实验5 采用状态机实现序列检测器
用状态机实现序列检测器实验报告
实验报告用状态机实现序列检测器实验一、实验目的1.用Verilog HDL描述有限状态机电路。
2.IPCORE的概念与设计。
二、实验内容1.应用有限状态机的设计思路,检测从FPGA片上ROM读出的串行数据是否是特定的数据。
2.每个人需要检测的数据是所用的电脑编号+200后转换的8位二进制数。
三、实验要求1.拟用按键、拨动开关实现系统的时钟,复位信号的输入。
2.一个7段数码显示译码器作为检测结果的输出显示,如果串行序列为”100101”,显示A,否则显示b(系统需要设计一个7段数码显示译码器模块)仍使用消抖模块,对由按键输入的时钟进行消抖处理。
3.读取的串行数据为rom中固化的一个宽度为1bit,深度为16bits的数据。
四、设计思路软件的设计框图如下,该实验可以分为几个模块,rom数据读出模块,串行检测模块,数码管显示模块,顶层模块。
输入的clk为按键消抖后输出的数据,按下一次检测一次,在时钟的上升沿读出数据,时钟的下降沿检测数据,串行模块输出的4bits的数据,直接送给数码管译码模块,译码输出。
五、设计原理1.ROM IP核的生成首先在ISE自己的工程中新建一个块内存,Block Memory Generator,配置深度为16,宽度为1bit,选择生成的类型为单端ROM,然后选择一个已经编写好的memory初始化文件。
Memory初始化文件,编写coe文件:这里我要写入的是226,所以二进制是11100010,写入的内容如下,:memory_initialization_radix=10;memory_initialization_vector=1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0;保存并选择载入。
2.读取rom中的数据根据时钟上升沿读取数据,所以可以写出rom读的代码,代码如下:module read_rom(clk,da,rst);input clk;input rst;output da;reg[3:0] counter;always@(posedge clk or posedge rst) beginif(rst)counter<=1'b0;else counter<=counter+1'b1;enddata_rom u1(.clka(clk), // input clka.addra(counter), // input [3 : 0] addra.douta(da) // output [0 : 0] douta);编写仿真激励文件,得到如下波形,分析可以知道,时钟上升沿数据被读取,读取的数据与我们在配置文件中写入的相同。
VHDL序列检测器
作业一:序列检测器(1110010)1 设计功能与要求(1) 利用有限状态的状态机设计一个序列检测器,序列检测器要检测的序列设定为“”。
(2) 根据设计功能和要求运用VHDL硬件描述语言进行设计编程,并且画出序列检测器的原理流程图。
(3) 对设计的序列检测器程序进行仿真,并予以分析和说明。
2 设计思路序列检测器的设计是采用VHDL硬件描述语言设计程序,对预先设置的序列信号进行检测。
序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的相同,则输出1,否则输出0。
设计采用有限状态机来实现序列检测器。
3 原理流程图根据预先设置的序列信号“”,根据有限状态机的原理进行编程,设计出符合要求的八状态的状态机的序列检测器,原理流程说明如下图。
如图所示,假设状态机的初始状态为S1,当输入信号为“1”时,进入S2状态;为“0”还是在S1状态。
在S2状态下,如果输入信号为“1”,则进入S3状态,为“0”则返回S1状态。
在S3状态下,如果输入信号为“1”,则进入S4状态,为“0”则返回S1状态。
在S4状态下,如果输入信号为“0”,则进入S5状态,为“0”还是在S4状态。
在S5状态下,如果输入信号为“0”,则进入S6状态,为“1”则进入S2状态。
在S6状态下,如果输入信号为“1”,则进入S7状态,为“0”则返回S1状态。
在S7状态下,如果输入信号为“0”,则进入S8状态,为“1”则进入S3状态。
在S8状态下,如果输入信号为“1”,则进入S2状态,为“0”则返回S1状态,并输出序列信号1110010。
4 序列检测器VHDL程序代码在序列检测器的程序代码中采用cin表示输入序列信号,clr为复位控制信号,clk为时钟信号,cout为输出信号。
当检测到序列信号中出现““序列的时候,cout输出为高电平,否则为低电平,详细程序代码如下。
library ieee;use ieee.std_logic_1164.all;entity sq_det isport(cin,clr,clk:in std_logic;cout:out std_logic);end sq_det;architecture behav of sq_det istype state is(s1,s2,s3,s4,s5,s6,s7,s8);signal c_state,n_state:state;beginprocess(clk,clr)beginif(clr='1')thenc_state<=s1;elsif(clk'event and clk='1')then c_state <=n_state;end if;end process;process(c_state,cin)begincase(c_state) iswhen s1=>cout<='0';if(cin='1')thenn_state<=s2;elsen_state<=s1;end if;when s2=>cout<='0';if(cin='1')thenn_state<=s3;elsen_state<=s1;end if;when s3=>cout<='0';if(cin='1')thenn_state<=s4;elsen_state<=s1;end if;when s4=>cout<='0';if(cin='1')thenn_state<=s4;elsen_state<=s5;end if;when s5=>cout<='0';if(cin='1')thenn_state<=s2;elsen_state<=s6;end if;when s6=>cout<='0';if(cin='1')thenn_state<=s7;elsen_state<=s1;end if;when s7=>cout<='0';if(cin='1')thenn_state<=s3;elsen_state<=s8;end if;when s8=>cout<='1';if(cin='1')thenn_state<=s2;elsen_state<=s1;end if;end case;end process;end architecture behav;5 仿真结果与说明序列检测器程序仿真结果如下图,cin为输入序列信号,clr为复位控制信号,高电平复位清零准备进入工作状态,clk为时钟信号,cout为输出信号。
用状态机实现序列检测器的设计
1.掌握基于语言的ISE设计全流程;实验三:用状态机实现序列检测器的设计一、实验目的2.用状态机实现序列检测器的设计,并对其进展仿真和硬件测试。
3.掌握基于语言的ISE设计全流程;4.熟悉、应用VerilogHDL描述数字电路;二、实验原理与设计过程(一)实验内容:序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码一样,则输出A,否则输出b。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码一样。
在检测过程中,任何一位不相等都将回到初始状态重新开场检测。
例3-1描述的电路完成对序列数"11100101"的。
当这一串序列数高位在前〔左移〕串行进入检测器后,假设此数与预置的密码数一样,则输出“A〞,否则仍然输出“b〞。
(二)本次实验的核心是:应用有限状态机的设计思路,检测输入的串行数据是否是8’b11100101。
根据下载电路板的资源,拟用SW3---SW0,J4接口的E8,F8,C7,D7作为系统输入〔系统由此需要设计一个8bits并行数据转串行的模块〕,一个7段数码显示译码器作为检测结果的输出显示,如果串行序列为〞11100101”,显示A,否则显示b 〔系统需要设计一个7段数码显示译码器模块〕,为了显示可控,清晰,拟用V16,D18实现时钟,复位信号的输入。
(三)设计参考:本实验由顶层文件、串行检测、并行数据转串行、数码管显示四个模块组成:a)系统共包括4个模块:并行数据转串行数据模块、串行检测模块、数码管显示模块、消抖模块。
由于需要用按键V16作为时钟输入,为保证实验效果,调用实验二中应用的消抖模块,对时钟clk输入信号进展消抖。
b)对于并行数据转串行数据模块输入输出端口说明:i.clk-----系统时钟,由按键V16通过消抖模块后提供。
实验5 序列检测器
数字系统设计与PLD应用实验报告实验名称:实验5序列检测器学院:大数据与信息工程学院专业:电子信息工程姓名:李晓雪学号:1108040198年级:大四任课教师:尉学军2014 年 12 月 7 日实验5 序列检测器一.实验目的(1)了解用状态机的方法设计序列检测器(2)实验一个11010串行序列检测器,用VHDL语言描述该电路二、实验原理序列检测器的示意图如图一所示11010序列检测器的状态转换图如图二所示三、实验内容(1)用VHDL语言编写11010序列检测器源程序。
给出正确仿真波形图。
(2)用VHDL分别设计一个包含(11010)和不包含的序列发生器。
(3)将上述两个序列发生器分别和序列检测器结合成一个文件(级联),并编译、模拟获得正确的仿真波形。
四、实验结果1、序列检测器(检测11010)根据状态转换通过VHDL语言实现序列检测器:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY jc11010 ISPORT(DIN,CLK,RST:IN STD_LOGIC;SOUT:OUT STD_LOGIC);END jc11010 ;ARCHITECTURE BEHA V OF jc11010 ISTYPE STATES IS (S0,S1,S2,S3,S4);SIGNAL ST,NST:STA TES:=S0;BEGINCOM:PROCESS(ST,DIN) BEGINCASE ST ISWHEN S0=>IF DIN='1'THEN NST<=S1;ELSE NST<=S0;END IF; WHEN S1=>IF DIN='1'THEN NST<=S2;ELSE NST<=S0;END IF; WHEN S2=>IF DIN='1' THEN NST<=S2;ELSE NST<=S3;END IF; WHEN S3=>IF DIN='1' THEN NST<=S4;ELSE NST<=S0;END IF; WHEN S4=>IF DIN='1' THEN NST<=S2;ELSE NST<=S0;END IF; WHEN OTHERS=>NST<=S0;END CASE;END PROCESS;REG:PROCESS (CLK,RST)BEGINIF RST='1' THEN ST<=S0;ELSIF CLK'EVENT AND CLK='1' THEN ST<=NST;END IF;END PROCESS REG;SOUT<='1' WHEN ST=S4 ELSE '0';END BEHA V;波形仿真结果:2.采用状态机方法设计序列发生器11010序列产生器的VHDL语言:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY csq11010 ISPORT(CLK:IN STD_LOGIC;Z :OUT STD_LOGIC);END csq11010 ;ARCHITECTURE RTL OF csq11010 ISTYPE STATE_TYPE IS(S0,S1,S2,S3,S4,S5);SIGNAL CURRENT_STATE,NEXT_STATE:STATE_TYPE; BEGINSYNCH: PROCESSBEGINWAIT UNTIL CLK'EVENT AND CLK='1'; CURRENT_STATE<=NEXT_STATE;END PROCESS;STATE_TRANS:PROCESS(CURRENT_STATE)BEGINCASE CURRENT_STATE ISWHEN S0=>NEXT_STATE<=S1;Z<='1';WHEN S1=>NEXT_STATE<=S2;Z<='1';WHEN S2=>NEXT_STATE<=S3;Z<='0';WHEN S3=>NEXT_STATE<=S4;Z<='1';WHEN S4=>NEXT_STATE<=S5;Z<='0';WHEN S5=>NEXT_STATE<=S0;Z<='1';END CASE;END PROCESS;END RTL;仿真波形结果:(产生的11010序列串)3、随机序列产生器(产生序列1100101)VHDL语言:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SY4 ISPORT(CLK:IN STD_LOGIC;Z :OUT STD_LOGIC);END SY4 ;ARCHITECTURE RTL OF SY4 ISTYPE STATE_TYPE IS(S0,S1,S2,S3,S4,S5,S6);SIGNAL CURRENT_STATE,NEXT_STA TE:STA TE_TYPE; BEGINSYNCH: PROCESSBEGINWAIT UNTIL CLK'EVENT AND CLK='1';CURRENT_STATE<=NEXT_STA TE;END PROCESS;STA TE_TRANS:PROCESS(CURRENT_STATE)BEGINCASE CURRENT_STATE ISWHEN S0=>NEXT_STATE<=S1;Z<='1';WHEN S1=>NEXT_STATE<=S2;Z<='1';WHEN S2=>NEXT_STATE<=S3;Z<='0';WHEN S3=>NEXT_STATE<=S4;Z<='0';WHEN S4=>NEXT_STATE<=S5;Z<='1';WHEN S5=>NEXT_STATE<=S6;Z<='0';WHEN S6=>NEXT_STATE<=S0;Z<='1';END CASE;END PROCESS;END RTL;波形仿真结果:3、11010序列产生器与11010序列检测器级联后的电路图:波形仿真结果:4、不包含11010的任意序列产生器与11010序列检测器级联后的电路图:波形仿真结果:。
FPGA用状态机实现序列检测器的设计(2)
****大学实验报告课程名称: FPGA技术实验名称:基于原理图的十进制计数器设计姓名: ***学号: ***************班级:电子1202指导教师:**************西南科技大学信息工程学院制实验三用状态机实现序列检测器的设计一、实验原理序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出A,否则输出b。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
例3-1描述的电路完成对特定的序列数"100101"的检测的部分HDL代码。
当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“A”,否则仍然输出“b”。
本实验由四个模块组成:二、实验步骤1、建立工程,名为“shiyan3”,在建立第一个verilog HDL的编辑窗口,并保存为“xulie”,即并行数据转串行数据模块;并根据所画的状态转移图,来编写相关代码,代码截图如下:Testbench截图如下:仿真截图如下:2、另外再建立一个名为“schk”的Verilog HDL的编辑窗口,根据其状态转换图,可以有如下截图所示代码:3、再建立一个数码管显示模块,命名为“led_xian”,代码截图如下:4、最后是顶层文件“zongde”的建立,在这个里面,还要加上消抖模块,具体代码设计如下:5、写好约束文件,并进行综合编译;6、拿到板子,点击Generate和Configure,进行下载;三、实验结果及分析理论上应该显示b,但由于诸多问题,结果数码管显示的好像不对,而且我的座位号是8号,那换成六位二进制数应该是001000,但最后在硬件上实现时,却跟理论不一样。
实验三_用状态机实现序列检测器的设计3
FPGA实验报告实验名称:用状态机实现序列检测器的设计姓名:班级:电子1002班指导老师:时间: 2013年3月27日一、实验要求 1、应用有限状态机的设计思路,检测输入的串行数据是否是8’b11100101。
2、拟用SW3---SW0,J4接口的E8,F8,C7,D7作为系统输入(系统由此需要设计一个8bits 并行数据转串行的模块) 3、一个7段数码显示译码器作为检测结果的输出显示,如果串行序列为”11100101”,显示A ,否则显示b (系统需要设计一个7段数码显示译码器模块) 4、为了显示可控,清晰,拟用V16,D18实现时钟,复位信号的输入。
二、任务分析图2.1 设计任务框图系统共包括4个模块:1、并行数据转串行数据模块(xulie.v );异步复位,在时钟控制下,将并行输入数据din8[7:0],按照din[7],din[6],din[5],din[4],din[3],din[2],din[1],din[0]的顺序输出至串行检测模块的输入端口din 。
2、串行检测模块; 输入信号:din-----1bit 的串行输入数据 clk-----同步输入时钟clr ------异步清零信号,当CLR=1,系统输出置0,否则,系统正常工作。
输出信号:AB--------4bits 数据,如果系统检测到8’b11100101的串行输入,AB=4’b1010,否则,AB=4’b1011。
3、数码管显示模块;输入:data_in[3:0] -------待显示的数值输出:data_out[6:0] -------驱动数码管的七位数值4、消抖模块。
由于需要用按键V16作为时钟输入,为保证实验效果,调用实验二中应用的消抖模块,对时钟clk 输入信号进行消抖。
三、实验过程1、构建一个工程名为XULIEQI 的工程,正确选择器件和EDA 工具。
2、设计串行检测模块(schk.v )a)、建立新Verilog HDL 模块编辑窗口,选择资源类型为Verilog Module ,并输入合法文件名顶层模块并转串 模块串行检测模块数码管显示模块并行8bits 数据 cl k 串行数据 4bits 数据reset7bits 数据图3.1 工程建立及工具选择b)、在文本编辑窗口输入代码图3.2 文本编辑附:module schk(din,clk,clr,AB);input din,clk,clr; output [3:0] AB;reg [3:0] AB; reg [7:0] Q;parameters0= 8'b00000000,a = 8'b00000001,b = 8'b00000010,c = 8'b00000100,d = 8'b00001000, e = 8'b00010000,f = 8'b00100000,g = 8'b01000000,h = 8'b10000000,data=8'b11100101; always @(posedge clk or posedge clr)if(clr)begin Q <= s0; endelsebegincase(Q)s0: beginif(din==data[7]) Q<=a; else Q<=s0;enda: beginif(din== data[6]) Q<=b; else Q<=s0;endb:beginif(din== data[5]) Q<=c; else Q<=s0;endc: beginif(din== data[4]) Q<=d; else Q<=c;endd: beginif(din== data[3]) Q<=e; else Q<=a;ende: beginif(din== data[2]) Q<=f; else Q<=s0;endf: beginif(din== data[1]) Q<=g; else Q<=b;endg: beginif(din== data[0]) Q<=h; else Q<=s0;endh: beginif(din== data[7]) Q<=a; else Q<=s0;enddefault : Q<=s0;endcaseendalways @(Q)beginif(Q == h) AB <= 4'b1010 ; else AB <= 4'b1011 ;endendmoduled)、执行综合得到综合后的电路,并进行功能仿真。
实验三_用状态机实现序列检测器的设计
设计参考
本实验由顶层文件、串行检测、并行数据转 串行、数码管显示四个模块组成
顶层模块
并行8bits数据 串行数据 4bits数据 7bits数据
并转串 模块
clk
串行检测 模块
数码管显 示模块
reset
系统任务要求
• 系统主要包括3个模块: 1)并行数据转串行数据模块(xulie.v) 2)串行检测模块(schk.v) 3)数码管显示模块(decled7s .v) 由于需要用按键V16作为时钟输入,按键 D18作为系统复位输入,所以需调用实验二 中应用的消抖模块,对两个按键输入信号 进行消抖。
设计输入
• 选择Verilog Module ,并输入合法文件名
• 在文本编辑窗口输入代码
设计输入
设计处理
• 设计处理环节进行综合、功能仿真、时序仿真Байду номын сангаас等处理
设计处理
1、综合:
• 在sources窗口选中待综 合模块cnt10,在process 窗口双击Synthesize-XST • 综合完后可以双击 Synthesize-XST下的View RTL Schematic,得到综 合后的电路图。
实验三
用状态机实现序列检测器的设计
• 上网查询资料,复习《数字电子技术》教 材,理解有限状态机的概念。 • 有限状态机的状态图的画法及其含义。
任务分析
• 本次实验的核心是:应用有限状态机设计思路,检测输 入的串行数据是否是”11100101”。 • 根据下载电路板的资源, 拟用SW3---SW0,J4接口的E8,F8,C7,D7作为系统输入( 系统由此需要设计一个8bits并行数据转串行的模块) 一个7段数码显示译码器作为检测结果的输出显示,如 果串行序列为”11100101”,显示a,否则显示b(系统需 要设计一个7段数码显示译码器模块) 为了显示可控,清晰,拟用V16,D18实现时钟,复位信 号的输入。
序列检测器设计实践报告
序列检测器设计实践报告一、引言序列检测器是现代通信系统中的关键组件之一,它能够检测出接收到的数据序列是否符合特定规则或模式。
在本次实践中,我们通过使用Verilog HDL 语言和ModelSim 软件,成功设计了一个基于有限状态机的序列检测器。
本报告将详细介绍设计实践的目标、设计思路、实现过程以及结果与分析。
二、设计目标本次实践的设计目标是设计一个序列检测器,其输入为一串二进制数据序列,输出为判断该数据序列是否符合预定的模式。
具体要求如下:1. 输入数据序列长度为N。
2. 设计的状态机模型能够正确判断数据序列是否匹配给定的模式。
3. 能够根据实际需要,设计一个可重用的序列检测器。
三、设计思路为了实现序列检测器,我们采用了有限状态机(Finite State Machine)的设计方法。
基于有限状态机的序列检测器通常包含以下几个关键部分:1. 状态寄存器(State Register):用于保存当前状态的寄存器。
2. 状态转移逻辑(State Transition Logic):用于根据当前状态和输入决定下一状态。
3. 输出逻辑(Output Logic):用于根据当前状态和输入决定输出。
在本次实践中,我们根据识别特定序列的要求设计了一个有限状态机模型。
具体步骤如下:1. 根据给定的数据序列模式,分析出可能的状态数以及状态转移条件。
2. 基于状态数和状态转移条件,设计状态转移表和状态转移条件的真值表。
3. 使用Verilog HDL语言,将状态寄存器、状态转移逻辑和输出逻辑实现为模块。
4. 将各个模块组合在一起,以实现完整的序列检测器。
四、实现过程1. 建立状态转移表和真值表根据给定的数据序列模式,我们设定了以下状态:- `S0`:初始状态;- `S1`:序列开始状态;- `S2`:序列匹配状态;- `S3`:序列不匹配状态。
根据分析,我们得到以下状态转移表和状态转移条件的真值表:状态/输入0 1S0 S1 S0S1 S2 S0S2 S2 S3S3 S1 S0状态/输入输出-S2 1S3 02. 实现Verilog HDL模块我们根据状态转移表和真值表,用Verilog HDL语言实现了状态寄存器、状态转移逻辑和输出逻辑。
EDA实验七八实验报告(1)
实验七序列检测器的VHDL设计(1)实验目的:用状态机实现序列检测器的设计,了解一般状态机的设计与应用。
(2)实验原理:序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出 1,否则输出 0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
书上P168例5-11 描述的电路完成对序列数”11100101”的检测,当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出”A”,否则仍然输出”B”。
(3)实验内容 1:用VHDL状态机设计一个8位序列信号检测器。
实验程序如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY SCHK ISPORT (DIN,CLK,CLR: IN STD_LOGIC;AB : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END ENTITY SCHK;ARCHITECTURE ONE OF SCHK ISSIGNAL Q : INTEGER RANGE 0 TO 8;SIGNAL D : STD_LOGIC_VECTOR(7 DOWNTO 0);BEGIND<="11100101";PROCESS(CLK,CLR)BEGINIF CLR='1' THEN Q<=0;ELSIF CLK'EVENT AND CLK='1' THENCASE Q ISWHEN 0=> IF DIN=D(7) THEN Q<=1; ELSE Q<=0; END IF;WHEN 1=> IF DIN=D(6) THEN Q<=2; ELSE Q<=0; END IF;WHEN 2=> IF DIN=D(5) THEN Q<=3; ELSE Q<=0; END IF;WHEN 3=> IF DIN=D(4) THEN Q<=4; ELSE Q<=0; END IF;WHEN 4=> IF DIN=D(3) THEN Q<=5; ELSE Q<=0; END IF;WHEN 5=> IF DIN=D(2) THEN Q<=6; ELSE Q<=0; END IF;WHEN 6=> IF DIN=D(1) THEN Q<=7; ELSE Q<=0; END IF;WHEN 7=> IF DIN=D(0) THEN Q<=8; ELSE Q<=0; END IF;WHEN OTHERS=> Q<=0;END CASE;END IF;END PROCESS;PROCESS(Q)BEGINIF Q=8 THEN AB<="1010";ELSE AB<="1011";END IF;END PROCESS;END ARCHITECTURE ONE;实验步骤如下:1 将源程序以SCHK.vhd的形式存入D盘名为liulin的文件夹中2 全程编译3 时序仿真4 引脚锁定和下载引脚锁定如下:CLR-PIN34;CLK-PIN32;DIN- PIN33;AB[0]- PIN77、 AB[1]- PIN78、AB[2]- PIN83、 AB[3]- PIN84;5 实际测试时序仿真波形如下图:实验分析:选择电路模式 No.8 。
采用-EDA实验五-用状态图输入法实现序列检测器
EDA实验五用状态图输入法实现序列检测器一、实验目的:了解序列检测器的基本原理,Mealy型和Moore型状态机的基本原理,掌握状态图输入法实现序列检测器的方法,并进行分析和仿真验证。
二、实验内容:本实验内容是:用状态图输入法设计一个序列检测器,若检测器收到一组码流1110010则输出为1,否则输出为0。
三、实验方法:实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
实验步骤:1、绘制状态图。
打开QuartusII软件平台,建立工程文件夹,工程文件夹名称为exp_detect3.然后点击File中的New建立一个状态图文件(用State Machine File命令),然后设置并生成状态图。
2、按照实验箱上FPGA的芯片名更改编程芯片的设置。
操作是点击Assign/Device,选取芯片的类型.3、编译与调试。
确定状态图文件为当前工程文件,点击Complier进行文件编译.编译结果有错误或警告,则将要调试修改直至文件编译成功。
4、波形仿真及验证。
在编译成功后,点击Waveform开始设计波形。
点击“insert the node",按照程序所述引脚,任意设置各输入节点的输入波形…点击保存按钮保存。
5、FPGA芯片编程及验证,应记录实验结果进行分析。
四、实验过程:用状态图输入法实现序列检测器:1、建立工程文件,工程文件夹的名称为exp_detect3,工程名和顶层实体名称为exp_detect3.工程建立过程中平台设置设置如下图所示:2、工程建好后,即进行状态图的输入。
具体过程如下:选择菜单File->New—>State Machine File命令,打开State Machine Editor窗口,如下图所示:然后选择Tools-〉State Machine Wizard 命令,弹出如下所示状态机创建向导对话框。
实验八用状态机实现序列检测器的设计
实验八用状态机实现序列检测器的设计
1、实验目的
本实验旨在通过状态机的设计实现一个序列检测器,该序列检测器可
以检测01序列中可编程的模式,并实现相应的响应动作。
2、实验原理
序列检测器是一种有限状态机,由一系列状态和一系列触发器组成,
可以检测特定的序列,并拥有一定的驱动和响应动作。
根据所检测的序列,检测器通过触发器设置能够自动的转换到特定的状态,触发器的设置可以
根据需要进行调整,从而实现不同的序列和不同的响应动作。
3、实验内容
(1)状态机的设计
状态机的设计分为状态图设计和状态表设计两部分,在状态图设计中,绘制出起始状态、可能的转移状态以及相应的触发器, shown by figure 1 below . 再根据实验的要求,结合状态图和状态表,确定每一个触发器
的对应的转移状态以及响应动作, shown by table 1 below .
(2)用VHDL编程实现状态机
在VHDL中,可以实现上面的状态机,用自定义的类型定义状态、触
发器、响应动作以及转移条件,将状态图转换成可执行的VHDL代码,shown by listing 1 below .
(3)VHDL代码的仿真
在仿真中,可以根据状态图测试序列检测器的功能,确保能够检测出正确的模式,并实现预期的响应动作, shown by figure 2 below.
4、实验结果。
实验五用状态机实现序列检测器的设计
实验五用状态机实现序列检测器的设计
一、背景简介
序列检测器是用来检测输入字符串中是否存在特定序列的字符串检测器。
在现代的工业控制中,序列检测器的应用十分广泛,例如机器操作指令的检测,机器人的动作序列检测,机械手的加工步骤检测等等,它们可以用在几乎所有的自动控制系统中,既提高了系统的可靠性,又提高了系统的运行效率。
二、状态机实现序列检测器
1)概念介绍
状态机是一种形式语言,它用于模拟系统的状态和行为,并用来表示系统的变化,可以用于描述和分析控制系统的性能。
根据状态机的不同表示形式,可以分为状态转换表,状态转移图,状态转移矩阵,状态表和状态图。
采用状态机实现序列检测器,首先需要建立一个状态机图,状态机图需要有起点和终点,以及从一个状态到另一个状态的转移规则。
根据输入的字符串,每次转移到下一个状态,直到终止状态,如果在该过程中没有终止状态,或终止状态不是指定的终止状态,则检测字符串不包含特定的序列字符。
2)具体实现。
实训八 用状态机实现序列检测器的设计
实训八用状态机实现序列检测器的设计一、实训目的1.掌握一种状态机的设计方法2.用状态机实现序列检测器的设计,并对其进行仿真和硬件测试二、实训器材1.EDA实验箱1台2.微型计算机1台3.MAX+PLUSII10.2软件1套4.下载电缆1条三、实训原理序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
例中描述的电路完成对序列数"11100101"的。
当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“A”,否则仍然输出“B”。
四、设计程序(参考程序)LIBRARY IEEE ;USE IEEE.STD_LOGIC_1164.ALL;ENTITY SCHK ISPORT( DIN,CLK,CLR : IN STD_LOGIC ; --串行输入数据位/工作时钟/复位信号AB : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); --检测结果输出END SCHK;ARCHITECTURE behav OF SCHK ISSIGNAL Q : INTEGER RANGE 0 TO 8 ;SIGNAL D : STD_LOGIC_VECTOR(7 DOWNTO 0); --8位待检测预置数BEGIND <= "11100101 " ; --8位待检测预置数PROCESS( CLK, CLR )BEGINIF CLR = '1' THEN Q <= 0 ;ELSIF CLK'EVENT AND CLK='1' THEN --时钟到来时,判断并处理当前输入的位CASE Q ISWHEN 0=> IF DIN = D(7) THEN Q <= 1 ; ELSE Q <= 0 ; END IF ;WHEN 1=> IF DIN = D(6) THEN Q <= 2 ; ELSE Q <= 0 ; END IF ;WHEN 2=> IF DIN = D(5) THEN Q <= 3 ; ELSE Q <= 0 ; END IF ;WHEN 3=> IF DIN = D(4) THEN Q <= 4 ; ELSE Q <= 0 ; END IF ;WHEN 4=> IF DIN = D(3) THEN Q <= 5 ; ELSE Q <= 0 ; END IF ;WHEN 5=> IF DIN = D(2) THEN Q <= 6 ; ELSE Q <= 0 ; END IF ;WHEN 6=> IF DIN = D(1) THEN Q <= 7 ; ELSE Q <= 0 ; END IF ;WHEN 7=> IF DIN = D(0) THEN Q <= 8 ; ELSE Q <= 0 ; END IF ;WHEN OTHERS => Q <= 0 ;END CASE ;END IF ;END PROCESS ;PROCESS( Q ) --检测结果判断输出BEGINIF Q = 8 THEN AB <= "1010" ; --序列数检测正确,输出“A” ELSE AB <= "1011" ; --序列数检测错误,输出“B” END IF ;END PROCESS ;END behav ;提示:若对于D <= "11100101 ",电路需记忆:初始状态、1、11、111 、1110 、11100、111001、1110010、11100101 共9种状态。
序列检测器的设计实验报告
序列检测器的设计实验报告一、实验目的本次实验的目的是设计一个能够检测特定序列的数字逻辑电路,即序列检测器。
通过设计和实现这个电路,深入理解数字电路的基本原理和设计方法,掌握状态机的概念和应用,提高逻辑分析和电路设计的能力。
二、实验原理序列检测器是一种能够在输入数据流中检测特定序列的电路。
它通常由状态机实现,状态机根据输入的变化在不同的状态之间转移,并在特定的状态下输出检测结果。
以检测序列“1011”为例,我们可以定义以下几个状态:状态 S0:初始状态,等待输入。
状态 S1:接收到“1”,等待下一个输入。
状态 S2:接收到“10”,等待下一个输入。
状态 S3:接收到“101”,等待下一个输入。
状态 S4:接收到“1011”,输出检测成功信号。
根据状态转移和输出的规则,可以画出状态转移图,并根据状态转移图设计相应的逻辑电路。
三、实验设备与器材1、数字电路实验箱2、逻辑门芯片(如与门、或门、非门等)3、示波器4、电源四、实验步骤1、分析设计要求,确定状态转移和输出规则,画出状态转移图。
2、根据状态转移图,列出状态转换表,确定每个状态下的输入和输出。
3、使用卡诺图或其他逻辑化简方法,对状态转换表进行化简,得到最简的逻辑表达式。
4、根据逻辑表达式,选择合适的逻辑门芯片,在实验箱上搭建电路。
5、连接电源和示波器,对电路进行测试。
输入不同的序列,观察输出是否符合预期。
五、实验电路设计以下是检测序列“1011”的逻辑电路设计:状态变量定义:设当前状态为 Q1Q0,其中 Q1 为高位,Q0 为低位。
状态转移方程:Q1(n+1) = Q1Q0 + XQ1' (其中 X 为输入)Q0(n+1) = XQ0' + Q1Q0输出方程:Y = Q1Q0X根据上述方程,使用与门、或门和非门搭建电路。
六、实验结果与分析在实验中,输入了不同的序列,包括“1011”以及其他随机序列。
通过示波器观察输出,当输入序列为“1011”时,输出为高电平,表示检测成功;当输入其他序列时,输出为低电平,表示未检测到目标序列。
实验五 用状态机实现序列检测器的设计
实验五用状态机实现序列检测器的设计一、实验目的1.熟悉QuartusⅡ软件应用环境,了解实验流程。
2.编写简单的Verilog代码,并在QuartusⅡ中进行调试和验证,并在EDA6000中下载代码和验证。
3.掌握用状态机(State Machine)实现序列检测器的设计。
二、实验原理假设检测器预先已经设定一个8位序列d,那么当由din端口串行输入的一个8位序列,与d完全相同时,检测器输出代码1010,即在试验箱上的LED上显示一个“A”;否则,检测器输出1110,即在试验箱上的LED上显示一个“E”。
同时,当清零信号clr有效时,输出为1110。
由清零信号clr和输入信号din共同控制状态机的状态变化。
三、实验内容1、检测一组二进制序列信号,当连续的脉冲信号和预先设定的序列d相同时,显示字符“A”,否则显示“E”。
2、使用工具为译码器建立一个元件符号3、设计仿真文件,进行验证。
4、编程下载并在实验箱上进行验证。
四、实验步骤1.新建Verilog工程项目,编写代码并保存至与模块名对应的项目文件夹。
2.编译程序,编译无误后,在【tools】>【netlist viewers】里面选择RTL Viewer,观察电路结构;在【tools】>【netlist viewers】里面选择State Machine Viewer,查看状态机转换图。
3.新建波形文件进行仿真。
保存时要和源程序存放在同一目录下。
设置好输入波形参数后,开始仿真。
在仿真后输入输出波形中观察逻辑关系是否正确。
4.将实验箱和PC合理连接起来。
打开EDA6000软件,设置好芯片类型为ACEX1K(EP1K30TC144-3),载入模式12。
5.根据EDA6000界面内管脚对应芯片的实际管脚在QUARTUSⅡ里面设定管脚号并检查无误。
6.将程序下载至FPGA内,并在EDA6000软件界面内进行验证测试。
程序代码module SCHK(clk,din,clr,d,err);input clk,din,clr; input [7:0]d;output [3:0]err;parameter s0=0,s1=1,s2=2,s3=3,s4=4,s5=5,s6=6,s7=7,s8=8;reg [8:0]cs,ns; reg [3:0]err;always @(posedge clk or posedge clr)begin if(clr) cs<=s0;else cs<=ns;case (cs)s0:if(din==d[0] ) ns<=s1;else ns<=s0;s1:if (din==d[1]) ns<=s2;else ns<=s0;s2:if(din==d[2] ) ns<=s3;else ns<=s0;s3:if(din==d[3] ) ns<=s4;else ns<=s0;s4:if(din==d[4] ) ns<=s5;else ns<=s0;s5:if(din==d[5] ) ns<=s6;else ns<=s0;s6:if(din==d[6] ) ns<=s7;else ns<=s0;s7:if(din==d[7] ) ns<=s8;else ns<=s0;s8:ns<=s8;default ns<=s0;endcaseendalways @(ns)begin if(ns==s8) err<=4'b1010;else err<=4'b1110;endendmodule编译:选择processing---start compilation命令,开始编译。
FPGA用状态机实现序列检测器的设计.
******大学实验报告课程名称:基于FPGA的现代数字系统设计实验名称:用状态机实现序列检测器的设计姓名:******学号: **********班级:电子******指导教师:*************信息工程学院一、实验原理1、实验内容:应用有限状态机设计思路,检测输入的串行数据是否是”01111000”。
拟用SW3---SW0,J4接口的E8,F8,C7,D7作为系统输入(系统由此需要设计一个8bits并行数据转串行的模块)一个7段数码显示译码器作为检测结果的输出显示,如果串行序列为”11100101”,显示a,否则显示b(系统需要设计一个7段数码显示译码器模块)为了显示可控,清晰,拟用V16,D18实现时钟,复位信号的输入。
本实验由顶层文件、串行检测、并行数据转串行、数码管显示四个模块组成2、要求:系统主要包括3个模块:1)并行数据转串行数据模块(xulie.v)2)串行检测模块(schk.v)3)数码管显示模块(decled7s .v)于需要用按键V16作为时钟输入,按键D18作为系统复位输入,所以需调用实验二中应用的消抖模块,对两个按键输入信号进行消抖。
•并行数据转串行数据模块(xulie.v),串行检测模块(schk.v)均采用有限状态机的描述方式。
•并行数据转串行数据模块(xulie.v)功能描述:可以异步复位,可以在时钟控制下,将并行输入数据din[7:0],按照din[7],din[6],din[5],din[4],din[3],din[2],din[1],din[0]的顺序输出至串行检测模块的输入端口din。
•根据设计要求,先画出并行数据转串行数据模块的状态转移图,并写出HDL代码。
•比较实验指导书提供并行数据转串行数据模块的参考代码,总结有限状态机的HDL设计方法。
•串行检测模块(schk.v)输入信号:DIN-----1bit的串行输入数据CLK-----同步输入时钟CLR ------异步清零信号,当CLR=1,系统输出置0,否则,系统正常工作输出信号:AB--------4bits数据,如果系统检测到“01111000”这8bit的输入,AB=4’b1010,否则,AB=4’b1011.•串行检测模块(schk.v)•画出串行检测模块(schk.v)的状态转移图,并自行设计HDL源代码。
实验六 用状态机实现序列检测器的设计
实验六用状态机实现序列检测器的设计
一、实验目的
1、熟悉状态机的作用及设计方法;
2、学习用状态机实现序列检测器的设计,并对其进行仿真和硬件测试。
二、实验原理
序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果与检测器预先设置的码相同,则输出为1,否则输出为0。
三、实验内容与步骤:
1、状态转换图
2、设计一个序列检测器,对1110010进行检测,编写实验程序。
3、对程序进行仿真测试并给出仿真波形。
4、仿真通过后进行引脚锁定,再进行一次全编译,并下载到实验箱上进行验证。
四、实验结果与总结:
根据以上的实验内容写出实验报告,包括实验目的、实验原理、实验内容和步骤。
给出实验程序和仿真波形图,并总结状态机的设计方法。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 采用状态机实现序列检测器
一、实验目的
1.掌握利用有限状态机实现一般时序逻辑分析的方法;
2.掌握利用Verilog编写可综合的有限状态机的标准模板。
二、仪器设备
计算机、Quartus II 9.0 开发软件。
三、实验内容与步骤:
1.实验内容
建立一个序列检测器设计文件,当检测到3个及3个以上1时输出为1。
2.实验步骤
1)新建工程文件夹;
2)启动Quartus II
3)选择File->New Project Wizard,建立新工程;
4)File->New->Verilog HDL File建立设计文件;
5)选择Processing->Start->Start Analysis&Synthesis进行电路综合;
6)选择Tools->Netlist Viewers->RTL Viewer,查看综合后得到的电路;
7)选择Tools->Netlist Viewers->State Machine Viewer,查看综合后得到的有限状态机;8)选择Processing->Start->Start Fitter进行电路适配;
9)选择Tools->Netlist Viewers->Technology Map Viewer,查看适配后得到的电路。
四、实验数据
写出程序代码,及状态转换图。
五、讨论
写出三段式有限状态机的建模方式。
六、其它
实验原理要求说明:
1.什么是有限状态机;
2.什么是Moore有限状态机与Mealy有限状态机;
3.说明用Verilog HDL设计有限状态机的一般步骤。
附:程序部分代码
module seq_111(clk,clr,x,z);
input clk,clr,x;
output reg z;
reg[1:0] state,next_state;
parameter S0=2'b00,S1=2'b01,S2=2'b10,S3=2'b11;
/*状态编码*/
always @(posedge clk or posedge clr) /*该过程定义当前状态*/ begin if(clr) state<=S0; //异步复位,s0为起始状态else state<=next_state;
end
always @(state or x) /*该过程定义次态*/
begin
case (________ )
S0:begin case (x)
1:next_state=S1;
0:next_state=S0;
endcase
end
S1:begin if(x) next_state=S2;
else next_state=S0; end
S2:begin
if(x) next_state=S3;
else next_state=S0; end
S3:begin if(x) next_state=S3;
else next_state=S0; end
default:
next_state=S0; /*default语句*/
endcase
end
always @(________) /*该过程产生输出逻辑*/
begin case(state)
S3: z=1'b1;
default:z=1'b0;
endcase
end
endmodule。