精密超精密加工技术

合集下载

超精密加工技术PPT培训课件

超精密加工技术PPT培训课件
详细描述
在模具加工中,超精密加工技术能够加工出高精度、高光洁 度的模具表面,提高模具的使用寿命和制件的精度,广泛应 用于塑料模具、压铸模具等领域。
航空航天零件加工
总结词
超精密加工技术在航空航天领域的应 用,涉及发动机叶片、涡轮盘等复杂 零件的加工。
详细描述
由于航空航天领域对零件的精度和性 能要求极高,超精密加工技术能够实 现复杂零件的高精度、高效率加工, 提高航空航天器的性能和安全性。
特种加工原理
特种加工是指利用物理、化学或电学等 非传统机械能来去除材料的一种加工方 法。与传统的切削和磨削加工相比,特 种加工具有更高的加工精度和更广泛的
加工适应性。
常见的特种加工方法包括激光束加工、 电子束加工、离子束加工、等离子体加 工等。这些方法利用高能束流或等离子 体与工件表面相互作用,实现材料的快
误差补偿技术
热误差补偿
通过对机床热误差的测量和建模, 实现对热误差的有效补偿,提高
加工精度。
运动误差补偿
通过对机床运动误差的测量和建 模,实现运动误差的补偿,提高
加工精度。
综合误差补偿
综合运用热误差和运动误差补偿 技术,实现对超精密加工过程中
各种误差的有效补偿。
04 超精密加工技术的应用案 例
光学元件加工
加工精度提升
超精密加工技术面临的技术瓶颈之一是如何进一步提高加工精度 和表面质量。
材料限制
某些特殊材料在超精密加工过程中容易出现裂纹、变形等问题,如 何克服这些材料限制是亟待解决的问题。
加工效率与成本控制
提高加工效率并降低成本是超精密加工技术发展的关键,需要不断 优化工艺参数和设备性能。
新材料加工的挑战
医疗器械
超精密加工技术在医疗器械领域的 应用广泛,如人工关节、心脏瓣膜 等高精度医疗设备的制造。

精密和超精密加工技术

精密和超精密加工技术
ELID磨削的应用
电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较

精密和超精密加工

精密和超精密加工

精密和超精密加工一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等,具体如下:a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光是通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

超精密加工技术的概念

超精密加工技术的概念

超精密加工技术的概念
嘿,朋友们!今天咱来唠唠超精密加工技术。

你说这超精密加工技术啊,就好比是一位超级细腻的艺术家,在微观世界里精雕细琢。

咱平常生活里用的好多东西,可都离不开它呢!比如说你那手机,里面的芯片,那可都是经过超精密加工技术打磨出来的呀。

要是没有它,咱的手机能那么厉害吗?能那么流畅地玩游戏、看视频吗?
你再想想那些高端的医疗器械,那得精细到啥程度啊!这超精密加工技术就像是一双神奇的手,能把各种材料雕琢成我们需要的模样,而且精度高得吓人。

这就好像是在头发丝上绣花,难不难?当然难啦!但人家就是能做到。

你说这技术咋就这么牛呢?它能把误差控制在极小极小的范围内,小到你都没法想象。

就好比你要在一粒米上刻字,还得刻得特别清楚,这得有多厉害啊!而且它加工出来的东西,表面光滑得像镜子一样,这可都是技术的功劳啊。

你看看那些航天设备,里面的零件哪个不是靠超精密加工技术打造的?要是精度不够,那还不得出大问题啊!这就像是盖房子,根基不牢,房子能稳吗?超精密加工技术就是那个稳固的根基呀。

咱普通人可能觉得这离我们挺远的,其实不然。

咱生活中的点点滴滴都有它的影子呢。

就说你戴的眼镜吧,镜片的制作也得靠它呀。

还有那些精密的仪器仪表,没有超精密加工技术,它们能那么准确地工作吗?
这超精密加工技术就像是一个隐藏在幕后的英雄,默默地为我们的生活贡献着。

它让我们的科技不断进步,让我们的生活变得更加美好。

咱可得好好珍惜这技术带来的便利呀,可别不当回事儿。

反正我觉得吧,超精密加工技术就是牛,不服不行啊!它就是那个能创造奇迹的魔法,让一切不可能都变成可能。

你说呢?。

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术

精密和超精密加工的机床设备技术引言精密和超精密加工技术在现代制造业中扮演着重要的角色。

为了满足高质量、高精度、高效率的加工需求,机床设备技术不断得到改进和发展。

本文将介绍精密和超精密加工的机床设备技术,并探讨其在制造业中的应用。

1. 精密加工的机床设备技术精密加工是指在工程加工中,对尺寸精度和表面质量要求较高的加工方法。

精密加工的关键在于机床设备的稳定性、刚性和精度。

以下是精密加工机床设备的几个关键技术:1.1 数控技术数控技术是精密加工中最为关键的技术之一。

通过数控技术,可以实现机床的高精度和高效率加工。

数控技术的应用可以大大提高生产效率,并且减少操作人员的工作强度。

1.2 精密传动系统精密传动系统是精密加工机床设备的核心组成部分。

精密传动系统的设计与制造涉及到轴承、传动装置、伺服驱动装置等多个方面。

通过精确的传动系统,可以提高机床的精度和稳定性。

1.3 线性驱动技术线性驱动技术是现代机床设备中的重要发展方向之一。

相比传统的滚动轴承驱动,线性驱动技术能够实现更高的速度和更高的精度。

线性驱动技术可以用于各种类型的机床设备,包括数控机床和超精密加工机床。

2. 超精密加工的机床设备技术超精密加工是指在微米甚至纳米级别下进行加工的技术。

超精密加工在光学、光电子、半导体等领域具有重要的应用。

以下是超精密加工机床设备技术的几个关键技术:2.1 超精密控制系统超精密控制系统是实现超精密加工的关键技术之一。

通过超精密控制系统,可以实现对微小位移和应力的精确控制。

超精密控制系统需要具备高精度、高灵敏度和高稳定性的特点。

2.2 超精密磨削技术超精密磨削技术是超精密加工的核心技术之一。

超精密磨削技术可以实现对工件表面的精确修整和光洁度的提高。

超精密磨削技术需要借助特殊材料和磨削工具,并配合高精度的机床设备。

2.3 超精密检测技术超精密加工过程中,对工件的检测和测量要求非常高。

超精密检测技术可以实现对工件尺寸、形状和表面质量的高精度测量。

精密和超精密加工技术

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

精密与超精密加工技术

精密与超精密加工技术

精密与超精密加工技术综述0 前言就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域1。

前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。

两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。

精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。

精密和超精密加工与国防工业有密切关系。

导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。

例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。

对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。

由此可知,惯性仪表的制造精度十分关键。

如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~0.06μm,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。

超精密加工技术的发展现状

超精密加工技术的发展现状

超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。

它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。

现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。

想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。

在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。

光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。

超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。

激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。

不过,话说回来,技术再先进,也得面对一些挑战。

比如说,成本问题。

超精密加工的设备可不是白菜价,维护保养更是个大开销。

这让很多小企业在这条路上犹豫不决,真是让人心疼。

材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。

为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。

还有就是人才的培养。

这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。

现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。

真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。

说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。

你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。

第5章 精密、超精密加工技术

第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工

2.3精密和超精密加工技术

2.3精密和超精密加工技术

现代制造技术
2. 非机械超精密加工技术——特种精密加工方法
包括精密电火花加工、精密电解加工、精密超声加工、
电子束加工、离子束加工、激光束加工等一些非传统加工方 法;
3. 复合超精密加工方法
传统加工方法的复合 特种加工方法的复合 传统加工方法和特种加工方法的复合
(例如机械化学抛光、精密电解磨削、精密超声珩磨等)。
1~0.1 0.1~ 0.001 0.1~ 0.01 1~0.1 1~0.1 5 5 1~0.1
0.025~ 0.008 0.025~ 0.008 0.025~ 0.008 0.01 0.01 0.01 0.01~ 0.02 0.01~ 0.008
黑色金属、铝合金 黑色金属、非金属 材料 黑色金属、非金属 材料、有色金属 黑色金属、非金属 材料 黑色金属、非金 属材料、有色金属 黑色金属等 黑色金属等 黑色金属、非金属 材料、有色金属
发展:超精密磨削应用比较成熟的首推金刚石微粉砂轮 超精密磨削。
现代制造技术 1)金刚石微粉砂轮 采用粒度为F240~F1000的金刚石微粉作为磨料,树脂、 陶瓷、金属为结合剂烧结而成;也可采用电铸法和气相沉积 法制作。 用筛选法分级,粒度号以磨粒通过的筛网上每英寸长度 内的孔眼数来表示。如60 # 的磨粒表示其大小刚好能通过每 英寸长度上有60孔眼的筛网。对于颗粒尺寸小于40 μ m的磨 料,称为微粉。 • 用显微测量法分级,用W和后面的数字表示粒度号,其W后 的数值代表微粉的实际尺寸。如W20表示微粉的实际尺寸为 20 μ m
• 精密加工是指加工精度达到1~0.1μm,表面粗
糙度Ra在0.1~0.01μm的加工工艺。
• 超精加工则是指加工尺寸精度高于0.1μm,表 面粗糙度Ra小于0.025μm的精密加工方法。

精密与超精密加工技术

精密与超精密加工技术

第二章精密与超精密加工技术一.概述二.超精密切削加工技术三.超精密磨削技术四.超精密研磨抛光技术五、超精密加工装备与环境一、概述1、精密和超精密加工技术的发展是从上世纪 70年代开始,主要集中在美、日、英等国,精密和超精密加工在尖端技术和现代武器制造中占非常重要的地位,是机械制造业最主要发展的方向之一。

2、精密和超精密加工技术在提高机电产品的性能、质量和发展高新技术中起着至关重要的作用,并且已成为在国际竞争中取得成功的关键技术。

3、当代的超精密加工技术是现代制造技术的前沿,也是明天制造技术的基础。

超精密加工是国家制造工业水平的重要标志之一。

4、加工精度进化5、机械工业提高加工精度的效益。

1)提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;2)促进产品的小型化;3)增强零件的互换性,提高装配生产率,并促进自动化装配;6、在不同的历史时期,不同的科学技术发展水平情况下,对精密与超精密加工技术有不同的理解。

1)精密和超精密加工是一个十分广泛的领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法。

2)精密和超精密只是相对而言,其间的界限随时间的推移而不断变化,因而精密和超精密在不同的时期必须使用不同的尺度来区分。

3)1983年日本的 Taniguchi教授在考查了许多超精密加工实例的基础上对超精密加工的现状进行完整的综述,并对其发展趋势进行了预测。

7、超精密加工技术的现状1)超精密加工技术是一门综合性的系统工程,它的发展综合地利用了机床、工具、计量、环境技术、微电子技术、计算机技术、数控技术等的进步。

2)精密加工和超精密加工已从单一的技术方法发展为制造系统工程,简称精密工程。

它以人、技术、组织为基础,涉及超微量去除、结合、变形加工技术,高稳定性和高净化的加工环境,检测与误差补偿,工况监测与质量控制,被加工材料等。

二、超精密切削加工技术超精密切削技术是60年代发展起来的新技术,它在国防和尖端技术的发展中起着重要的作用;超精密切削是使用精密的单晶天然金刚石刀具加工有色金属和非金属;超精密切削可代替研磨等很费工的精加工工序,不仅节省工时,还提高加工精度和表面质量。

《精密超精密加工》课件

《精密超精密加工》课件

04
精密超精密加工材料
金属材料
01
02
03
钢铁
常用的金属材料,具有高 强度、耐磨性和耐腐蚀性 ,适用于各种精密超精密 加工应用。
铜合金
具有良好的导热性和导电 性,广泛用于电子和通信 行业。
钛合金
具有高强度、轻质和耐腐 蚀性,常用于航空和医疗 领域。
非金属材料
陶瓷
具有高硬度、耐高温和化学稳定性,适用于高精度和 高硬度的加工需求。
详细描述
防止加工过程中的损伤需要从多个方面入手,包括优化刀具设计、选择合适的切削参数 、加强刀具管理和维护等。此外,采用新型的涂层技术和刀具材料也是防止损伤的有效
手段。
06
பைடு நூலகம்
精密超精密加工的应用案例
航空航天领域的应用案例
总结词
精密超精密加工技术在航空航天领域的应用广泛,涉 及发动机叶片、涡轮盘、航空仪表等关键部件的制造 。
这些技术包括离子束加工、电子束加工、激光束加工等。这些技术通常具有更高的加工精度和更广泛 的适用范围,可以应用于各种不同的材料和领域。
03
精密超精密加工设备与工具
超精密切削加工设备
01
超精密切削加工设备主要用于高 精度零件的切削加工,其特点是 切削精度高、加工表面质量好、 加工效率高。
02
常见的超精密切削加工设备包括 数控机床、激光切割机、水切割 机等。
汽车工业领域的应用案例
总结词
精密超精密加工技术在汽车工业领域的应用主要涉及 汽车发动机、变速器、制动系统等关键零部件的制造 。
详细描述
在汽车工业领域,精密超精密加工技术主要用于制造汽 车发动机、变速器、制动系统等关键零部件。这些零部 件的性能对汽车的性能和安全性有重要影响。精密超精 密加工技术能够提高零部件的精度和耐磨性,降低摩擦 和阻力,提高燃油经济性和排放性能。同时,还能缩短 产品研发周期,提高生产效率,降低制造成本。

精密与超精密加工技术

精密与超精密加工技术

空气静压轴承主轴能够得到高于轴承零件本身的回转精度。
2) 导轨及进给驱动装置:动作灵活,无爬行等不连续动作, 直线精度 好。通常采用空气静压导轨 。
空气静压导轨
精密与超精密加工技术
摩擦驱动原理图
精密与超精密加工技术
(3)超精密加工的工作环境
超精密加工必须在超稳定的环境下进行,主要衡量指标有三个:
等离子体辅助抛光(PACE)
等离子体辅助抛光又称化学蒸发加工(chemical vaporization machining, CVM),是在真空环境下进行将化学气体(通常为卤素类气体,如CF、Cl2等) 激发成活性等离子体,与加工面产生化学反应,生成挥发性物质从而达到 材料去除的目的。这种加工方法实用化的一种就是等离子腐蚀。
金刚石的热传导率是矿物中最大的,切削加工中发热量非常小。
精密与超精密加工技术
天然金刚石的加工多采用研磨加工方法,通常采用空气轴承 研磨机,由于振动小,可达到很低的粗糙度和极小的刃口半径。
精密与超精密加工技术
1)刀尖的磨损 在切削距离到达100km以前,后刀面磨损急剧上升,以后磨损逐渐减 慢。 注:由于积屑瘤的原因,一般将研磨好的锋利刀尖有意加工成理想的 稳定的磨损状态。
精密与超精密加工技术
(1)超精密加工刀具
超精密加工要求刀具能均匀地去除不大于工件加工精度且厚度极薄 的金属层或非金属层。 超精密切削中的加工刀具,一般指天然单晶金刚石刀具。超精密切 削中必须保证金刚石刀具的刀面与刃口质量。 超精密磨削的加工刀具砂轮的磨料品级与力度均匀性在加工中十分 重要。
精密与超精密加工技术
精密与超精密加工技术
7、超精密加工的发展趋势
高精度、高效率 工艺整合化 两极化(大型化、微型化) 在线检测 智能化 绿色化

精密加工 第二讲 精密超精密加工

精密加工 第二讲  精密超精密加工
HIGH EDUCATION PRESS
精密与特种加工
主切削力FZ——它垂直于水
平面,通常与切削速度的方 向一致,在一般切削情况下,
该分力最大。 径向切削力 FY——它在基面
内,并与进给方向相垂直。 FY 是沿切削深度方向上的分 力,它不做功,但能使工件
HIGH EDUCATION PRESS
精密与特种加工
精密切削研究最早从金刚石车削开始——金刚 石铣削——金刚石镗削,来加工型面和内孔。刀具 材料从金刚石刀具材料——立方氮化硼、复合陶瓷 等。
HIGH EDUCATION PRESS
精密与特种加工
HIGH EDUCATION PRESS
精密与特种加工
HIGH EDUCATION PRESS
精密与特种加工
切入角
过渡切削过程
HIGH EDUCATION PRESS
精密与特种加工
过渡切削:切削时,刀具的切削刃与工件表面存 在的关系。 弹性滑动——塑性滑动——切削——塑性滑动—— 弹性滑动 零件的最终工序的最小切入深度应小于或等于零件 的加工精度。因此最小切入深度反应加工精度。 在精密切削中,采用的是微量切削方法,切入深度 较小,切削功能主要由刀具切削刃的刃口圆弧承担,能 否从被加工材料上切下切屑,主要取决于刀具刃口圆弧 处被加工材料质点受力情况。
HIGH EDUCATION PRESS
精密与特种加工




自然界中存在的最硬物质,熔 经仔细琢磨后,成为装饰 品——钻石。 点高。 无色透明、正八面体形状的 固体,加工后有夺目光泽。 划玻璃、切割大理石、加工 坚硬的金属,装在钻探机的钻头 钻凿坚硬的岩层。
HIGH EDUCATION PRESS

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?制造业是一个国家或地区国民经济的重要支柱,所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合集成的生产技术。

先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。

精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。

精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

精密和超精密加工通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。

当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。

微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。

光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高。

超精密加工制造技术

超精密加工制造技术

超精密加工制造技术
超精密加工制造技术
超精密加工技术是指采用高精度机床加工超精密零件的技术,其中包括超精密磨削、超精密磨珩、超精密切削和超精密冲压等技术。

超精密加工技术可以减少零件的误差,使零件具有较小的尺寸和高精度的表面粗糙度,以及较大的精度和可靠性。

超精密加工技术的主要应用领域包括机械制造、电子信息、航天航空、船舶制造、汽车制造等,其主要用于生产超小型、精密度高的微型零件。

超精密加工技术的应用需要具备一定的技术要求,例如,机床要具有良好的稳定性、精度和加工速度;刀具要经过特殊处理,以提高切削效率和精度;切削液要经过特殊处理,以提高切削效果,减少加工时间;加工过程中要进行完善的程控制和检测,以保证加工的精度和可靠性等。

此外,在超精密加工技术中,还需要采用计算机支持的精密测量、数控技术以及激光切削、电子束加工技术等新技术来提高精密零件的加工精度和可靠性。

- 1 -。

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望精密加工技术是一种在当今制造业中非常重要的技术,它的发展与制造业的发展息息相关。

精密加工技术是通过对材料进行高精度的加工来制造出各种精密零部件,这些精密零部件被广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

现阶段,精密加工技术已经取得了很大的进步,各种高精度的加工设备和加工工艺层出不穷。

在这些技术发展的基础上,超精密加工技术应运而生。

超精密加工技术是一种相对于精密加工技术更加高端、更加精密的加工技术,它可以实现对材料的超高精度加工,甚至可以达到纳米级的精度。

这种技术对于一些特殊材料的加工非常重要,比如硬质合金、钢、陶瓷等材料。

超精密加工技术的发展展望是非常乐观的。

随着科学技术的不断进步,各种先进的加工设备和工艺将不断涌现。

在这种趋势下,超精密加工技术将会得到更加广泛的应用。

在汽车工业中,超精密加工技术可以用于制造高压油泵的零部件,提高汽车发动机燃油的利用率;在医疗器械领域,超精密加工技术可以用于制造各种医疗器械的零部件,提高医疗器械的精度和安全性。

在未来的发展中,我们还可以看到超精密加工技术将会在航空航天领域得到更广泛的应用。

超精密加工技术可以制造出更加轻巧和高强度的航空零部件,提高航空器的性能和安全性。

超精密加工技术在电子产品领域也有很大的潜力,它可以制造出更小巧、更精密的电子元件,提高电子产品的性能和可靠性。

精密加工技术和超精密加工技术的发展是非常重要的。

它们直接关系到制造业的发展和产品的质量。

相信随着科学技术的不断进步,这些技术将会取得更大的突破,为各个领域带来更多的创新和发展。

精密与超精密加工技术的现状和发展展望精密加工技术是制造业中至关重要的一环,它的发展与制造业的发展密不可分。

精密加工技术通过对材料进行高精度的加工,制造出各种精密零部件,广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

当前,精密加工技术已取得了长足的发展,各种高精度加工设备和工艺不断涌现。

精密与超精密加工技术

精密与超精密加工技术
大于工件加工精 度,且厚度极薄的金属层或非金属层
刀具种类:金刚石刀具; 超精密磨削砂轮
金刚石刀具
1、金刚石刀头的特性: 颜色:有红色和绿色等多种颜色,其硬
度随颜色而不同; 硬度:显微硬度值比其他物质高许多; 热传导率:在矿物中最大。
金刚石刀具
2、金刚石刀头的制造: 成形:采用研磨加工方法; 研磨方法:用空气轴承的研磨机; 特殊刀头的形状
第三章 先进制造工艺技术
第一节 精密与超精密加工技术
一、 精密与超精密加工技术概述
1、精密加工与超精密加工定义
精密加工是指加工精度在0.1~lμm之间, 表面粗糙度Ra在0.lμm以下(称微米加工)
超精密加工的加工精度在0.lμm以下,表面 粗糙度在0.02μm以下(称为亚微米加工)
2、精密加工与超精密加工的特点
光纤测微仪 更小测量范围的测量仪器:扫描隧道显微
镜 、扫描电子显微镜、原子力显微镜
激光干涉仪
SPA-400 多功能扫描探针显微镜
回顾
一、 精密与超精密加工技术概述 二、 超精密加工方法 三、 超精密加工刀具 四、 超精密加工设备 五、 精密加工环境 六、 超精密加工精度的在线检测及计量测试
五、精密加工环境
超精密加工必须在超稳定的环境下进 行。
超稳定环境:恒温、超净和防振。
六、超精密加工精度的在线检测及计量测试
对加工误差进行在线检测,实时建模与 动态分析预报,再根据预报数据对误差 源进行补偿,从而消除或减少加工误差。
六、超精密加工精度的在线检测及计量测试
大距离的测量仪器:双频激光干涉仪 小距离的测量仪器:电容式、电感式测微仪、
超精密磨削砂轮
超精密磨削质量控制方面的首要因素: 砂轮磨料:应与工件材料选配适当; 磨料粒度:具备形成微刃的粒度; 砂轮硬度:硬度中软。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金刚石的晶体结构: 根据晶体学原理,金刚石属于六方晶系,与(100)垂直的晶轴为4次 对称轴,与(111)垂直的晶轴为3次对称轴,与(100)垂直的晶轴 为2次对称轴。 解理现象:解理现象是某些晶体特有的现象,晶体受到定向的机械力作用 时,沿平行于某个平面平整的劈开的现象。 (111)面的宽的面间距(0.154nm)是金刚石晶体中所有晶面间距 中的最大的一个,并且其中的连接共价键数最少,只需击破一个价键就 可使其劈开。金刚石的解理现象即沿解理面(111)平整的劈开两半, 且金刚石的破碎和磨损都和解理现象直接有关。
超精密切削时的最小切削厚度
精度:纳米级; 切削刃与钝圆半径:
F F 1 y x rn 1 hD min rn (1 cos ) rn rn 1 1 2 2 1 tan2 ( Fx Fy )(1 2 ) Fy Fx Fy 2 2 1 F 1 x
三个晶面特征:(100)晶面的摩擦系数曲线有4个波峰和波谷;(110)晶面有2个波 峰和波谷;(111)晶面有3个波峰和波谷;(100)晶面的摩擦系数最低;(110)最 高;(100)晶面的摩擦系数差别最大;(111)晶面最小。
晶面不同对切削变形的影响
用(100)晶面的1号车刀切屑时的切屑变形小于用(110)晶面的2号车刀。 晶面不同对加工表面质量的影响 摩擦系数小的(100)晶面作金刚石刀具的前、后面,可使切削变形减小,并可减小 后面与加工表面间的摩擦,从而减小加工表面残余应力。 晶面不同对刀具磨损的影响 (110)晶面的刀具磨损较快,切削相当时间后,加工表面的粗糙度已经超过0.05μ m; (100)晶面的刀具磨损较慢,切削较长时间后,加工表面粗糙度仍<0.05μ m,即刀 具耐用度明显较高。
刀具的要求及金刚石的性能和晶体结构
超精密切削对刀具的要求
1)极高的硬度、极高的耐磨性和极高的弹性模量。 2)刃口能磨得极其锋锐,刃口半径值极小,能实现超薄切削厚度。 3)刀刃无缺陷,切削时刃形将复制在被加工表面上,从而得到超光滑的镜面。 4)与工件材料的抗粘性好、化学亲和性小、摩擦系数低,以得到极好的加工表 面完整性。 不可替代的超精密切削刀具材料:单晶金刚石。 金刚石晶体的性能 硬度最高,各向异性,不同晶向的物理性能相差很大。 优质天然单晶金刚石:多数为规整的8面体或菱形12面体,少数为6面立方体或其 他形状,浅色透明,无杂质、无缺陷。 大颗粒人造金刚石在超高压、高温下由子晶生长而成,并且要求很长的晶体生长 时间。 人造单晶金刚石已用于制造超精密切削的刀具。
积屑瘤
一、切削参数对积屑瘤生成的影响
切削速度:当切削速度较低时,积屑瘤高度较高,当切削速度达到一定值时, 积屑瘤趋于稳定,高度变化不大。 进给量:进给量很小时,积屑瘤的高度很大,在进给量=5μm/r时,积屑瘤 的高度值最小,进给量值再增大时,积屑瘤的高度值稍有增加。 背吃刀量:背吃刀量<25μm时,积屑瘤的高度变化不大,但在背吃刀量> 25μm后,积屑瘤的高度值将随着背吃刀量的增加而增加。
二、积屑瘤对切削力和加工表面粗糙度的影响及预防措施
积屑瘤高时切削力也大,积屑瘤小时切削力也小。与普通切削规律正好相反。 积屑瘤高度大,表面粗糙度大,积屑瘤小表面粗糙度小。并且可以看出,切削 液减小积屑瘤,减小加工表面粗糙度。 原因:有效刃口半径增大;摩擦增加;实际切削厚度增加。 预防措施:使用切削液减小积屑瘤,减小加工表面粗糙度。
刀刃锋锐度对切削变形和加工表面质量的影响
刀刃锋锐度对切削变形:金刚石车刀具锋锐度对表面粗糙度是有 一定影响的,特别是在进给量和背吃刀量较小的时候。
刀刃锋锐度对加工表面质量:
切削表面层的冷硬和组织位错:刃口半径不同,加工表面变质层 的冷硬和显微硬度有很大区别;刃口半径越小,加工表面变质层 的冷硬度越小。刃口半径越小,表面组织位错密度越小,切削变 形越小,表面质量越高。 加工表面残留应力:刃口半径越小,残留应力越低;背吃刀量越 小,残留应力越小,但当背吃刀量减小到临界值时,背吃刀量减 小,残留应力增大。
切削参数变化对加工表面质量的影响
切削速度:在有切削液的条件下,切削速度对加工表面粗糙度的 影响很小。 进给量和修光刃:使用很小的进给量,刀具制成带修光刃。 切削刃形状:直线修光刃、圆弧刃,要精确对刀。 背吃刀量:在刀具刃口半径足够小时,超精密切削范围内,背吃 刀量变化对加工表面粗糙度影响很小。背吃刀量减少,表面残留应 力也减少,但超过某临界值时,背吃刀量减少反而使加工表面残留 磨方向
耐磨性:在高磨削率方向时,(110)晶面的磨削率最高,最易磨削; (100)次之, (111)最低。高磨削率方向称为“好磨方向”,低 磨削率方向称为“难磨方向”。 摩擦因数:(110)晶面摩擦系数最大, (100) 晶面次之,(111) 晶面最小。摩擦系数高时磨削率亦高,摩擦系数低时磨削率也低。 摩擦系数曲线的波峰方向即是磨削率最高的“好磨方向”;摩擦系 数曲线的波谷方向即是磨削率最低的“难磨方向”。根据摩擦力的 大小可找出所磨晶面的好磨方向。
当刀刃刃口半径 rn为某值时,切下的最小切削厚度 hD min 和临界点处的 比值有关,并和刀具工件材料之间的摩擦系数有关。 根据经验,A点处的 F 比值一般在0.8~1范围内,对于金刚石刀具进 行超精密切削,取 Fy 0.9Fx 。
x
Fy
刀具晶面选择对切削变形和加工表面的影响 Pro/Engineer软件
第二章 超精密切削与金刚石刀具
超精密切削应用范围与切削速度
应用范围:陀螺仪、激光反射镜、天文望远镜的反射镜、红外反 射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印 机的多面棱镜、录像机的磁头、复印机的硒鼓、菲尼尔透镜等 由有色金属和非金属材料制成的零件。 选择依据:根据所使用的超精密机床的动特性和切削系统的动特 性选取,即选择振动最小的转速。
相关文档
最新文档