【学习课件】第21章量子光学基础

合集下载

物理 量子光学基础

物理  量子光学基础
13
例 2
电视机显象管中的电子加速电压为 9KV,电子枪直径 , 计算: 为 0.1mm 。 计算:电子出枪后的横向速度 ? 解:
1 2 eU = m eυ U = 9 × 10 3 V 2
2 eU 7 = 5 .6 × 10 m / s me
e = 1 . 6 × 10 19 C m e = 9 . 1 × 10 31 Kg
r v e
hν = En EK

1 ν = (En EK ) h
r
Ze
(3)轨道角动量量子化假设 )
约化普朗克常数
h L = mvr= n = nh n = 1, 2 , 3 , L , 2π
1
2. 玻尔的氢原子理论
氢 原 子
rn = n r 1 E1 En = 2 n E = E∞ En
2
1 2 E K = m0υ = eU 2
h 1 . 22 nm = 2 m 0 eU U
P = m0υ = 2 m0 E K = 2 m0 eU
h λ= = p
由晶体衍射的布喇格公式: 由晶体衍射的布喇格公式:
δ = 2d sin = kλ k = 1 ,2 ,3 ,....
U ↑→ λ ↓
衍射光强度极大
x
λ
= A cos 2π (νt
x
λ
) iA sin 2π (νt
x
λ
)
18
实部和虚部各为一波动方程
对一维自由运动的粒子, 和动量P为常量 对一维自由运动的粒子,能量 E和动量 为常量 和动量
E = hν h P = λ
h λ= p E ν= h
对应的物质波 为平面单色波
ψ 一维自由粒子的波函数: 一维自由粒子的波函数: ( x, t ) = ψ 0e

量子光学

量子光学

必须指出的是,光量子学说的提出,成功的解释了光电效应现象的实验结果,促进了光电检测理论、光电检 测技术和光电检测器件等学科领域的飞速发展;因此,从这个意义上讲,爱因斯坦是光电检测理论之父。不仅如 此,光量子学说的提出最终导致了量子光学的建立,所以说它是量子光学发展的源头和起点;因此,从这个意义 上讲,爱因斯坦是量子光学的先驱和创始人。尤为重要的是,爱因斯坦在其光量子学说中所提出的有关光量子这 一概念,几经发展形成了当今的光子这一概念,最终导致光子学理论的建立,并由此带动了光子技术、光子工程 和光子产业的迅猛发展;可见,光量子学说是光子学、光子技术、光子工程和光子产业的发端;因此,从这个意 义上讲,爱因斯坦是光子学、光子技术、光子工程和光子产业的先导。除此而外,爱因斯坦在研究二能级系统的 黑体辐射问题时曾提出了受激辐射、受激吸收和自发辐射这三个概念,并形式的引入了爱因斯坦受激辐射系数、 受激吸收系数和自发辐射系数这三个系数等等;特别是受激辐射这一概念的提出,最终导致了激光器的发明、激 光的出现和激光理论的诞生,直至形成了当今的激光技术、激光工程和激光产业;因此,从这个意义上讲,爱因 斯坦本人是当之无愧的激光之父和激光理论的先驱。
图5研究实验
图6量子光学除了单个原子的自发辐射外,还有多个原子在一起时产生的相干自发辐射,也称超辐射。
发展历程
01
光电效应
02
理论体系
03
推向深入
04
学科成就
06
理论规则
05
激光之父
图7 M·普朗克提出了能量子假设众所周知,光的量子学说最初由A.Einstein于1905年在研究光电效应现象 时提出来的[注:光电效应现象包括外光电效应、内光电效应和光电效应的逆效应等等,爱因斯坦本人则是因为研 究外光电效应现象并从理论上对其做出了正确的量子解释而获得诺贝尔物理学奖;这是量子光学发展史中的第一 个重大转折性历史事件,同时又是量子光学发展史上的第一个诺贝尔物理学奖。尽管爱因斯坦终生对科学的贡献 是多方面的(例如,他曾建立狭义相对论和广义相对论等等),但他本人却只获得这唯一的一次诺贝尔物理学奖]。

《量子光学》课件

《量子光学》课件

压缩态:量子光 学中的特殊状态, 其量子态密度小 于真空态密度
特点:压缩态具 有较高的相干性 和较低的噪声, 可以提高量子通 信和量子计算的 效率
应用:压缩态在 量子通信、量子 计算、量子精密 测量等领域具有 广泛的应用前景
研究进展:近年 来,压缩态的研 究取得了重要进 展,如压缩态的 制备、测量和操 控等。
量子光学在量子通信、量子 计算等领域有广泛应用
量子光学的研究内容
量子光学的基本 原理
量子光学的实验 方法
量子光学的应用 领域
量子光学的发展 趋势
量子光学的发展历程
量子力学的诞生:1900年,普朗克提出量子概念,量子力学开始萌芽 量子光学的兴起:1927年,海森堡提出不确定性原理,量子光学开始发展 量子光学的成熟:1948年,玻尔提出量子光学理论,量子光学逐渐成熟 量子光学的应用:20世纪60年代,量子光学在通信、计算等领域得到广泛应用
量子光场的相干态描述
相干态:量子光场的一种特殊状态,具有确定的相位关系
相干态的性质:相干态具有确定的相位关系,可以描述为相干态的叠加
相干态的表示:相干态可以用相干态的叠加来表示,其中每个相干态的相位关系是确定的
相干态的应用:相干态在量子光学、量子信息等领域有广泛的应用,如量子通信、量子计算 等
单光子计数是一 种常用的量子光 场测量方法,可 以测量单个光子 的存在和数量。
光子关联测量是 一种测量量子光 场中光子之间的 关联性的方法, 可以测量光子之 间的纠缠、相干
等性质。
量子态层析是一 种测量量子光场 中光子状态的方 法,可以测量光 子的波长、偏振、
相位等信息。
量子光场的测量 实验
实验目的:测量量子光场的性质和 特性

第21章_量子光学基础

第21章_量子光学基础

例4:以一定频率的单色光照射在某种金属上,测出其 光电流曲线在图中用实线表示。⑴ 保持照射光的强度 不变,增大频率;测出其光电流曲线在图中用虚线表示。 满足题意的图,是_______。
I
o (A) U
I
o (B) U
I
o (C) U
I
o (D) U
⑵ 保持照射光的频率不变,增大强度。测出其光电流曲 线在图中用虚线表示。满足题意的图,是_______。
瑞利—金斯公式
实验曲线和普朗克公式
6 5 4 3 2 1 0
1 2 3
T=2000K
维恩公式
10-14Hz
由经典理论导出的 M (T)~ 公式都与实验曲线不 完全符合!
这正所谓是“ 物理学晴朗天空中的一朵乌云!”
四.普朗克的量子论的诞生 1900年德国物理学家普朗克为了得到与实验曲线相 一致的公式,摒弃了经典物理能量连续概念,提出了 一个与经典物理学概念截然不同的“能量子”假设. 他指出 :辐射物质中存在着带电谐振子,这些谐振 子吸收或辐射的能量是间断的不连续的,辐射“能量子 ”的能量
实验曲线
维恩公式
维恩公式在高频段与实 验曲线符合得很好, 但在低频段明显偏离 实验曲线。
10-14Hz

著名公式之二: 瑞利 —金斯公式
1900年瑞利和金斯从经典电动力学和 统计物理学理论(能量均分)推导得:
2 2 M (T ) 2 kT c k 1.380658 1023 J K 1
I
O U
I
O (B) U
I
O (C) U
I
O (D) U
(A)
例5:关于光电效应有下列说法中正确的是________。 (1)任何波长的可见光照射到任何金属表面都能产生 光 电效应; (2)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率的光照射时,释出的光电子的 最大初动能也不同; (3)若入射光的频率均大于一给定金属的红限,则该 金属分别受到不同频率、强度相等的光照射时,单位 时间释出的光电子数一定相等; (4)若入射光的频率均大于一给定金属的红限,则当 入射光频率不变而强度增大一倍时,该金属的饱和光 电流也增大一倍。

量子光学基础

量子光学基础

量子光学基础量子光学是研究光与物质相互作用的量子性质的一门学科。

它的发展源于量子力学的兴起,通过量子力学的理论和方法,揭示了光与物质相互作用的微观机制。

量子光学的研究内容包括光的量子特性、光的经典与量子的转换、光与原子、分子和固体之间的相互作用等。

量子光学的研究对象是光子,光子是光的基本单位,也是光的量子。

光子具有波粒二象性,既可以当作波动来描述,也可以当作粒子来描述。

在量子光学中,我们通常用光的频率和波矢来描述光子的特性。

光的频率决定了光的能量,而波矢则决定了光的动量。

量子光学的一个重要研究内容是光的量子特性。

光的量子特性体现在光的产生、传播和检测过程中。

光的产生过程中,光可以通过光的辐射和受激辐射两种方式产生。

光的辐射是指原子或分子自发地发射出光子,而受激辐射是指原子或分子在外界光的作用下发射出光子。

光的传播过程中,光可以表现出干涉和衍射等波动特性,也可以表现出光子统计的特性,如光的强度和光子数的涨落。

光的检测过程中,我们通常使用光电倍增管等光子探测器来探测光子的存在。

光与原子、分子和固体之间的相互作用是量子光学的另一个重要研究内容。

在光与原子的相互作用中,光可以激发原子中的电子跃迁,产生吸收和发射光的现象。

这些现象可用于原子光谱学的研究,可以帮助我们了解原子的能级结构和原子的性质。

在光与分子的相互作用中,光可以激发分子中的振动和转动,产生拉曼散射和红外吸收等现象。

这些现象可用于分析物质的化学成分和结构。

在光与固体的相互作用中,光可以激发固体中的电子和声子,产生各种电磁和声学效应。

这些效应可用于固体物理学和材料科学的研究。

量子光学的研究不仅在基础科学领域有重要意义,也在应用领域有广泛的应用。

在基础科学领域,量子光学的研究有助于揭示光与物质相互作用的微观机制,深化我们对自然界的认识。

在应用领域,量子光学的研究有助于开发新型光学设备和技术。

例如,量子光学的研究为量子计算、量子通信和量子测量等领域提供了理论基础和实验方法。

第二十一章量子理论基础

第二十一章量子理论基础

第十六章 光的干涉一、 选择题【C 】1.(基础训练2)如图16—1所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且 n1 〈 n2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n1λ1) (B )[4πn 1 ( n 2λ1)] + π(C) [4πn2 ( n 1λ1)] + π (D)4πn 2e /( n1λ1) 解答:根据折射率的大小关系n 1 < n2 〉 n 3,判断,存在半波损失,因此光程差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。

其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。

【D】2。

(基础训练10)在迈克尔孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ/2 (B ) λ/(2n) (C) λ (D) λ/2(1)解答:没有介质的时候光程为2d(空气的折射率为1),玻璃中光程为2,所以光程差22nd d λ∆=-=,所以/2(1)d n λ=- 所以答案选【D 】【A】3.(自测提高3)由两块玻璃片(1 1.75n =)所形成的空气劈型膜,其一端厚度为零,另一端厚度为0。

002,现用波长为700(9110nm m -=)的单色平行光沿入射角为30 角的方向射在膜的上表面,则形成的干涉条纹数为(A) 27 (B) 40 (C ) 56 (D ) 100 解答:222219222952sin 3027001020.002101 1.75sin 302700101.961022e n n k λδ----=-+⨯=⨯⨯-+⨯=⨯=⨯591.96102870010N --⨯==⨯ (明条纹) 考虑到厚度为52.010e -=⨯处表面上形成的明条纹实际上看不出,故应有27条条纹.所以答案选【A 】【A】4. (自测提高6)如图16—2所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入 1.60的液体中,凸透镜可沿'OO 移动,用波长λ=500的单色光垂直入射,从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是(A )156。

量子光学基础

量子光学基础

0
1
2
3
4
λ(m)
结论:一个好的吸收体一定也是一个好的发射体. 结论:一个好的吸收体一定也是一个好的发射体. 二.黑体辐射定律 黑体辐射定律 黑体:能吸收一切外来辐射(即吸收比为 ), 黑体:能吸收一切外来辐射(即吸收比为1), 而无反射的物体. 而无反射的物体. 黑体是最理想的发射体
Mλ (T)
热辐射:由于物体中分子, 热辐射:由于物体中分子,原子受到热激发而发 射电磁波辐射的现象. 射电磁波辐射的现象. 基本性质:温度↑发射的能量↑电磁波的短波成分↑ 基本性质: 温度↑发射的能量↑电磁波的短波成分↑ 例如:加热铁块 例如: 基尔霍夫(Kirchhoff)定律 一.基尔霍夫 基尔霍夫 定律 单色辐出度:从物体单位表面积上发射的,波长介于λ 单色辐出度:从物体单位表面积上发射的, 之间的辐射功率dE 和λ+dλ之间的辐射功率 λ与dλ之比.
θ =0°
θ = 45° θ =90°
θ =135°
λo
λoλ
λo λ
λo
λ
1,在原子量小的物质中,康普顿散射较强,反之较弱. ,在原子量小的物质中,康普顿散射较强,反之较弱. 2,波长的改变量λ-λo随散射角 的增加而增加. , 随散射角θ的增加而增加 的增加而增加. 3,对不同的散射物质,只要在同一个散射角下,波 ,对不同的散射物质,只要在同一个散射角下, 都相同. 长的改变量λ-λo都相同.
Va
0
U
截止电压:光电子刚好不能到达 极时所加的反 截止电压:光电子刚好不能到达A极时所加的反 向电压值 Va .
1 2 mvm = eVa 2
实验二: 实验二: 改变入射光强度和频率
I 1,入射光频率不变,饱 ,入射光频率不变, 和电流 IH 的大小与入射 光的强度成正比. 光的强度成正比. 即:K极逸出的电子数与 极逸出的电子数与 入射光的强度成正比. 入射光的强度成正比 2,入射光的强度不变 , 其频率越高, 时,其频率越高,截 止电压V 越大. 止电压 a越大. 即:光电子初动能与入 射光的强度无关, 射光的强度无关,只与 入射光的频率有关. 入射光的频率有关. 0 I

《量子光学》课件

《量子光学》课件
详细描述
量子光学的发展经历了从经典到量子、从理论到实验的演变。
总结词
量子光学的发展始于20世纪初,当时科学家开始研究光的量子性质。随着量子力学的建立和发展,人们逐渐认识到光不仅具有波动性质,还具有粒子性质。此后,量子光学逐渐发展成为一个独立的学科领域,并不断取得新的研究成果和突破。
详细描述
CHAPTER
CHAPTER
量子光学应用
05
03
量子信道容量
研究量子信道的容量限制,为量子通信技术的发展提供理论支持。
01
量子密钥分发
利用量子态的不可复制性,实现通信双方安全地生成和共享密钥,用于加密和解密信息。
02
量子隐形传态
利用量子纠缠,实现量子态的信息传输,即使在遥远距离上也能传送量子态的信息。
利用量子并行性和量子纠缠等特性,设计高效的量子算法,用于解决某些经典计算机难以处理的问题。
《量子光学》PPT课件
目录
contents
量子光学概述量子光场的描述量子光源量子光学实验量子光学应用总结与展望
CHAPTER
量子光学概述
01
量子光学是一门研究光子与物质相互作用、光子自身行为的科学。
总结词
量子光学是物理学的一个分支,主要研究光子与物质的相互作用以及光子自身的量子行为。它涉及到光子的产生、传播、吸收、散射等过程,以及光子与其他粒子相互作用时的量子特性。
新型量子光源
单光子源可实现单光子级别的操作、量子纠缠光源可实现量子通信和量子计算等应用。
特点
量子通信、量子计算、量子传感等。
应用
CHAPTER
量子光学实验
04
总结词
揭示量子波动性
详细描述
双缝干涉实验是量子光学中经典的实验之一,通过让单光子依次通过两条细缝,在屏幕上观察到明暗相间的干涉条纹,从而证明了光具有波动的特性。

第21章量子光学基础教材

第21章量子光学基础教材

第二十一章 量子光学基础一、选择题1、用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1 >E K 2,那么(A) ν1一定大于ν2. (B) ν1一定小于ν2.(C) ν1一定等于ν2. (D) ν1可能大于也可能小于ν2. [ D ]2、用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则(A) ν1 >ν2. (B) ν1 <ν2.(C) ν1 =ν2. (D) ν1与ν2的关系还不能确定. [ D ]3、已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足:(A) λ ≤)/(0eU hc . (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU . (D) λ ≥)/(0hc eU . [ A ]4、已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400Å(A) 5350 Å. (B) 5000 Å.(C) 4350 Å. (D) 3550 Å. [ D ]5、在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是:(A) 0λhc . (B) 0λhcm eRB 2)(2+ . (C) 0λhc m eRB +. (D) 0λhc eRB 2+. [ B ]6、一定频率的单色光照射在某种金属上,测出其光电流的曲线如图中实线所示.然后在光强度不变的条件下增大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是:[ D ]7、用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . . (B ) 2h ν - E K .(C) h ν - E K . (D) h ν + E K . [ D ]8、关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同;(3) 若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率、强度相等的光照射时,单位时间释出的光电子数一定相等;(4) 若入射光的频率均大于一给定金属的红限,则当入射光频率不变而强度增大一倍时,该金属的饱和光电流也增大一倍.其中正确的是(A) (1),(2),(3).(B) (2),(3),(4).(C) (2),(3).(D) (2),(4).[ D ]9、设用频率为ν1和ν2的两种单色光,先后照射同一种金属均能产生光电效应.已知金属的红限频率为ν0,测得两次照射时的遏止电压|U a2| = 2|U a1|,则这两种单色光的频率有如下关系:(A) ν2 = ν1 -ν0.(B) ν2 = ν1 +ν0.(C) ν2 = 2ν1 -ν0.(D) ν2 = ν1 -2ν0.[ C ]10、在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.[D ]11、当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[ D ](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)12、保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E0和飞到阳极的电子的最大动能E K的变化分别是(A) E0增大,E K增大.(B) E0不变,E K变小.(C) E0增大,E K不变.(D) E0不变,E K不变.[ D ]13、光子能量为0.5 MeV的X射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为0.1 MeV,则散射光波长的改变量∆λ与入射光波长λ0之比值为(A) 0.20.(B) 0.25.(C) 0.30.(D) 0.35.[ B ]14、用强度为I,波长为λ 的X射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X射线波长分别为λLi和λFe (λLi,λFe >λ),它们对应的强度分别为I Li和I Fe,则(A) λLi>λFe,I Li< I Fe(B) λLi=λFe,I Li = I Fe(C) λLi=λFe,I Li.>I Fe(D) λLi<λFe,I Li.>I Fe[ C ]15、以下一些材料的逸出功为铍3.9 eV 钯5.0eV铯1.9 eV 钨4.5 eV今要制造能在可见光(频率范围为3.9×1014 Hz—7.5×1014 Hz)下工作的光电管,在这些材料中应选(A) 钨.(B) 钯.(C) 铯.(D) 铍.[ C ]16、某金属产生光电效应的红限波长为λ0,今以波长为λ (λ <λ0)的单色光照射该金属,金属释放出的电子(质量为m e )的动量大小为(A) λ/h . (B) 0/λh (C) λλλλ00)(2+hc m e (D) 02λhc m e (E) λλλλ00)(2-hc m e [ E ]17、光电效应和康普顿效应都包含有电子与光子的相互作用过程.对此,在以下几种理解中,正确的是(A) 两种效应中电子与光子两者组成的系统都服从动量守恒定律和能量守恒定律.(B) 两种效应都相当于电子与光子的弹性碰撞过程.(C) 两种效应都属于电子吸收光子的过程.(D) 光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程.(E) 康普顿效应是吸收光子的过程,而光电效应则相当于光子和电子的弹性碰撞过程. [ D ]18、用X 射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中(A) 只包含有与入射光波长相同的成分.(B) 既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.(C) 既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.(D) 只包含着波长变长的成分,其波长的变化只与散射物质有关与散射方向无关. [ B ]19、已知用光照的办法将氢原子基态的电子电离,可用的最长波长的光是 913 Å的紫外光,那么氢原子从各受激态跃迁至基态的赖曼系光谱的波长可表示为:(A) 11913+-=n n λ Å. (B) 11913-+=n n λ Å. (C) 1191322-+=n n λ Å. (D) 191322-=n n λ Å. [ D ] 20、要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV . (B) 3.4 eV .(C) 10.2 eV . (D) 13.6 eV . [ C ]21、根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5. [ C ]22、氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为(A) 7/9. (B) 5/9.(C) 4/9. (D) 2/9. [ B ]23、由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:(A) 一种波长的光. (B) 两种波长的光.(C) 三种波长的光. (D) 连续光谱. [ C ]24、根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为(A) 1/4.(B) 1/8.(C) 1/16.(D) 1/32.[ C ]25、根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比v1/ v 3是(A) 1/9.(B) 1/3.(C) 3.(D) 9.[ C ]26、假定氢原子原是静止的,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是(A) 4 m/s.(B) 10 m/s .(C) 100 m/s .(D) 400 m/s .[ A ](氢原子的质量m =1.67×10-27 kg)27、氢原子光谱的巴耳末系中波长最大的谱线用λ1表示,其次波长用λ2表示,则它们的比值λ1/λ2为:(A) 20/27.(B) 9/8.(C) 27/20.(D) 16/9.[ C ]28、按照玻尔理论,电子绕核作圆周运动时,电子的动量矩L的可能值为(A) 任意值.(B) nh,n = 1,2,3,…(C) 2π nh,n = 1,2,3,…(D) nh/(2π),n = 1,2,3,…[ D ]29、具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?(A) 1.51 eV.(B) 1.89 eV.(C) 2.16 eV.(D) 2.40 eV.[ B ]30、若用里德伯常量R表示氢原子光谱的最短波长,则可写成(A) λmin =1 / R.(B) λmin =2 / R.(C) λmin =3 / R.(D) λmin =4 / R.[ A ]31、已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56 eV.(B) 3.41 eV.(C) 4.25 eV.(D) 9.95 eV.[ A ]32、要使处于基态的氢原子受激后可辐射出可见光谱线,最少应供给氢原子的能量为(A) 12.09 eV.(B) 10.20 eV.(C) 1.89 eV.(D) 1.51 eV.[ A ]33、在气体放电管中,用能量为12.1 eV的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是(A) 12.1 eV.(B) 10.2 eV.(C) 12.1 eV,10.2 eV和1.9 eV.(D) 12.1 eV,10.2 eV和3.4 eV.[ C ]34、在激光器中利用光学谐振腔(A) 可提高激光束的方向性,而不能提高激光束的单色性.(B) 可提高激光束的单色性,而不能提高激光束的方向性.(C) 可同时提高激光束的方向性和单色性.(D) 既不能提高激光束的方向性也不能提高其单色性.[ C ]35、按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:(A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的.(B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的.(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的.(D) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是相干的.[ B ]36、激光全息照相技术主要是利用激光的哪一种优良特性?(A) 亮度高.(B) 方向性好.(C) 相干性好.(D) 抗电磁干扰能力强.[ C ]二、填空题1、某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V.当入射光的波长为__________________×103Å时,其遏止电压变为1.43 V.( e =1.60×10-19 C,h =6.63×10-34 J·s )答案:3.825、当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为|U a| =_______V。

大学物理:第 21 章 量子光学基础分解

大学物理:第 21 章 量子光学基础分解

2π h M 0 ( , T ) 2 h c e kT 1
2
黑体热辐射的理论与实验结果的比较
维恩公式在低频段, 偏离实验曲线! 瑞利—金斯公式在 高频段 ( 紫外区 ) 与 实验明显不符, 短 波极限为无限大— “紫外灾难”!
在全波段与实验结果 惊人符合!
END
§21.2 普朗克的能量子假说和黑体辐射公式
E ( , T ) 入 射 E
吸收
2. 基尔霍夫定律 同一个物体的发射本领和吸收本领有内在 联系,例下图为黑白花盘子的反射和自身 辐射照片
室温下的反射光照片
1100K的自身辐射光照片
图片说明一个好的发射体一定也是好的吸收体。 基尔霍夫定律: 实验发现,在温度一定时物体 在某波长λ处的单色辐出度与单色吸收比的比值 与物体及其物体表面的性质无关,即
M 0 ( , T )
2πc
2
h e
hc kT

5
1
普朗克(Max Karl Ernst Ludwig Planck, 1858―1947) 德 国 物 理学家,量子物理学的开创者 和奠基人, 1918 年诺贝尔物理 学奖金的获得者。
END
§21.3 光的粒子性
一、 光电效应的实验规律
1. 光电效应 光照射在金属及其化合物 的表面上发射电子的现象 称 为 光 电 效 应 (photoelectric effect)。 (1) 实验装置-光电管 在阴极金属表面逸出 的电子称为光电子 (photoelectron), 电路中出现的电流形成 光电流 (photocurrent)
M (T ) T
4
=5.67×10- 8 W/(m2K4)—— Stefen 恒量
2. 维恩位移定律(W. Wien) 黑体辐射中单色辐出度的极值 波长m与黑体温度T 之积为常 数

《量子光学》PPT课件_OK

《量子光学》PPT课件_OK

2.11030
hn 6.6261034 0.71
2021/7/21
33
当量子数n改变一个单位,振动系统的能量改变的百 分比为
E n
1
10 30
E n 2.11030
可以看出,相对于宏观振子,其量子数n甚大、 能级
差很小, 振动系统能量的分立特性不明显。因此在经 典力学中,可视宏观振子的能量是连续变化的。
1. 选择性吸收体:在一定温度下,只对某些 或某段波长范围的辐射有明显吸收,对其他波 长吸收很少。 有色反光体 2. 灰体:单色吸收系数是一个常数,但小于1.
它对各种波长的辐射有同等程度的吸收和 反射. 3. 绝对黑体: 在任何温度下均能全部吸收投 射到它上面的辐射,即吸收系数为1,反射系数 为0.
轴截距 称为截止频率或
红限,
,入射光频率
小于截止频率时无论光 强多大
遏止电势差的大小与入射光 都不能产生光电效应。每种金 的频率成线性关系,与光强无关。 属有自己的截止频率。
与材料 无关的普适常量
与材料 有关的常量
时无论光强多弱41 ,光 照与电子逸出几乎同时发生。
波动理论的困难
42
光量子理论
43
普朗克常量 数值为 6.63×10- 3 J ·s 4
并很快被检验与实验结果相符。
27
Eo ( T )
4
理论曲线
1011 W m -2 m -1 普朗克的黑体
单色辐出度函数及曲线线
3
e 2phc 2
E o(T) = 5
1
hc
kT 1
2
1
0
0
1
2
波 长 28
3
4
5
10- 6m

优选第二十一量子力学基础

优选第二十一量子力学基础

概率波解释
波函数性质
归一化波函数
ቤተ መጻሕፍቲ ባይዱ




第四节
19 - 4
薛定谔方程引言

自由粒子薛定谔方程
一维势场薛定谔方程
定态薛定谔方程

稳定势阱
第五节
19 - 5
一维无限深势阱
续上求解
续上求解
续求解
结果分析讨论

第六节
19 - 6
氢原子薛定谔方程
能量量子化
角动量空间取向
全同粒子波函数
泡利不相容原理
徐光宪定则
举例
元素的电子组态
本章部分选例1
选例2
选例3
选例4
选例5
选例6
时空下限
普朗克时间
电子概率分布
径向概率密度
角向概率密度
电子云1
电子云2
电子自旋
自旋量子数
无经典图像
多电子原子的描述
四量子数与壳层
两个原理
举例
简表
元素电子组态表示
下册完
备用资料
势垒
隧道效应
续上
扫描隧道显微镜
金属1
逸 出 电 势 垒 高
续上
塞曼效应
塞曼效应
玻尔磁子
续上
全同粒子
优选第二十一量子力学基础
第一节
引言
德布罗意
德布罗意方程
德布罗意波长

续上
戴-革实验
汤姆孙实验
电子衍射图片
电子及中子衍射图片






要点1
第二节
不确定关系
归纳

《量子光学基础》PPT课件

《量子光学基础》PPT课件

电 能磁 量波
腔壁上的原 子
量子假说与物理学界几百年来信奉的“自然界无跳跃” 的原则直接矛盾,因此许多物理学家不予接受。普朗克本人 也曾几度(前后花费15年时间)想倒退,回到经典物理学的 立场上去。但是,“无济于事,我们必须与量子理论共处”。
普朗克能量子假设揭示了自然现象中客观存在的不连 续的量子性质,开始突破了经典物理学在微观领域内的束 缚,标志着物理学上一场伟大革命的开始。
出度MB(T)与( ,T)的关系曲线。如何从理论上推导出符合 实验结果的MB(T)函数表达式,就成为当时物理学中引人
注目的问题之一。许多物理学家尝试从经典理论出发对绝 对黑体的辐射规律给予解释。
长波范围与实验符合,而在短波
范围内不符合——“紫外灾难”
瑞利 — 金斯公式
MB
(1900年)
与实验符 合
短波范围与实验符合, 而在长波范围内不符合
维恩公式 (1896年)
试验曲线
紫外灾难
普朗克公式的得来,起初是半经验的,即利用内插法将适用 于短波的维恩公式和适用于长波的瑞利—金斯公式衔接起 来,在得到了公式后,普朗克才设法从理论上去论证它。
MB
M
B
(T
)
1
5
2π hc2 ehc kT 1
h 6.631034 J s
本章主要讲解五个方面问题: 1)黑体辐射的实验规律 2)普朗克能量子假设 3)光电效应与爱因斯坦光子理论 4)康普顿效应 5)光的波粒二象性
光电效应与爱因斯坦光子理 论
1887年,赫兹在作放电实验时偶然观察到光电效应 现象。1900年,赫兹的同事勒纳德(P. Lenard)指出:光 电效应是金属中电子吸收入射光的能量而从表面逸出的现 象。1905年,伟大的物理学家爱因斯坦从理论上对光电效 应作出了科学的解释。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③任何一种物质不仅能发射热辐射,同时还能吸收热 辐射,两者同时进行。
④吸收本领强的物质发射p本pt课领件 也强。
4
红外照相机拍摄的人的头部的热图
热的地方显白色,冷的地方显黑色
ppt课件
5
2. 黑体: 能完全吸收各种波长电磁波而无反射的物体,
黑体是理想化模型,
即使是煤黑、黑珐琅对太阳光的吸收 也小于 99%。
•1904年诺贝尔物 理学奖获得者 —瑞
M/(10-9W/(m2. HZ)
实验曲线
6
5
4 3
瑞利--金斯公式
2
利 •英国人1842-
该公式1在91低9 频段与实 验曲线符合得很好。
但在高频段不符。
1 0
时M , ,
1 2 3 10-14Hz ppt课件
“紫外灾难”! 9
M/(10-9W/(m2. HZ)
迈克尔逊干涉仪实验 黑体辐射实验
相对论诞生 量子理论诞生
量子概念是 1900 年普朗克首先提出的,距今已 有一百多年的历史.其间,经过爱因斯坦、玻尔、德 布罗意、玻恩、海森伯、薛定谔、狄拉克等许多物理 大师的创新努力,到 20 世纪 30 年代,就建立了一 套完整的量子力学理论.
ppt课件
3
§21-2. 普朗克的能量子假说
1.实验装置 产生的电子称为“光电子”。 光电子在电场作用下形成光电流。
A V
2.实验规律
红限频率(截止) 0
仅当 >0 时才发生光电效应,截止频率与材料有
关与光强无关 .
几种纯
金属的截 止频率
金属 铯 钠 截止频率
0 /1014Hz 4.54pp5t课件 5.50
锌 铱铂
8.065 11.53 191.329
U0
0I 光强度大源自瑞利—金斯公式实验曲线和普朗克公式
6
5
T=2000K
4
3
维恩公式
2
1
0
12 3
10-14Hz
由经典理论导出的 M (T)~ 公式都与实验曲线不
完全符合!
这正所谓是“ 物理学晴朗天空中的一朵乌云!”
ppt课件
10
四.普朗克的量子论的诞生
1900年德国物理学家普朗克为了得到与实验曲线相 一致的公式,摒弃了经典物理能量连续概念,提出了 一个与经典物理学概念截然不同的“能量子”假设.
一、热辐射 -----热能传递的重要方式之一。 一个具有一定温度的物体,受热就会发光,热量
(或热能)会向四面八方发射----辐射。温度越高辐 射能量越多,称为热辐射。
1.热辐射的特点
①热辐射的实质是电磁辐射
②温度不同时,辐射的波长(或频率)也不同。 低温物体发出的是红外光,炽热物体发出
的是可见光,极高温物体发出的是紫外光。
遏止电压U0: 加反向电压,当电压 达到某一值 U0 时,光电流恰为 0。 U0叫遏e止U0电E 压kmax12mm 2vax
遏止电压与入射光频率具有线性 关系.与光强无关。
光电子的最大初动能随入射光频率 的增加而线性增大,与光强无关。
光电流与光强的关系
一定时,电流饱和值 I s 与
入射光的强度成正比
然而在人类即将跨入20世纪的时候,却发现了某些无 法用经典理论解释的实验现象 :M-M实验“零结果”
热辐射“紫外灾难”。
1900年,Kelvin在新千年的祝词中把此称为是晴朗的 物理学天空中出现的“两朵乌云”。这些矛盾迫使人们
跳出传统的物理学框架,去ppt寻课件找新的解决途径。 2
人类跨入20世纪的时候,物理学也开始了新的纪 元——从经典物理走向了近代物理。
4
验曲线符合得很好,
3
维恩公式
2
但在低频段明显偏离
1 0
实验曲线。
1 2 3 10-14Hz ppt课件
8
▲ 著名公式之二: 瑞利 —金斯公式
1900年瑞利和金斯从经典电动力学和 统计物理学理论(能量均分)推导得:
2 2
M(T) c2 kT k1 .380 16 2 0J 3 5 K 8 1
维恩设计的黑体 —— 小孔空腔
电磁波射入小孔后,很难再从 小孔中射出。
3.热辐射的描述方法 ①单色辐出度 M :描写物体辐射本领的物理量。
单位时间内,从物体单位表面发出的频率在
附近单位频率间隔内的电磁波的能量。
②辐出度 M(T )
温度 T 时单位时间内、单位面积 整个频率范围内的辐射出能ppt课量件。
M(T)M(T)d
0
6
二. 黑体辐射谱(M~ 关系)的规律
1.黑体辐射测量的实验装置
s L 1 平行光管
T
L 2 会聚透镜 热电偶
测M (T)
c
黑体
棱镜
2. 黑体辐射谱的实验规律
M (T )
不同温度下的黑体辐
10
曲线如图
19世纪末,许多物理
6000K
学家欲从理论上导出 黑
5
3000K
体的单色辐射出度 M 和
第 21 章 量 子 光学基础
ppt课件
1
§21-1 引 言
十九世纪末,经典物理已发展得相当成熟,人们认 为,对物理现象本质的认识已经完成。海王星的发现 和电磁理论对波动光学的成功解释,更使人感到经典 物理似乎可以解决所有问题.。当时很多物理学家都认 为 :物理学的大厦已基本建成,后辈物理学家只要做 些修补工作就行了。
υ的关系式。
ppt课件 0
4
8
7
三. 经典物理学遇到的困难 ▲ 著名公式之一:维恩公式
1896年维恩从热力学理论及实验数
据的分析得:
M (T)3e/T
•1911年诺贝尔物 理学奖获得者—维
, 为常量

M/(10-9W/(m2. HZ)
•德国人1864-1928
实验曲线
6
热辐射定律的发现
5
维恩公式在高频段与实
▲ 量子论是不附属于经典物理的全新的理论,它的发展 在此后又经过了十几年的曲折和反复。 ▲ 1918年Planck 60岁时获得了诺贝尔物理奖。
•普朗克 •德国人 (1858 - 1947) •发现能量子
ppt课件
12
21-3 爱因斯坦的光量子假说------ 光电效应
一 光电效应实验的规律
光电效应:光照射某些金属时, 能从表面释放出电子的效应。
他指出 :辐射物质中存在着带电谐振子,这些谐振 子吸收或辐射的能量是间断的不连续的,辐射“能量子
”的能量 E n nh (n 1 、 2 、 3 )
普朗克由此导出了的辐射公式
M(T)2c2heh/k3T1 ——普朗克公式
该公式在全波段与实验结ppt果课件惊人地符合!
11
▲ 1900.12.14. Planck把“关于正常谱中能量分布的理 论”的论交到了德国自然科学会,这一天后来被定为 “量子论的诞生日”。 ▲ 普朗克公式的得出,是理论和实验结合的典范。
相关文档
最新文档