知21111R R R += ,则R =___________. 30. 计算()()x x x x 3963234-÷+-=___________ ; 31. 函数12-+=x x y 中自变量x 的取值范围是__________;计算:52-x x +x-525=_________ 32. 若54145=----xx x 有增根,则增根为_______。

八年级数学人教版下册16.3_分式方程及答案

八年级数学人教版下册16.3_分式方程及答案

分式方程测试题一、填空题1. 若11x -与11x +互为相反数,则可得方程___________,解得x =_________. 2..当m 取 时,方程323-=--x m x x 会产生增根. 3..已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为 . 4.若关于x 的分式方程311x a x x--=-无解,则a = . 5.把含盐16%的盐水40千克,配成含盐20%的盐水,需要加入盐的质量为_____千克. 6.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .7..甲、乙制作某种零配件,甲每天比乙多做5个,甲制作75个零件所用的天数与乙制作50个零件的天数相等,则甲、乙每天制作的零件数分别为________________.8..轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是_________千米/时.二、选择题9.一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是 ( ) (A )a +b (B )b a 11+ (C )b a +1 (D )ba ab + 10.下列说法中错误的是( )(A )分式方程的解等于0,就说明这个分式方程无(B )解分式方程的基本思路是把分式方程转化为整式方程(C )检验是解分式方程必不可少的步骤(D )能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解.11..工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述所列方程,正确的有( )个A 1 B 2 C3 D4 12.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .9 B.8 C .6 D .513.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为A .18%)201(400160=++x xB .18%)201(160400160=+-+x x C.18%20160400160=-+x x D.18%)201(160400400=+-+x x 14.一个两位数的十位数字是4,如果把十位数字与个位数字对调,那么所得的新数与原数的比为47,则原来的两位数为()(A)42(B)47(C)24(D)48三、解答题15. .解方程:(1)6122xx x+=-+(2)163104245--+=--xxxx16.某市为缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,须将原定的工作效率提高12%,问原计划完成这项工程用多少个月?17. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?18.某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?19.如图,小明家、王老师家、学校在同一条路上.小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小明的父母战斗在抗洪抢险第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟.问王老师的步行速度及骑自行车的速度各是多少?20.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?21.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.参考答案:一、1、0111x 1=-=+x , 0. 2、m=3. 3、m >-6且 m ≠-4. 4、1. 5、2. 6、x x 9020120=+ 7、15个和10个 8、45 二、9.D 10.A 11.C 12.A 13.B 14.A三、15、(1) x=1 (2) x=2是增根,原方程无解。

八年级数学下册分式方程应用题专题训练(答案)

八年级数学下册分式方程应用题专题训练(答案)

八数下《分式方程》·应用题专项1.(2018?哈尔滨模拟)某市对一段全长2000 米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实质施工时,若每日修路比本来计划提升效率25%,就能够提早 5 天达成修路任务.(1)求修这段路计划用多少天?( 2)有甲、乙两个工程队参加修路施工,此中甲队每日可修路120 米,乙队每日可修路 80 米,若每日只安排一个工程队施工,在保证起码提早 5 天达成修路任务的前提下,甲工程队起码要修路多少天?【解答】解:(1)设原计划每日修 x 米,由题意得﹣=5解得 x=80,经查验 x=80 是原方程的解,则=25 天,答:修这段路计划用20 天。

(2)设甲工程队起码要修路 a 天,则乙工程队要修路 20﹣a 天,依据题意得 120a+80(20﹣a)≥ 2000,解得 a≥ 10,因此 a 最小等于 10.答:甲工程队起码要修路 10天.2.( 2018?南岗区一模)某商铺用 640 元钱购进水果销售,过了一段时间,又用 1600 元钱购进这类水果,所购数目是第一次购进数目的 2 倍,但每千克水果的价钱比第一次购进的贵了 2 元.(1)该商铺第一次购进水果多少千克?(2)假定该商铺两次购进的水果按同样的标价销售,最后剩下的50 千克水果按标价的六折优惠销售.若两次购进水果所有售完,收益不低于 400 元,则每千克水果的标价起码是多少元?注:每千克水果的销售收益等于每千克水果的销售价钱与每千克水果的购进价钱的差,两批水果所有售完的收益等于两次购进水果的销售收益之和.【解答】解:(1)设该商铺第一次购进水果x 千克,依据题意得:﹣=2,解得: x=80,经查验, x=80 是原方程的解,答:该商铺第一次购进水果80 千克.(2)设每千克水果的标价是 y 元,则(80+160﹣50)y+50×60%y﹣ 640﹣1600≥400,解得: y≥12,答:每千克水果的标价起码是 12 元.3.(2018?雨城区校级模拟)为了迎接“五?一”小长假的购物顶峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.此中甲、乙两种运动鞋的进价和售价以下表:运动鞋价钱甲乙进价(元 / 双)m m﹣ 20售价(元 / 双)240 160已知:用 3000 元购进甲种运动鞋的数目与用2400 元购进乙种运动鞋的数目同样.(1)求 m 的值;(2)要使购进的甲、乙两种运动鞋共 200 双的总收益(收益 =售价﹣进价)许多于21700 元,且不超出22300 元,问该专卖店有几种进货方案?该专卖店要获取最大收益应怎样进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得: m=100,经查验, m=100 是原分式方程的解,因此,m=100;(2)设购进甲种运动鞋 x 双,则乙种运动鞋( 200﹣ x)双,依据题意得,不等式组的解集是95≤x≤ 105,∵ x 是正整数, 105﹣95+1=11,∴共有 11 种方案.设总收益为W,则 W=( 240﹣100)x+80(200﹣x)=60x+16000 (95≤x≤105),因此,当 x=105 时, W 有最大值,即此时应购进甲种运动鞋 105 双,购进乙种运动鞋 95 双.4.( 2018?松北区一模)某学校九年级举行乒乓球竞赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购置一个一等奖奖品比购置一个二等奖奖品多用 20 元.若用 400 元购置一等奖奖品的个数是用160 元购置二等奖奖品个数的一半.( 1)求购置一个一等奖奖品和一个二等奖奖品各需多少元?( 2)经商谈,商铺决定赐予该学校购置一个一等奖奖品即赠予一个二等奖奖品的优惠,假如该学校需要二等奖奖品的个数是一等奖奖品个数的 2 倍还多 8 个,且该学校购置两个奖项奖品的总花费不超出670 元,那么该学校最多可购置多少个一等奖奖品?【解答】解:( 1)设购置一个二等奖奖品需x 元,则购置一个一等奖奖品需(x+20)元,依据题意得:= ?,解得:x=5,经查验,x=5是原分式方程的解,∴ x+20=25.答:购置一个二等奖奖品需 5 元,购置一个一等奖奖品需25 元.(2)设该学校可购置 a 个一等奖奖品,则可购置( 2a+8)个二等奖奖品,依据题意得: 15a+5(2a+8﹣a)≤ 670,解得: a≤21.答:该学校最多可购置 21 个一等奖奖品.5.( 2018?黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的 1.5 倍,用 600 元独自购置甲种图书比独自购买乙种图书要少10 本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购置这两种图书共 40 本,要使购置的甲种图书数目许多于乙种图书的数目的一半,怎样购置使得所需花费最少?最少花费是多少?【解答】解:(1)设乙种图书的单价为x 元/ 本,则甲种图书的单价为 1.5x 元/ 本,依据题意得:﹣=10,解得: x=20,经查验, x=20 是原方程的根,且切合题意,∴ 1.5x=30.答:甲种图书的单价为30x 元/ 本,乙种图书的单价为20 元/ 本.( 2)设购置甲种图书m 本,则购置乙种图书( 40﹣m)本,依据题意得:m≥(40﹣m),解得:m≥,∵ m为整数,∴ m≥ 14.设购书花费为 y 元,则 y=30m+20( 40﹣m) =10m+800,∵ 10> 0,∴ y 随 m 的增大而增大,∴当 m=14 时, y 取最小值,最小值 =10×14+800=940.答:购置 14 本甲种图书、 26 本乙种图书花费最少,最少花费为940 元.6.(2018?道外区一模)某工厂签了1200 件商品订单,要求不超出15 天达成.现有甲、乙两个车间来达成加工任务.已知甲车间的加工能力是乙车间加工能力的 1.5 倍,并且加工 240 件需要的时间甲车间比乙车间少用 2 天.(1)求甲、乙每个车间的加工能力每日各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间独自达成节余工作,求甲、乙两车间起码合作多少天,才能保证达成任务.【解答】解:(1)设乙车间的加工能力每日是 x 件,则甲车间的加工能力每日是 1.5x 件.依据题意得:﹣=2,解得: x=40.经查验 x=40 是方程的解,则 1.5x=60.答:甲、乙每个车间的加工能力每日赋别是60 件和 40 件;( 2)设甲、乙两车间合作m 天,才能保证达成任务.依据题意得: m+[ 1200﹣( 40+60) m] ÷ 40≤15,解得 m≥ 10.答:甲、乙两车间起码合作 10 天,才能保证达成任务.7.( 2018?东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少 5 元,其用 90 元购进甲种牛奶的数目与用100 元购进乙种牛奶的数目同样.( 1)求甲种牛奶、乙种牛奶的进价分别是多少元?( 2)若该商场购进甲种牛奶的数目是乙种牛奶的 3 倍少 5 件,该商场甲种牛奶的销售价钱为 49 元,乙种牛奶的销售价钱为每件55 元,则购进的甲、乙两种牛奶全部售出后,可使销售的总收益(收益=售价﹣进价)等于371 元,请经过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x 元 / 件,则甲种牛奶的进价为(x﹣ 5)元 / 件,依据题意得:=,解得:x=50,经查验, x=50 是原分式方程的解,且切合实质意义,∴x﹣5=45.答:乙种牛奶的进价是50 元/ 件,甲种牛奶的进价是45 元 / 件.(2)设购进乙种牛奶 y 件,则购进甲种牛奶( 3y﹣ 5)件,依据题意得:(49﹣ 45)(3y﹣5)+(55﹣50) y=371,解得: y=23,∴ 3y﹣5=64.答:该商场购进甲种牛奶 64 件,乙种牛奶 23 件.8.(2018?阿城区模拟)某文具店用1050 元购进第一批某种钢笔,很快卖完,又用1440 元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的 1.2 倍,数量比第一批多了10 支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按 24 元 / 支的价钱销售,销售必定数目后,依据市场状况,商铺决定对节余的钢笔全按 8 折一次性打折销售,但要求第二批钢笔的收益率不低于 20%,问起码销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x 元,依据题意得:﹣=10,解得: x=15,经查验, x=15 是方程的解,答:第一批文具盒的进价是15 元/ 只;( 2)设销售 y 只后开始打折,依据题意得:( 24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥ 1440× 20%,解得: y≥40.答:起码销售40 只后开始打折.9.(2018?铁西区模拟) A,B 两地间仅有一长为180 千米的平直公路,若甲,乙两车分别从 A,B 两地同时出发匀速前去B,A 两地,乙车速度是甲车速度的倍,乙车比甲车早到 45 分钟.(1)求甲车速度;(2)乙车抵达 A 地逗留半小时后以来 A 地时的速度匀速返回 B 地,甲车抵达 B 地后立刻加速匀速返回 A 地,若乙车返回到 B 地时甲车距 A 地不多于 30 千米,求甲车起码加速多少千米 / 时?【解答】解:(1)设甲车速度为 x 千米 / 时,则乙车的速度是x 千米 / 时,依题意得:=+,解得:x=60.经查验:x=60是原方程的解.答:设甲车速度为 60 千米 / 时;( 2)设甲车加速 y 千米 / 时,依题意得: 180﹣(×2+ )(60+y)≤ 30,解得: y≥15.因此甲车起码加速15 千米 / 时.10.( 2018?长春模拟)甲乙两地相距72 千米,李磊骑自行车来回两地一共用了7 小时,已知他去时的均匀速度比返回时的均匀速度快,求李磊去时的均匀速度是多少?小芸同学解法以下:解:设李磊去时的均匀速度是x 千米 / 时,则返回时的均匀速度是(1﹣)x千米/ 时,由题意得:+=7,你以为小芸同学的解法正确吗?若正确,请写出该方程所依照的等量关系,并达成剩下的步骤;若不正确,请说明原由,并完好地求解问题.【解答】解:小芸同学的解法不正确.原由为:“去时的均匀速度比返回时的均匀速度快”其实不等于“返回时的均匀速度比去时的均匀速度慢”.正确的解法是:设返回时的均匀速度为x 千米 / 时,则去时的均匀速度为( 1+)x 千米 / 时,依据题意得:+=7,解得: x=18,经查验, x=18 是原分式方程的解,∴( 1+)x=(1+)× 18=24.答:李磊去时的均匀速度是24 千米 / 时.11.( 2017 秋?福州期末)在“双十二”时期, A,B 两个商场展开促销活动,活动方式以下: A 商场:购物金额打9 折后,若超出 2000 元再优惠 300 元;B 商场:购物金额打8 折.某学校计划购置某品牌的篮球做奖品,该品牌的篮球在A,B 两个商场的标价同样,依据商场的活动方式:(Ⅰ)若一次性付款4200 元购置这类篮球,则在 B 商场购置的数目比在A商场购买的数目多 5 个,恳求出这类篮球的标价;(Ⅱ)学校计划购置 100 个篮球,请你设计一个购置方案,使所需的花费最少.(直接写出方案)【解答】解:(Ⅰ)设这类篮球的标价为 x 元.由题意:﹣=5,解得: x=50,经查验: x=50 是原方程的解.答:这类篮球的标价为50 元.(Ⅱ)购置购置 100 个篮球,所需的最少花费为 3850 元.方案:在 A 商场分两次购置,每次 45 个,花费共为 3450 元,在 B 商场购置 10 个,花费 400 元,两商场购置 100 个篮球,所需的最少花费为3850 元.12.( 2017 秋 ?青山区期末)张明和李强两名运动喜好者周末相约到东湖绿道进行跑步锻炼.(1)周日清晨6 点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5 千米和1.2 千米的绿道落雁岛进口集合,结果同时抵达,且张明每分钟比李强每分钟多行 220 米,求张明和李强的速度分别是多少米 / 分?(2)两人抵达绿道后商定先跑 6 千米再歇息,李强的跑步速度是张明跑步速度的m 倍,两人在同起点,同时出发,结果李强先到目的地n 分钟.①当 m=12, n=5 时,求李强跑了多少分钟?②张明的跑步速度为米/ 分(直接用含 m, n 的式子表示).【解答】解:(1)设李强的速度为x 米 / 分,则张明的速度为( x+220)米 / 分,依据题意得:=,解得:x=80,经查验,x=80是原方程的根,且切合题意,∴ x+220=300.答:李强的速度为80 米/ 分,张明的速度为300 米/ 分.( 2)①∵ m=12, n=5,∴ 5÷( 12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为: 6000÷=米/分.故答案为:.13.( 2017 秋?汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师奉上拜年卡,网上购置拜年卡的优惠条件是:购置 50 或 50 张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购置拜年卡只能享受零售价,假如比原计划多购置 6 张拜年卡就能享受团购价,这样她正好花了100 元,并且比原计划还节俭10 元钱;(1)拜年卡的零售价是多少?( 2)班里有多少学生?【解答】解:(1)设零售价为 5x 元,团购价为 4x 元,则解得,,经查验: x=是原分式方程的解,5x=2.5答:零售价为2.5 元;( 2)学生数为=38(人)答:王老师的班级里有38 名学生.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章分式练习题
一、选择题:
1、下列式子:,,1,1,32,32π
n m b a a b a x x --++ 中是分式的有( )个 A 、5 B 、4 C 、3 D 、2
2、下列等式从左到右的变形正确的是( )
A 、11++=a b a b
B 、22a b a b =
C 、b a b
ab =2 D 、am bm a b = 3、下列分式中是最简分式的是( )
A 、a 24
B 、112+-m m
C 、1
22+m D 、m m --11 4、下列计算正确的是( )
A 、m n n m =•
÷1 B 、111=÷•÷m m m m C 、1134=÷÷m m m D 、n
n m n 1=•÷ 5、计算32)32()23(m
n n m •-的结果是( ) A 、m n 3 B 、m n 3- C 、m n 32 D 、m n 32- 6、计算y
x y y x x ---的结果是( ) A 、1 B 、0 C 、
y x xy - D 、y x y x -+ 7、化简n
m m n m --+2
的结果是( ) A 、n m B 、n m m --2 C 、n m n --2 D 、m
n - 8、下列计算正确的是( )
A 、1)1(0-=-
B 、1)
1(1=-- C 、2233a a =- D 、235)()(a a a =-÷-- 9、如果关于x 的方程8778=----x
k x x 无解,那么k 的值应为( ) A 、1 B 、-1 C 、1± D 、9
10、甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )
A 、61511=++x x
B 、61511=-+x x
C 、61511=--x x
D 、6
1511=+-x x 二、填空题:
11、分式a a
-2,当a______时,分式的值为0;当a______时,分式无意义,当a______时,分式有意义
12、()22y x -x
y x -=.13、96,91,39222+----a a a a a a 的最简公分母是_____________. 14、
=-÷-b a ab a 11_____________.15、=-+-a
b b b a a _____________. 16、=--2)21(_____________.17、把0000000358.0-用科学记数法表示为______________ 18、如果方程3)
1(2=-x m 的解是5,则m=________19、如果51=+-x x ,则=+-22x x ___________ 20、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________
三、解答题
21、
22、计算:
(1)
2
1)2(11+-•+÷-x x x x (2)32232)()2(b a c ab ---÷(3)2323()2()a a a ÷- (4)0142)3()101()2()21(-++-----π(5)222)()()(b a a b ab ab b a b a b -•-+-÷-
(6)(3103124π--⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭ (7)2211y x xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++- 23、先化简,再求值)1121(1222+---÷--x x x x x x ,其中3
1-=x 分式方程
一. 选择题
1.分式方程13
21=-x 的解为( ) (A )2=x (B )1=x (C )1-=x (D )2-=x
2.第六次火车大提速后,从北京到上海的火车运行速度提高了25%,运行时间缩短了2h 。

已知北京到上海的铁路全长为1462km 。

设火车原来的速度为xkm /h ,则下面所列方程正确的是( )。

A 、2)251(x 1462x 1462=+-%
B 、2x
1462)251(x 1462=--% C 、
2x 1462x 251462=-%D 、2251462x 1462=-% 3.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )
A .
66602x x =-B .66602x x =-C .66602x x =+D .66602x x =+ 二. 填空题
1.若方程322x m x x
-=--无解,则m = 2.南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤xm ,则得方程为。

三. 解答题
1、3386x x +-=
2、8633
x x =+- 两边同时乘以最小公倍数得: 两边同时乘以最简公分母得:
( )3386
x x +-=( ) ()()8633x x =+-
(3)12112-=-x x ()()
12
1x =- ()()()()121x =-
解这个整式方程得: x= 检验:
思考:解分式方程的一般步骤是:
四、解方程:
1、(1)3513+=+x x ;(2)11322x x x
-+=--- (4)512552x x x =--- (5)25231
x x x x +=++.
(6) (7) 2、当x 为何值时,代数式 的值等于2?
3、若使 互为倒数,求x 的值。

4、若分式方程3234=++x m mx 的解为1=x ,求m 的值。

1211422+=+--x x x x x 233321122--=++-x x x x 23223+---x x x x 与x x x x 231392---++。

相关文档
最新文档