用状态机实现序列检测器的设计

合集下载

EDA实验指导书_2

EDA实验指导书_2

EDA 技术与VHDL实验指导书通信实验室编制2012年9月实验一组合电路的设计 (3)实验二时序电路的设计.................................错误!未定义书签。

实验三8位全加器的设计................................错误!未定义书签。

实验四含异步清零和同步时钟使能的加法计数器的设计错误!未定义书签。

实验五十六进制七段数码显示译码器设计.错误!未定义书签。

实验六数控分频器的设计.............................错误!未定义书签。

实验七序列检测器的设计.............................错误!未定义书签。

实训一组合电路的设计一、实验目的熟悉QuartusⅡ的VHDL文本设计流程全过程, 学习简单组合电路的设计、多层次电路设计、仿真和硬件测试。

二、实验内容1: 首先利用QuartusⅡ完成2选1多路选择器的文本编辑输入(mux21a.vhd)和仿真测试等步骤, 给出仿真波形。

最后在实验系统上进行硬件测试, 验证本项设计的功能。

2:将此多路选择器看成是一个元件mux21a, 利用元件例化语句描述一个双2选1多路选择器, 并将此文件放在同一目录中。

三、实验仪器ZY11EDA13BE型实验箱通用编程模块, 配置模块, 开关按键模块, LED显示模块。

四、实验原理1.2选1多路选择器的VHDL源代码ENTITY mux21a ISPORT ( a, b, s: IN BIT;y : OUT BIT );END ENTITY mux21a;ARCHITECTURE one OF mux21a ISBEGINPROCESS (a,b,s)BEGINIF s = '0' THEN y <= a ; ELSE y <= b ;END IF;END PROCESS;END ARCHITECTURE one ;下图为本例2选1多路选择器的仿真图形2.双2选1多路选择器以下是部分参考程序:...COMPONENT MUX21APORT ( a, b, s : IN STD_LOGIC;y : OUT STD_LOGIC);END COMPONENT ;...u1 : MUX21A PORT MAP(a=>a2, b=>a3, s=>s0, y=>tmp);u2 : MUX21A PORT MAP(a=>a1, b=>tmp, s=>s1, y=>outy);END ARCHITECTURE BHV ;五、实验报告:根据以上的实验内容写出实验报告, 包括程序设计、软件编译、仿真分析、硬件测试和详细实验过程;给出程序分析报告、仿真波形图及其分析报告。

序列检测器

序列检测器

序列检测器
一、实验目的
1. 了解状态机的设计。

2. 设计一个序列检测器。

二、实验原理
序列检测器在数据通讯、雷达和遥测等领域中用于检测同步识别标志。

它是用一种图来检测一组或多组序列信号。

例如检测收到一组串行码{1110010}后,输出标志为1,否则输出为0。

考查这个例子,每收到一个符合要求的串行码就需要用一个状态机进行记忆。

串行码长度为7位,需要7个状态;另外,还需要增加一个“未收到一个有效位”的状态,共8个状态;S0~S7,状态标志符的下标表示有几个有效位被读出。

画出状态转移图,如图7-6所示,很显然这是一个莫尔状态机。

八个状态机根据编码原则可以用3位二进制数来表示。

图7-6 序列检测器状态变化图
三、实验内容
1. 用VHDL语言编写出源程序。

2. 设计两个脉冲发生器,一个包含“1110010”序列,另一个不包含此序列,用于检测程序的正确。

3. 将脉冲序列发生器和脉冲序列检测器结合生成一个文件,并编译下载并验证结果。

四、实验报告要求
1. 写出序列检测器VHDL语言设计源文件;
2. 详述序列检测器的工作原理。

实验三_用状态机实现序列检测器的设计Verilog

实验三_用状态机实现序列检测器的设计Verilog

实验三用状态机实现序列检测器的设计一、实验目的:用状态机实现序列检测器的设计,并对其进行仿真和硬件测试。

二、原理说明:序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出a,否则输出b。

由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。

在检测过程中,任何一位不相等都将回到初始状态重新开始检测。

例3-1描述的电路完成对序列数"11100101"的。

当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“a”,否则仍然输出“b”。

【例3-1】//顶层文件:module XULIEQI(clk,reset,din18,LED7S);input clk;input reset;input [17:0] din18;output [6:0] LED7S;wire [3:0] AB;wire [17:0] din18;xulie u1 (clk, din18, reset, din);schk u2 (din,clk,reset,AB);decl7s u3 (AB,LED7S);endmodule//串行检测:module schk(DIN,CLK,CLR,AB);input DIN,CLK,CLR;output[3:0] AB;reg [3:0] AB;reg [7:0] Q;parameteridle = 8'b00000000,a = 8'b00000001,b = 8'b00000010,c = 8'b00000100,d = 8'b00001000,e = 8'b00010000,f = 8'b00100000,g = 8'b01000000,h = 8'b10000000;parameter data=8'b11100101;always @(posedge CLK or negedge CLR) if(!CLR)beginQ <= idle;endelsebegincase(Q)idle:beginif(DIN==data[7]) Q<=a;else Q<=idle;enda:beginif(DIN== data[6]) Q<=b;else Q<=idle;endb:beginif(DIN== data[5]) Q<=c;else Q<=idle;endc:beginif(DIN== data[4]) Q<=d;else Q<=c;endd:beginif(DIN== data[3]) Q<=e;else Q<=a;ende:beginif(DIN== data[2]) Q<=f;else Q<=idle;endf:beginif(DIN== data[1]) Q<=g;else Q<=b;endg:beginif(DIN== data[0]) Q<=h;else Q<=idle;endh:beginif(DIN== data[7]) Q<=a;else Q<=idle;enddefault :Q<=idle;endcaseendalways @(Q)beginif(Q==h) AB <= 4'b1010 ;else AB <= 4'b1011 ;endendmodule//前端预置8位数据输入:module xulie(clk, din18, reset, din);input clk;input[17:0] din18;input reset;output din;reg din;parameters0 = 5'b00000,s1 = 5'b00001,s2 = 5'b00010,s3 = 5'b00011,s4 = 5'b00100,s5 = 5'b00101,s6 = 5'b00110,s7 = 5'b00111,s8 = 5'b01000,s9 = 5'b01001,s10 = 5'b01010,s11 = 5'b01011,s12 = 5'b01100,s13 = 5'b01101,s14 = 5'b01110,s15 = 5'b01111,s16 = 5'b10000,s17 = 5'b10001;reg[4:0] cur_state,next_state;always @ (posedge clk or negedge reset) if(!reset)cur_state <= s17;elsecur_state <= next_state;always @ (cur_state or din18 or din ) begincase (cur_state)s17 : begindin <= din18[17];next_state <= s16;ends16 : begindin <= din18[16];next_state <= s15;ends15 : begindin <= din18[15];next_state <= s14;s14 : begindin <= din18[14];next_state <= s13;ends13 : begindin <= din18[13];next_state <= s12;ends12 : begindin <= din18[12];next_state <= s11;ends11 : begindin <= din18[11];next_state <= s10;ends10 : begindin <= din18[10];next_state <= s9;ends9 : begindin <= din18[9];next_state <= s8;ends8 : begindin <= din18[8];next_state <= s7;ends7 : begindin <= din18[7];next_state <= s6;ends6 : begindin <= din18[6];next_state <= s5;ends5 : begindin <= din18[5];next_state <= s4;ends4 : begindin <= din18[4];next_state <= s3;s3 : begindin <= din18[3];next_state <= s2;ends2 : begindin <= din18[2];next_state <= s1;ends1 : begindin <= din18[1];next_state <= s0;ends0: begindin <= din18[0];next_state <= s17;enddefault : begindin <= 1'b0;next_state <= s0;endendcaseendendmodule提示:1.若对于D <= "11100101 ",电路需记忆:初始状态、1、11、111 、1110 、11100、111001、1110010、11100101 共9种状态。

采用状态机设计方法设计的1101序列检测

采用状态机设计方法设计的1101序列检测

S2: if(D==1'b0) present_state<=S3; else present_state<=S2;
S3:
if(D==1'b1) present0; S4:
if(D==1'b1) present_state<=S2; else present_state<=S0; default:present_state<=S0; endcase
end //输出与状态寄存器的逻辑关系 assign Q=present_state[4]&~present_state[3]&~present_state[2]&~present_state[1]&~present_state[0]; endmodule
在BASYS 2开发板上的管脚配置如下,最后 一句不能缺: NET "clk" LOC = C11; NET "rest" LOC = G12; NET "D" LOC = P11; NET "Q" LOC = M5; NET "present_state[4]" LOC = G1; NET "present_state[3]" LOC = P4; NET "present_state[2]" LOC = N4; NET "present_state[1]" LOC = N5; NET "present_state[0]" LOC = P6; NET "clk" CLOCK_DEDICATED_ROUTE = FALSE;
always #10 clk=~clk; initial begin #8;D=1; #20;D=1; #20;D=0; #20;D=1; #20;D=1; #20;D=1; #20;D=0; #20;D=0; #20;D=1; #20;D=0; #20;D=0; end endmodule

实验三_用状态机实现序列检测器的设计

实验三_用状态机实现序列检测器的设计

实验三_用状态机实现序列检测器的设计引言:序列检测器是一类常用的电子设计电路,它在接收到特定的输入序列时,会产生特定的输出序列。

在许多应用场景中,如通信系统、数字信号处理和自动控制等领域,序列检测器都发挥着重要的作用。

本实验将利用状态机的概念,设计并实现一个简单的序列检测器。

一、序列检测器的设计原理序列检测器的设计原理基于状态机的思想。

状态机是一种抽象的计算模型,它由一组状态、一组输入和一组转移动作组成。

在序列检测器中,输入序列被连续地输入,状态也会根据输入进行不断变化。

当状态机检测到了预设的特定输入序列时,就会产生相应的输出序列。

二、序列检测器的设计步骤1.确定输入和输出序列:首先确定所需检测的输入序列和对应的输出序列,这将决定状态机的状态转移条件。

2.绘制状态转移图:根据输入和输出序列,绘制状态转移图,即用状态变量和状态转移条件表示状态转移关系。

3.设计状态机的状态转移表:根据状态转移图,将所有可能的状态转移关系整理为一个状态转移表。

4.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能。

三、设计实例在本实验中,我们以一个简单示例为例,演示序列检测器的设计流程。

假设输入序列为0101,当检测到该输入序列时,输出序列为011.确定输入和输出序列:输入序列为0101,输出序列为012.绘制状态转移图:根据输入和输出序列,绘制状态转移图如下:0/00,S0,1/1/1说明:状态S0表示未检测到特定输入序列,状态S1表示检测到特定输入序列。

3.设计状态机的状态转移表:根据状态转移图,得到状态转移表如下:输当前状态,0,1S0,S0,S1S1,S0,S14.实现状态机的代码逻辑:根据状态转移表,编写代码实现状态机的逻辑功能,伪代码如下:if (当前状态 == S0)if (输入 == 0)当前状态=S0;输出=0;} else if (输入 == 1)当前状态=S1;输出=0;}} else if (当前状态 == S1)if (输入 == 0)当前状态=S0;输出=1;} else if (输入 == 1)当前状态=S1;输出=1;}}四、实验总结本实验利用状态机的思想,设计并实现了一个简单的序列检测器。

序列检测器_实验报告

序列检测器_实验报告

一、实验目的1. 理解序列检测器的工作原理和设计方法;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 通过实验验证序列检测器的功能。

二、实验原理序列检测器是一种同步时序电路,用于检测输入的一串二进制编码。

当输入序列与预设的编码相匹配时,输出高电平;否则,输出低电平。

序列检测器在数字通信、安全防盗、密码认证等领域有着广泛的应用。

序列检测器的基本工作原理如下:1. 预设一个编码序列,称为目标序列;2. 当输入序列与目标序列相匹配时,输出高电平;3. 当输入序列与目标序列不匹配时,输出低电平。

三、实验器材1. PC机一台;2. EDA教学实验系统一台;3. 下载电缆一根(已接好);4. 导线若干。

四、实验步骤1. 设计序列检测器的Verilog代码;2. 在EDA教学实验系统上编译、仿真和下载Verilog代码;3. 连接实验电路,下载Verilog代码;4. 通过逻辑分析仪观察输出波形,验证序列检测器的功能。

五、实验内容1. 设计一个长度为4位的序列检测器,目标序列为1001;2. 设计一个长度为8位的序列检测器,目标序列为11001001;3. 通过实验验证序列检测器的功能。

六、实验代码```verilogmodule seqdet(input clk, // 时钟信号input rst, // 复位信号input [3:0] din, // 输入序列output reg out // 输出信号);// 定义状态localparam [1:0] IDLE = 2'b00,MATCH = 2'b01,NOMATCH = 2'b10;// 状态寄存器reg [1:0] state, nextstate;// 输出函数always @(posedge clk or posedge rst) beginif (rst) beginstate <= IDLE;out <= 1'b0;end else beginstate <= nextstate;out <= (state == MATCH) ? 1'b1 : 1'b0; endend// 激励函数always @() begincase (state)IDLE: beginif (din == 4'b1001) beginnextstate = MATCH;end else beginnextstate = NOMATCH;endendMATCH: beginnextstate = IDLE;endNOMATCH: beginnextstate = IDLE;enddefault: beginnextstate = IDLE;endendcaseendendmodule```七、实验结果与分析1. 长度为4位的序列检测器:当输入序列为1001时,输出高电平;当输入序列不为1001时,输出低电平。

实验三用状态机实现序列检测器的设计

实验三用状态机实现序列检测器的设计
• 由processing->start compile对设计进行全编译 • 再由processing -> start simulation 进行时序
仿真,分析结果
4、锁引脚
1)根据DE2_pin_assignments文件内容、格式制作 本设计引脚对应文件的引脚锁定文件: XUELIEQI.csv
• 由Processing->generate functional simulation netlist,提取功能仿真的网表
• 由processing -> start simulation 进行功能仿 真,并对结果进行分析。
• 时序仿真
• 由assignments->settings,更改仿真器的设置为 时序仿真:timing
• 双击波形文件下的空白区,得到如下对话框,点 击Noder Finder
弹出下面的对话框,单击List,选中AB、CLK、CLR 、DIN、Q几个端口,单击>_后,点击OK
• 由edit->end time ,设定仿真终止时间为 1us, 选中CLK点击 设置周期是10ns,
并对CLR,DIN作相应设置
• 由assigments->settings,对仿真工具设定为功 能仿真,并将激励文件调入
• 由Processing->generate functional simulation netlist,提取功能仿真的网表
• 由processing -> start simulation 进行功能仿
实验三 用状态机实现序列检测器的设计
任务分析
• 本次实验的核心是:应用有限状态机设计思路, 检测输入的串行数据是否是”11100101”。

VHDL序列检测器设计1110010

VHDL序列检测器设计1110010

VHDL数字系统设计与测试作业序列检测器设计学院:通信工程学院学号:***************设计要求:用状态机设计序列检测器(1110010)。

设计功能:考虑一个序列检测器,检测的序列流为“1110010”,当输入信号依次为“1110010”时输入一个脉冲,否则输入为低电平。

设计思路:序列检测器是一种同步时序电路,它用于搜索,检测输入的二进制代码串中是否出现指定的代码序列,1110010序列检测器的原理图如下:CPX Y 0111010010010首先,本实验要从一串二进制编码中检测出一个已预置的七位二进制码1110010,每增加一位相当于增加一个状态,再加上一个初始态,用八个状态可以实现,其Moore型原始状态转移图如下:根据状态转移图可以得出Moore型原始状态转移表为:源代码:library ieee;use ieee.std_logic_1164.all;entity check isport(din:in std_logic;clk,clr:in std_logic;z:buffer std_logic);end check;architecture arch_check of check istype StateType is(s1,s2,s3,s4,s5,s6,s7,s8);signal present_state,next_state:StateType; beginstate_comb:process(present_state,din)begincase present_state iswhen s1=>z<='0';if din='1'thenelsenext_state<=s1;end if;when s2=>z<='0';if din='1'thennext_state<=s3;elsenext_state<=s2;end if;when s3=>z<='0';if din='1'thennext_state<=s4;elsenext_state<=s1;end if;when s4=>z<='0';if din='1'thennext_state<=s4;elsenext_state<=s5;end if;when s5=>z<='0';if din='1'thennext_state<=s2;elsenext_state<=s6;end if;when s6=>z<='0';if din='1'thenelsenext_state<=s1;end if;when s7=>z<='0';if din='1'thennext_state<=s3;elsenext_state<=s8;end if;when s8=>z<='1';if din='1'thennext_state<=s2;elsenext_state<=s1;end if;end case;end process state_comb;state_clocked:process(clk,clr)beginif(clr='1')thenpresent_state<=s1;elsif(clk'event and clk='1')thenpresent_state<=next_state;end if;end process state_clocked;end arch_check;仿真结果:仿真结果分析:如图所示,当输入1110010序列时,输出Z输出一个高电平,否则输出低电平。

110序列检测器的设计及仿真实现

110序列检测器的设计及仿真实现

110序列检测器的设计及仿真实现题目:设计110序列检测器,当输入信号时输出,否则一、设计思路我们采用Moore机完成这个功能。

对于触发器的选择,为了简便我们选用D触发器以及基本的门电路完成基本设计。

二、时钟同步状态机1根据题目要求我们得到下面的状态图状态表示的意义Q X=0 X=1 输出Z 等待1的出现 A A B 0出现1 B A C 0出现11 C D C 0出现110 D A B 1*Q2 转移输出表01Q Q输入X输出ZX=0 X=100 00 01 001 00 11 0 11 10 11 0 100001101Q Q **3 状态图如图:通过卡诺图化简可得 转移方程:00111=Q Q Q Q X Q X**+=输出方程:01Z Q Q •=我们选择D 触发器作为记忆电路部分由D 触发器的特征方程: Q D *= 得激励方程:00111D =Q Q Q X D X+=三、Verilog 程序如下: module shiyan2 (clk,x,z); input clk,x; output z; wire[1:0] state; wire[1:0] excite;nextlogic u1(x,state,excite); statememory u2(clk,excite,state); outputlogic u3(state,z); endmodulemodule statememory (clk,d,q); input clk; input[1:0] d; output[1:0] q; reg[1:0] q;always @ (posedge clk) begin q <= d; end endmodulemodule nextlogic (x,q,d);input x; input[1:0] q;output[1:0] d;assign d[0]=(q[1]&q[0])|(q[1]&x); assign d[1]=x;endmodulemodule outputlogic (q,z);input[1:0] q;output z;assign z=(!q[1])&q[0]; Endmodule四、仿真结果及电路图得到功能仿真结果为:时序仿真结果为:。

实验三:状态机实现序列检测器设计

实验三:状态机实现序列检测器设计

实验三:状态机实现序列检测器设计《FPGA》课程报告设计题目:状态机实现序列检测器设计学生班级:学生学号:学生姓名:指导教师:时间:成绩:一、实验目的:1.理解有限状态机的概念;2. 掌握有限状态机的状态图的画法及其含义二、实验原理:本次实验的内容是:应用有限状态机设计思路,检测输入的串行数据是否是”11100101”,本次实验由顶层文件、串行检测、并行数据转串行、数码管显示四个模块组成。

1.并行数据转串行数据模块功能是:可以异步复位,可以在时钟控制下,将并行输入数据din[7:0],按照din[7],din[6],din[5],din[4],din[3],din[2],din[1],din[0]的顺序输出至串行检测模块的输入端口din。

2.串行检测模块:输入信号:DIN-----1bit的串行输入数据CLK-----同步输入时钟CLR ------异步清零信号,当CLR=1,系统输出置0,否则,系统正常工作输出信号: AB--------4bits数据,如果系统检测到“11100101”这8bit的输入,AB=4’b1010,否则,AB=4’b1011.三、实验过程:1.首先建立一个新的工程,添加一个新的Verilog Module文件,然后写入并行数据转串行数据模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:2.再新建一个Verilog Module文件,在其中写入串行检测模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:3. 再新建一个Verilog Module文件,数码管显示模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:4.编写顶层文件,将上面三个模块例化在一起,代码如下:然后将新的顶层文件经行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:5.添加消抖模块,然后编写新的顶层文件,将消抖模块与上面的模块例化在一起,代码如下:保存后生成新的顶层文件:6.完成以上操作后,执行综合确认无误,经行锁引脚操作:锁引脚完成后,编辑、修改约束文件:7. 生成下载配置文件,下载到开发板进行经行验证。

采用-EDA实验五-用状态图输入法实现序列检测器

采用-EDA实验五-用状态图输入法实现序列检测器

EDA实验五用状态图输入法实现序列检测器一、实验目的:了解序列检测器的基本原理,Mealy型和Moore型状态机的基本原理,掌握状态图输入法实现序列检测器的方法,并进行分析和仿真验证。

二、实验内容:本实验内容是:用状态图输入法设计一个序列检测器,若检测器收到一组码流1110010则输出为1,否则输出为0。

三、实验方法:实验方法:采用基于FPGA进行数字逻辑电路设计的方法。

采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。

实验步骤:1、绘制状态图。

打开QuartusII软件平台,建立工程文件夹,工程文件夹名称为exp_detect3.然后点击File中的New建立一个状态图文件(用State Machine File命令),然后设置并生成状态图。

2、按照实验箱上FPGA的芯片名更改编程芯片的设置。

操作是点击Assign/Device,选取芯片的类型.3、编译与调试。

确定状态图文件为当前工程文件,点击Complier进行文件编译.编译结果有错误或警告,则将要调试修改直至文件编译成功。

4、波形仿真及验证。

在编译成功后,点击Waveform开始设计波形。

点击“insert the node",按照程序所述引脚,任意设置各输入节点的输入波形…点击保存按钮保存。

5、FPGA芯片编程及验证,应记录实验结果进行分析。

四、实验过程:用状态图输入法实现序列检测器:1、建立工程文件,工程文件夹的名称为exp_detect3,工程名和顶层实体名称为exp_detect3.工程建立过程中平台设置设置如下图所示:2、工程建好后,即进行状态图的输入。

具体过程如下:选择菜单File->New—>State Machine File命令,打开State Machine Editor窗口,如下图所示:然后选择Tools-〉State Machine Wizard 命令,弹出如下所示状态机创建向导对话框。

实验五用状态机实现序列检测器的设计

实验五用状态机实现序列检测器的设计

实验五用状态机实现序列检测器的设计序列检测器是一种可以根据输入序列的模式检测和识别特定序列的设备或系统。

在计算机科学和电子工程中,状态机常常被用来实现序列检测器。

状态机是一种抽象的数学模型,具有有限数量的状态和状态转换函数。

本实验将通过使用状态机来实现一个序列检测器。

在序列检测器的设计中,我们需要定义输入序列的模式,并根据这个模式来设计状态机。

在这个例子中,我们将设计一个简单的序列检测器,用来检测输入序列是否包含连续的3个1首先,我们需要定义状态。

在本实验中,我们定义两个状态:初始状态和检测状态。

初始状态是状态机的起始状态,它等待输入序列的开始。

检测状态表示状态机已经开始检测输入序列,并且可能已经识别到了一部分符合要求的序列。

然后,我们需要定义状态转换函数。

状态转换函数描述了状态机在不同状态下如何根据输入来转换到其他状态。

在本实验中,我们定义以下状态转换函数:1.当输入位为0时,状态机保持在当前状态;2.当输入位为1且当前状态为初始状态时,状态机转换到检测状态;3.当输入位为1且当前状态为检测状态时,状态机保持在检测状态。

最后,我们需要确定终止状态。

在本实验中,当状态机识别到连续的3个1时,我们将状态机置于终止状态,并输出一个信号表明已经检测到了整个序列。

通过以上步骤,我们已经定义了一个简单的序列检测器的状态机。

下面是一个简单的状态机实现的示例代码:```#define INITIAL_STATE 0#define DETECTION_STATE 1#define TERMINATE_STATE 2int state = INITIAL_STATE;int count = 0;void detect_sequence(int input)switch(state)case INITIAL_STATE:if (input == 1)state = DETECTION_STATE;count = 1;}break;case DETECTION_STATE:if (input == 1)count++;if (count == 3)state = TERMINATE_STATE;output_signal(;}} elsestate = INITIAL_STATE;count = 0;}break;case TERMINATE_STATE:// do nothingbreak;}void output_signa// output signal here```在上述代码中,我们使用一个整型变量`state`来表示状态,一个整型变量`count`来表示检测到的连续1的数量。

设计序列检测器

设计序列检测器
来衡量。
特异性
检测器在非目标序列存在时的 抗干扰能力,即区分不同序列 的能力。
实时性
检测器对输入信号的响应速度 ,包括处理延迟和吞吐量等指 标。
可靠性
检测器在长时间运行过程中的 稳定性和一致性,以及误报率
和漏报率等性能表现。
03
序列检测器的设计方法
基于状态机的设计方法
状态定义
01
根据待检测序列的特性,定义状态机的各个状态,包括初始状
态、中间状态和终止状态。
状态转移
02
设计状态之间的转移条件,使得状态机能够按照待检测序列的
顺序进行状态转移。
输出逻辑
03
在终止状态设置相应的输出逻辑,以便在检测到目标序列时产
生相应的输出信号。
基于特征方程的设计方法
特征方程
根据待检测序列的特性,构造一个特征方程,用于描 述序列的规律。
序列生成
利用特征方程生成待检测序列,并将其与输入序列进 行比较。
序列检测器的定义和应用
定义
序列检测器是一种计算机程序或算法, 用于在输入序列中搜索和识别特定的 子序列或模式。
01
网络安全
在网络流量中检测特定的攻击模式或 恶意代码,用于网络安全防护和入侵 检测。
05
02
基因组学
在基因序列中检测特定的基因或突变, 用于疾病诊断和治疗。
03
蛋白质组学
在蛋白质序列中检测特定的功能域或 结构,用于蛋白质功能和相互作用的 研究。
为了满足不同用户的需求,未来 的序列检测器将提供更加灵活的 可定制化设计,允许用户根据自 己的需求进行个性化配置和定制。
感谢观看
THANKS
在生物医学领域的应用
1 2

序列检测器实验报告

序列检测器实验报告

#### 实验目的1. 理解序列检测器的工作原理;2. 掌握时序电路的经典设计方法;3. 学习使用Verilog HDL语言进行状态机的设计;4. 验证序列检测器在实际电路中的性能。

#### 实验原理序列检测器是一种同步时序电路,用于检测特定的串行码序列。

它能够识别并响应特定长度的二进制序列,一旦检测到匹配序列,就会产生一个输出信号。

序列检测器在数字通信、数据存储和信号处理等领域有着广泛的应用。

#### 实验器材1. PC机一台;2. FPGA开发板;3. 下载电缆一根;4. 信号发生器;5. 示波器;6. 连接线若干。

#### 实验步骤1. 设计序列检测器:使用Verilog HDL语言设计一个序列检测器,该检测器能够检测到特定的序列,如“101”。

2. 实现状态机:将序列检测器设计为一个状态机,通过定义状态和状态转移图来实现序列检测功能。

3. 代码编写与仿真:在FPGA开发板上编写Verilog代码,并使用仿真软件进行功能验证。

4. 硬件实现:将Verilog代码下载到FPGA开发板上,通过信号发生器生成测试序列,并使用示波器观察输出信号。

5. 性能测试:测试序列检测器在实际电路中的性能,包括检测速度、误检率等。

#### 实验内容1. 状态机设计:根据序列检测器的要求,设计状态转移图,并定义状态编码。

2. Verilog代码编写:使用Verilog HDL语言编写序列检测器的代码,包括模块定义、信号定义、状态定义、状态转移和输出逻辑等。

3. 仿真验证:使用仿真软件对Verilog代码进行功能验证,确保序列检测器能够正确地检测到指定序列。

4. 硬件下载与测试:将Verilog代码下载到FPGA开发板上,生成测试序列,并使用示波器观察输出信号,验证序列检测器的实际性能。

#### 实验结果与分析1. 仿真结果:在仿真软件中,序列检测器能够正确地检测到指定序列“101”,输出信号符合预期。

2. 硬件测试结果:在FPGA开发板上,序列检测器能够正确地检测到指定序列“101”,输出信号与仿真结果一致。

实验八用状态机实现序列检测器的设计

实验八用状态机实现序列检测器的设计

实验八用状态机实现序列检测器的设计
1、实验目的
本实验旨在通过状态机的设计实现一个序列检测器,该序列检测器可
以检测01序列中可编程的模式,并实现相应的响应动作。

2、实验原理
序列检测器是一种有限状态机,由一系列状态和一系列触发器组成,
可以检测特定的序列,并拥有一定的驱动和响应动作。

根据所检测的序列,检测器通过触发器设置能够自动的转换到特定的状态,触发器的设置可以
根据需要进行调整,从而实现不同的序列和不同的响应动作。

3、实验内容
(1)状态机的设计
状态机的设计分为状态图设计和状态表设计两部分,在状态图设计中,绘制出起始状态、可能的转移状态以及相应的触发器, shown by figure 1 below . 再根据实验的要求,结合状态图和状态表,确定每一个触发器
的对应的转移状态以及响应动作, shown by table 1 below .
(2)用VHDL编程实现状态机
在VHDL中,可以实现上面的状态机,用自定义的类型定义状态、触
发器、响应动作以及转移条件,将状态图转换成可执行的VHDL代码,shown by listing 1 below .
(3)VHDL代码的仿真
在仿真中,可以根据状态图测试序列检测器的功能,确保能够检测出正确的模式,并实现预期的响应动作, shown by figure 2 below.
4、实验结果。

实验五用状态机实现序列检测器的设计

实验五用状态机实现序列检测器的设计

实验五用状态机实现序列检测器的设计
一、背景简介
序列检测器是用来检测输入字符串中是否存在特定序列的字符串检测器。

在现代的工业控制中,序列检测器的应用十分广泛,例如机器操作指令的检测,机器人的动作序列检测,机械手的加工步骤检测等等,它们可以用在几乎所有的自动控制系统中,既提高了系统的可靠性,又提高了系统的运行效率。

二、状态机实现序列检测器
1)概念介绍
状态机是一种形式语言,它用于模拟系统的状态和行为,并用来表示系统的变化,可以用于描述和分析控制系统的性能。

根据状态机的不同表示形式,可以分为状态转换表,状态转移图,状态转移矩阵,状态表和状态图。

采用状态机实现序列检测器,首先需要建立一个状态机图,状态机图需要有起点和终点,以及从一个状态到另一个状态的转移规则。

根据输入的字符串,每次转移到下一个状态,直到终止状态,如果在该过程中没有终止状态,或终止状态不是指定的终止状态,则检测字符串不包含特定的序列字符。

2)具体实现。

序列检测器的设计实验报告

序列检测器的设计实验报告

序列检测器的设计实验报告一、实验目的本次实验的目的是设计一个能够检测特定序列的数字逻辑电路,即序列检测器。

通过设计和实现这个电路,深入理解数字电路的基本原理和设计方法,掌握状态机的概念和应用,提高逻辑分析和电路设计的能力。

二、实验原理序列检测器是一种能够在输入数据流中检测特定序列的电路。

它通常由状态机实现,状态机根据输入的变化在不同的状态之间转移,并在特定的状态下输出检测结果。

以检测序列“1011”为例,我们可以定义以下几个状态:状态 S0:初始状态,等待输入。

状态 S1:接收到“1”,等待下一个输入。

状态 S2:接收到“10”,等待下一个输入。

状态 S3:接收到“101”,等待下一个输入。

状态 S4:接收到“1011”,输出检测成功信号。

根据状态转移和输出的规则,可以画出状态转移图,并根据状态转移图设计相应的逻辑电路。

三、实验设备与器材1、数字电路实验箱2、逻辑门芯片(如与门、或门、非门等)3、示波器4、电源四、实验步骤1、分析设计要求,确定状态转移和输出规则,画出状态转移图。

2、根据状态转移图,列出状态转换表,确定每个状态下的输入和输出。

3、使用卡诺图或其他逻辑化简方法,对状态转换表进行化简,得到最简的逻辑表达式。

4、根据逻辑表达式,选择合适的逻辑门芯片,在实验箱上搭建电路。

5、连接电源和示波器,对电路进行测试。

输入不同的序列,观察输出是否符合预期。

五、实验电路设计以下是检测序列“1011”的逻辑电路设计:状态变量定义:设当前状态为 Q1Q0,其中 Q1 为高位,Q0 为低位。

状态转移方程:Q1(n+1) = Q1Q0 + XQ1' (其中 X 为输入)Q0(n+1) = XQ0' + Q1Q0输出方程:Y = Q1Q0X根据上述方程,使用与门、或门和非门搭建电路。

六、实验结果与分析在实验中,输入了不同的序列,包括“1011”以及其他随机序列。

通过示波器观察输出,当输入序列为“1011”时,输出为高电平,表示检测成功;当输入其他序列时,输出为低电平,表示未检测到目标序列。

实验五 用状态机实现序列检测器的设计

实验五  用状态机实现序列检测器的设计

实验五用状态机实现序列检测器的设计一、实验目的1.熟悉QuartusⅡ软件应用环境,了解实验流程。

2.编写简单的Verilog代码,并在QuartusⅡ中进行调试和验证,并在EDA6000中下载代码和验证。

3.掌握用状态机(State Machine)实现序列检测器的设计。

二、实验原理假设检测器预先已经设定一个8位序列d,那么当由din端口串行输入的一个8位序列,与d完全相同时,检测器输出代码1010,即在试验箱上的LED上显示一个“A”;否则,检测器输出1110,即在试验箱上的LED上显示一个“E”。

同时,当清零信号clr有效时,输出为1110。

由清零信号clr和输入信号din共同控制状态机的状态变化。

三、实验内容1、检测一组二进制序列信号,当连续的脉冲信号和预先设定的序列d相同时,显示字符“A”,否则显示“E”。

2、使用工具为译码器建立一个元件符号3、设计仿真文件,进行验证。

4、编程下载并在实验箱上进行验证。

四、实验步骤1.新建Verilog工程项目,编写代码并保存至与模块名对应的项目文件夹。

2.编译程序,编译无误后,在【tools】>【netlist viewers】里面选择RTL Viewer,观察电路结构;在【tools】>【netlist viewers】里面选择State Machine Viewer,查看状态机转换图。

3.新建波形文件进行仿真。

保存时要和源程序存放在同一目录下。

设置好输入波形参数后,开始仿真。

在仿真后输入输出波形中观察逻辑关系是否正确。

4.将实验箱和PC合理连接起来。

打开EDA6000软件,设置好芯片类型为ACEX1K(EP1K30TC144-3),载入模式12。

5.根据EDA6000界面内管脚对应芯片的实际管脚在QUARTUSⅡ里面设定管脚号并检查无误。

6.将程序下载至FPGA内,并在EDA6000软件界面内进行验证测试。

程序代码module SCHK(clk,din,clr,d,err);input clk,din,clr; input [7:0]d;output [3:0]err;parameter s0=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6,s7=7,s8=8;reg [8:0]cs,ns; reg [3:0]err;always @(posedge clk or posedge clr)begin if(clr) cs<=s0;else cs<=ns;case (cs)s0:if(din==d[0] ) ns<=s1;else ns<=s0;s1:if (din==d[1]) ns<=s2;else ns<=s0;s2:if(din==d[2] ) ns<=s3;else ns<=s0;s3:if(din==d[3] ) ns<=s4;else ns<=s0;s4:if(din==d[4] ) ns<=s5;else ns<=s0;s5:if(din==d[5] ) ns<=s6;else ns<=s0;s6:if(din==d[6] ) ns<=s7;else ns<=s0;s7:if(din==d[7] ) ns<=s8;else ns<=s0;s8:ns<=s8;default ns<=s0;endcaseendalways @(ns)begin if(ns==s8) err<=4'b1010;else err<=4'b1110;endendmodule编译:选择processing---start compilation命令,开始编译。

时序电路设计-101序列检测器

时序电路设计-101序列检测器

数字逻辑设计及应用课程设计报告姓名:雷蕾学号:2010012030036选课号:设计题号: 5一.设计题目:设计101序列检测器二.设计要求要求使用状态机设计一个序列检测器,检测输入数据,当输入中出现101时,输出1,否则输出为0。

不进行重复判断,即当出现10101…时,输出为00100…判断的具体流程如下:1.电路复位,进入状态S0,等待输入2.S0状态下:如果输入为0,则停留在S0,如果输入为1,则跳转到S13.S1状态下:如果输入为0,则跳转到S2,如果输入为1,则停留在S14.S2状态下:如果输入为1,则输出1,并跳转到S0,如果输入为0,则输出0,并跳转到S0检测器电路实现:时钟信号,1 bit输入待判断信号,1bit输出判断结果。

三.设计过程1.设计方案:通过使用ISE编写verilog语言,实现以下过程:1s3只有当s3接收到的输入信号为1的时候,输出才会为1,其余时候输出都为0.2.设计程序:模块文件:`timescale 10ns/1ns//////////////////////////////////////////////////////////////////////////////////// Company:// Engineer://// Create Date: 21:02:40 06/06/2012// Design Name:// Module Name: abcd// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://////////////////////////////////////////////////////////////////////////////////// module abcd(input reset,input clk,input ipt,output reg result);parameter [1:0] s0 = 2'b00, s1 = 2'b01, s2 = 2'b10;reg[1:0] state;always @ (posedge clk)beginif(reset)beginstate<=s0;result<=0;endelsebegincase(state)s0:beginif(ipt==0)beginstate<=s0;result<=0;endelse.beginstate<=s1;result<=0;endends1:beginif(ipt==0)beginstate<=s2;result<=0;endelsebeginstate<=s1;result<=0;endends2:beginif(ipt==0)beginstate<=s0;result<=0;endelsebeginstate<=s0;result<=1;endenddefault:beginstate<=s0;result<=0;endendcaseendendendmodule测试文件:`timescale 10ns / 1ps////////////////////////////////////////////////////////////////////////////// //// Company:// Engineer://// Create Date: 23:05:50 06/06/2012// Design Name: test_detector// Module Name: D:/TDDOWNLOAD/fortwo2/haha.v// Project Name: fortwo2// Target Device:// Tool versions:// Description://// Verilog Test Fixture created by ISE for module: test_detector//// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://////////////////////////////////////////////////////////////////////////////// //module haha;module test_detector();reg clk;reg reset;reg ipt;wire result;reg[20:0] indata=20'b101001110011011110110;integer i;initial clk=1;always #1 clk=~clk;initialbeginreset=1;ipt=0;#4reset=0;for(i=0;i<21;i=i+1)beginipt=indata[i];#2;end#10$stop;endabcd detector_instance(.clk(clk),.reset(reset),.ipt(ipt),.result(result));endmodule3.仿真结果四.设计结论(包括:设计结果分析、设计中遇到的问题、设计心得和体会等) 1.设计结果分析:以时钟信号的一个周期为基准,有仿真结果可看出,当输入(ipt)为连续的一个周期高一个周期的低一个周期的高(即101)时,输出(result)为高。

序列信号检测器的设计

序列信号检测器的设计

绪论随着世界经济的不断发展,电子技术日新月异,一日千里。

随着第一支晶体三极管于1947年问世,开创了电子技术的新领域,随后60年代初,模拟和数字集成电路相继上市,到七十年代末,微处理器的问世,电子器件的应用出现了新的局面。

随着微电子技术的发展,将会有更多的的电子产品陆续问世。

微电子技术的进步主要表现在大规模集成电路加工技术即半导体工艺技术的发展上,现代电子设计技术的核心日趋转向基于计算机的电子设计自动化技术,即EDA技术。

电子设计自动化即EDA技术是指包括电路设计、系统仿真、设计综合、PCB版图设计和制版的一套自动化流程。

依赖功能强大的计算机,在EDA工具软件平台上,对以硬件描述语言HDL为系统逻辑描述手段完成的设计文件,自动完成逻辑编译、化简、分割、综合、布局布线以及逻辑优化和仿真调试,直至实现既定的电子线路系统功能。

EDA代表了当今电子设计技术的最新发展方向,系统的关键电路用一片或几片专用集成电路(ASIC)实现,然后采用硬件描述语言(VHDL)完成系统行为级设计,最后通过综合器和适配器生成最终的目标器件。

EDA技术主要包括大规模可编程逻辑、硬件描述语言、软件开发工具等内容。

目前,使用最为广泛的大规模可编程逻辑CPLD、FPGA属高密度可编程逻辑器件,已成为现代高层次电子设计方法的实现载体。

硬件描述语言HDL是EDA技术的重要组成部分,而VHDL在现在EDA设计中使用最多,是一种全方位的硬件描述语言,包括系统行为级、寄存器传输级和逻辑门级多个设计层次,VHDL几乎覆盖了以往各种硬件描述语言的功能,VHDL的设计不依赖于特定的器件,方便了工艺的转换,具有良好的适应性,是设计者可以专心于其功能的实现,不需要对不影响功能的与工艺有关的因素花费过多的时间与精力。

1 QuartusII简介Quartus II 是Altera公司的综合性PLD开发软件,支持原理图、VHDL、VerilogHDL以及AHDL(Altera Hardware Description Language)等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.掌握基于语言的ISE设计全流程;实验三:用状态机实现序列检测器的设计一、实验目的用状态机实现序列检测器的设计,并对其进行仿真和硬件测试。

掌握基于语言的ISE设计全流程;熟悉、应用VerilogHDL描述数字电路;实验原理与设计过程实验内容:序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出A,否则输出b。

由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。

在检测过程中,任何一位不相等都将回到初始状态重新开始检测。

例3-1描述的电路完成对序列数""的。

当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“A”,否则仍然输出“b”。

本次实验的核心是:应用有限状态机的设计思路,检测输入的串行数据是否是8’b。

根据下载电路板的资源,拟用SW3---SW0,J4接口的E8,F8,C7,D7作为系统输入(系统由此需要设计一个8bits并行数据转串行的模块),一个7段数码显示译码器作为检测结果的输出显示,如果串行序列为”11100101”,显示A,否则显示b(系统需要设计一个7段数码显示译码器模块),为了显示可控,清晰,拟用V16,D18实现时钟,复位信号的输入。

设计参考:本实验由顶层文件、串行检测、并行数据转串行、数码管显示四个模块组成:系统共包括4个模块:并行数据转串行数据模块、串行检测模块、数码管显示模块、消抖模块。

由于需要用按键V16作为时钟输入,为保证实验效果,调用实验二中应用的消抖模块,对时钟clk输入信号进行消抖。

对于并行数据转串行数据模块输入输出端口说明:clk-----系统时钟,由按键V16通过消抖模块后提供。

din8-----8bits输入数据,需在时钟控制下,串行输出。

reset----系统复位信号,当reset=1’b1时,系统输出复位,否则系统正常工作。

din----------1bit输出信号。

该并行模块的设计如下:module xulie_u1(clk,din8,reset,din );input clk;input[7:0] din8;input reset;output din;parameters0 = 3'b000,s1 = 3'b001,s2 = 3'b010,s3 = 3'b011,s4 = 3'b100,s5 = 3'b101,s6 = 3'b110,s7 = 3'b111;reg[2:0] cur_state,next_state;reg din;always @ (posedge clk or posedge reset) if(reset)cur_state <= s0;elsecur_state <= next_state; always @ (cur_state or din8 or din ) begincase (cur_state)s0 : begindin <= din8[7];next_state <= s1;ends1 : begindin <= din8[6];next_state <= s2;ends2 : begindin <= din8[5];next_state <= s3;ends3 : begindin <= din8[4];next_state <= s4;ends4 : begindin <= din8[3];next_state <= s5;ends5 : begindin <= din8[2];next_state <= s6;ends6 : begindin <= din8[1];next_state <= s7;ends7 : begindin <= din8[0];next_state <= s0;enddefault : begindin <= 1'b0;next_state <= s0;endendcaseendendmodule对于串行检测模块其输入输出端口说明如下:din-----1bit的串行输入数据clk-----同步输入时钟clr ------异步清零信号,当CLR=1,系统输出置0,否则,系统正常工作AB--------4bits数据,如果系统检测到8’b的串行输入,AB=4’b1010,否则,AB=4’b1011. 其设计代码如下:module schk_u2(din,clk,reset,AB);input din;input clk;input reset;output[3:0] AB;reg[3:0] AB;reg[3:0] current_state,next_state;parameterst0=4'b0000,st1=4'b0001,st2=4'b0010,st3=4'b0011,st4=4'b0100,st5=4'b0101,st6=4'b0110,st7=4'b0111,st8=4'b1000;always @ (posedge clk or posedge reset)beginif(reset)current_state<=st0;elsecurrent_state<=next_state;endalways @ (current_state or din)begincase(current_state)st0:begin AB<=4'b1011; next_state<=(din==1)st1:st0;endst1:begin AB<=4'b1011; next_state<=(din==1)st2:st0;endst2:begin AB<=4'b1011; next_state<=(din==1)st3:st0;endst3:begin AB<=4'b1011; next_state<=(din==0)st4:st3;endst4:begin AB<=4'b1011; next_state<=(din==0)st5:st1;endst5:begin AB<=4'b1011; next_state<=(din==1)st6:st0;endst6:begin AB<=4'b1011; next_state<=(din==0)st7:st1;endst7:beginif(din==1)begin AB<=4'b1010;next_state<=st8;endelsebegin AB<=4'b1011;next_state<=st0;endendst8:begin AB<=4'b1011; next_state<=(din==1)st1:st0;end endcaseendendmodule其中最后的LED驱动模块不做过多说明,只是简单的设计如下:module decled7s_u3(AB,led7 );input[3:0] AB;output[6:0] led7;reg[6:0] led7;wire[3:0] AB;initial led7=7'b0000000;always @ (AB)begincase(AB)4'b1010:led7<=7'b1110111;4'b1011:led7<=7'b1111100;default:led7<=7'b0111111;endcaseendEndmodule·(六)最终加入消抖模块综合结果如下:综合模块代码:module XULIEQI(clk_50M,clk1,reset,din8,led7 ); input clk_50M,clk1;input reset;input [7:0] din8;output [6:0] led7;wire [3:0] AB;wire din,clk;debounce_module u1(clk_50M,reset,clk1,clk); xulie_u1 u2(clk, din8, reset, din);schk_u2 u3(din,clk,reset,AB);decled7s_u3 u4(AB,led7);endmodule实验仿真根据实验过程综合程序结果:实验引脚约束文件如下:NET "clk1" LOC = "V16" |PULLDOWN ;NET "clk_50M" LOC = "C9" ;NET "din8[0]" LOC = "D7" ;NET "din8[1]" LOC = "C7" ;NET "din8[2]" LOC = "F8" ;NET "din8[3]" LOC = "E8" ;NET "din8[4]" LOC = "L13" ;NET "din8[5]" LOC = "L14" ;NET "din8[6]" LOC = "H18" ;NET "din8[7]" LOC = "N17" ;NET "led7[0]" LOC = "D5" ;NET "led7[1]" LOC = "C5" ;NET "led7[2]" LOC = "B6" ;NET "led7[3]" LOC = "E7" ;NET "led7[4]" LOC = "F7" ;NET "led7[5]" LOC = "A4" ;NET "led7[6]" LOC = "B4" ;NET "reset" LOC = "D18" ;NET "clk1" CLOCK_DEDICATED_ROUTE=FALSE; 并行模块的时序仿真情况为:串行检测模块的相应仿真:四、思考题本次实验的设计代码表达的是Moore类型的状态机它的输出信号仅与当前的状态有关,与当前的输入无关。

相关文档
最新文档