物理学(第五版)下册波动作业答案复习进程
大学物理第十四章波动光学课后习题答案及复习内容
第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
大学物理练习册习题及答案6--波动学基础
⼤学物理练习册习题及答案6--波动学基础习题及参考答案第五章波动学基础参考答案思考题5-1把⼀根⼗分长的绳⼦拉成⽔平,⽤⼿握其⼀端,维持拉⼒恒定,使绳端在垂直于绳⼦的⽅向上作简谐振动,则(A )振动频率越⾼,波长越长;(B )振动频率越低,波长越长;(C )振动频率越⾼,波速越⼤;(D )振动频率越低,波速越⼤。
5-2在下⾯⼏种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B )波源振动的速度与波速相同;(C )在波传播⽅向上的任⼆质点振动位相总是⽐波源的位相滞后;(D )在波传播⽅向上的任⼀质点的振动位相总是⽐波源的位相超前 5-3⼀平⾯简谐波沿ox 正⽅向传播,波动⽅程为010cos 2242t x y ππ??=-+ ?. (SI)该波在t =0.5s 时刻的波形图是()5-4图⽰为⼀沿x 轴正向传播的平⾯简谐波在t =0时刻的波形,若振动以余弦函数表⽰,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5⼀平⾯简谐波沿x 轴负⽅向传播。
已知x=b 处质点的振动⽅程为[]0cos y A t ωφ=+,波速为u ,则振动⽅程为()(A)()0cos y A t b x ωφ??=+++??(B)(){}0cos y A t b x ωφ??=-++??(C)(){}0cos y A t x b ωφ??=+-+?? (D)(){}0cos y A t b x u ωφ??=+-+?? 5-6⼀平⾯简谐波,波速u =5m?s -1,t =3s 时刻的波形曲线如图所⽰,则0x =处的振动⽅程为()(A )211210cos 22y t ππ-??=?- (SI) (B )()2210cos y t ππ-=?+ (SI) (C )211210cos 22y t ππ-??=?+ (SI) (D )23210cos 2y t ππ-?=-(SI) 5-7⼀平⾯简谐波沿x 轴正⽅向传播,t =0的波形曲线如图所⽰,则P 处质点的振动在t =0时刻的旋转⽮量图是()5-8当⼀平⾯简谐机械波在弹性媒质中传播时,下述各结论⼀哪个是正确的?(A )媒质质元的振动动能增⼤时,其弹性势能减少,总机械能守恒;(B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任⼀时刻都相同,但两者的数值不相等;(D )媒质质元在其平衡位置处弹性势能最⼤。
物理学(第五版)下册_马文蔚等改编(东南大学)__答案
第九章振动1、设一物体沿x 轴作谐振动的方程为0.10cos(2)4x t ππ=+,式中x ,t 的单位分别为m ,s .试求:(1)振幅,周期,频率和初相)cos(ϕω+=t A x ;(2)0.5t s =时,物体的位移、速度和加速度.解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率2/rad sωπ=,初相4πϕ=.由此,周期为12==ωπTs 频12Hz ωνπ==率为(2)1=t s 时,物体位移m m x21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ速度s m s m t dt dx v /44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ加速度2222/28/)45.02cos(4)42sin(4s m s m t dt dv a =+⨯-=+-==ππππππ2、有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8×10-2m 。
若使物体上、下振动,并规定向上为正方向。
(1)当t=0时,物体在平衡位置下方4.0×10-2m 处,由静止开始向上运动,求运动方程。
(2)当t=0时,物体在平衡位置并处以0.2m ·s -1的速度向下运动,求运动方程。
解:(1)根据题给的条件,20100.4-⨯-=x m, 00=v (题取向上为正方向,且平衡位置处为原点)且2100.4-⨯=A m ,其旋转矢量应为如图9-4-1图位置,所以π0=ϕ。
又mk=ω ,而 0kx mg=,所以x g m k = ,108.98.92⨯=-ω所以谐振动方程:)π10cos(100.42+⨯=-t x m(2)据题意,0=t 时,00=x ,6.00-=v m.s 1-,其旋转矢量应为如图9-4-2图位置则得222222102102.00)(-⨯=+=+=ωv x A m2π0=ϕ 9-4-1图ϕ∆xMM 'O9-5-1图(0=x 的投影有上、下两个矢量,但0v 为负值,故只能选上面的OM 矢量),所以谐振动方程为)2π10cos(100.42+⨯=-t xm 。
大学_物理学_第五版_马文蔚_课后习题答案第十章
第十d ìs h í章zh āng 波动b ōd òng1 . 一y ī横波h éngb ō沿y án 绳子sh éngz ǐ传播chu ánb ō时s h í的d e 波动b ōd òng 表达式b i ǎo d ás h ì为w éi)π4π10cos(05.0x t y -=,x ,y的d e 单位d ān w èi 为w éi 米m ǐ,t 的d e 单位d ān w èi为w éi 秒mi ǎo。
(1)求q i ú此波的振幅、波速、频率和波长。
(2)求绳子上各质点振动的最大速度和最大加速度。
(3)求2.0=x m 处的质点在1=t s 时的相位,它是原点处质点在哪一时刻的相位?解 (1)将题中绳波表达式0.05cos(10π4π)0.05cos 2π()0.20.5t x y t x =-=-与一般波动表达式)(π2cos λxT t A y -=比较,得振幅05.0=A m ,s T 2.0=频率5=νHz ,波长5.0=λm 。
波速5.255.0=⨯==λνum •s-1(2)绳上各质点振动的最大速度57.105.0514.32π2max =⨯⨯⨯===A A v νωm •s-1绳上各质点振动时的最大加速度3.4905.0514.34π422222max =⨯⨯⨯===A A a νωm •s-(3)将2.0=x m ,1=t s 代入)π4π10(x t -得到所求相位π2.92.0π41π10=⨯-⨯,2.0=x m 处质点的振动比原点处质点的振动在时间上落后08.05.22.0==u x s (5.2==λνu m •s -1),所以它是原点处质点在92.0)08.01(0=-=ts 时的相位。
2.设有一平面简谐波)3.001.0(π2cos 02.0xt y -= , x ,y以m 计, t 以s 计。
大学物理波动篇机械波复习题及答案课件
种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)
普通物理学第五版第16章波动答案
n
=
u
l
=
3×108 4×10-7
=7.5×1014 Hz
l =760nm
n
=
u
l
=
3×108 7.6×10-7
=395×1014 Hz
精品课件
结束 目录
16-3 一横波沿绳子传播时的波动表式为
y = 0.05 cos(10πt 4πx )
x, y 的单位为 m, t 的单位为s。
设波沿着x 轴正向传播,弹簧中某圈的最大
位移为3.0cm,振动频率为2.5Hz,弹簧中
相邻两疏部中心的距离为24cm。当 t =0时, 在x =0处质元的位移为零并向x 轴正向运动。
试写出该波的波动表式。
精品课件
结束 目录
解:
x =0
t =0 y=0
j=
π
2
y0= 0.03 cos(2π×2.5 t π2 )
= 4.62×10-7 J 精品课件
结束 目录
16-13 一平面简谐声波的频率为500Hz,
在空气中以速度u =340m/s传播, 到达人耳 时,振幅A =l0-4 cm,试求人耳接收到声波 的平均能量密度和声强 ( 空气的密度ρ=1.29
kg/m3)。
精品课件
结束 目录
解:
w = 12ρAω2 2
(1) A =0.05m n =5Hz l =0.5m
u = ln =0.5×5=2.5m/s
(2) um = Aω=0.05×10π=0.5πm/s am = Aω2 = 0.05×(10π)2 =0.5π2 m/s2
精品课件
结束 目录
(3) x =0.2m t =1s
大学物理(第五版)课后习题答案
面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。
与上一版相比本书增加了选择题更换了约25的习题。
所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。
此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。
物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。
只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。
有鉴于此重分析、简解答的模式成为编写本书的指导思想。
全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。
因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。
本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。
本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。
由于编者的水平有限敬请读者批评指正。
编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。
物理学答案(第五版)(可编辑)
物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。
大学物理物理学下册马文蔚第五版答案26页word文档
第九章振动1、设一物体沿x 轴作谐振动的方程为0.10cos(2)4x t ππ=+,式中x ,t 的单位分别为m ,s.试求:(1)振幅,周期,频率和初相)cos(ϕω+=t A x ;(2)0.5t s =时,物体的位移、速度和加速度.解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率2/rad sωπ=,初相4πϕ=.由此,周期为12==ωπTs 频12Hz ωνπ==率为(2)1=t s 时,物体位移m m x 21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ 速度s m s m t dt dx v/44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ 加速度2222/28/)45.02cos(4)42sin(4s m s m t dtdv a =+⨯-=+-==ππππππ2、有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8×10-2m 。
若使物体上、下振动,并规定向上为正方向。
(1)当t=0时,物体在平衡位置下方4.0×10-2m 处,由静止开始向上运动,求运动方程。
(2)当t=0时,物体在平衡位置并处以0.2m ·s -1的速度向下运动,求运动方程。
解:(1)根据题给的条件,20100.4-⨯-=x m, 00=v (题取向上为正方向,且平衡位置处为原点)且2100.4-⨯=A m ,其旋转矢量应为如图9-4-1图位置,所以π0=ϕ。
又mk=ω ,而 0kx mg=,所以x g m k = , 10108.98.92=⨯=-ωs 1- 所以谐振动方程:)π10cos(100.42+⨯=-t x m(2)据题意,0=t 时,00=x ,6.00-=v m.s 1-,其旋转矢量应为如图9-4-2图位置则得222222102102.00)(-⨯=+=+=ωv x A m(0=x 的投影有上、下两个OM矢量,但0v 为负值,故只能选上面的OM 矢量),所以谐振动xϕMxo ωM9-4-1图ϕ∆xMM 'O9-5-1图方程为)2π10cos(100.42+⨯=-t xm 。
大学物理下册第五版课后习题答案
大学物理下册第五版课后习题答案【篇一:大学物理学课后习题答案马文蔚第五版】但由于|dr|=ds,故 ,即||=.由此可见,应选(c).1-2 分析与解表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中速度大小可用公式计算,在直角坐标系中则可由公式求解.故选(d).1-3 分析与解表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有 (3) 式表达是正确的.故选(d).1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为 ,其中绳长l 随时间t 而变化.小船速度 ,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为 ,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(c).解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为 (t=0不合题意)则 ,所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时 ,,解将曲线分为ab、bc、cd 三个过程,它们对应的加速度值分别为 (匀加速直线运动), (匀速直线运动)(匀减速直线运动)根据上述结果即可作出质点的a-t 图[图(b)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为 ,图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得其中位移大小而径向增量1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为,当t =0 时, vox =-10 m?6?1s-1 , voy =15 m?6?1s-1 ,则初速度大小为(2) 加速度的分量式为,则加速度的大小为1-10 分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1 =y2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则1-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的o′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至oxy 坐标系中,即得oxy 坐标系中质点p 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(b)所示,在o′x′y′坐标系中,因 ,则质点p 的参数方程为 ,坐标变换后,在oxy 坐标系中有,则质点p 的位矢方程为(2) 5s时的速度和加速度分别为1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.当杆长等于影长时,即s =h,则即为下午3∶00 时.1-13 分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由和可得和.如a=a(t)或v =v(t),则可两边直接积分.如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有得 (1)由得 (2)将t=3s时,x=9 m,v=2 m?6?1s-1代入(1) (2)得v0=-1 m?6?1s-1,x0=0.75 m.于是可得质点运动方程为1-14 分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v的函数,因此,需将式dv =a(v)dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 (1)用分离变量法把式(1)改写为(2)将式(2)两边积分并考虑初始条件,有得石子速度由此可知当,t→∞时, 为一常量,通常称为极限速度或收尾速度.(2) 再由并考虑初始条件有得石子运动方程1-15 分析与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即和 ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解由加速度定义式,根据初始条件t0 =0时v0 =0,积分可得又由及初始条件t=0 时,r0=(10 m)i,积分可得由上述结果可得质点运动方程的分量式,即x =10+3t2 y =2t2消去参数t,可得运动的轨迹方程 3y =2x -20 m而所以, ,解 (1) 由参数方程 x =2.0t, y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s到t2 =2.0s时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为(4) t =1.0s质点的速度大小为则1-18 分析物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt, y =1/2 gt2飞机水平飞行速度v=100 m?6?1s-1 ,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为(1) (2)令y =0 求得时间t 后再代入式(1)得解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和vx =0,则【篇二:大学物理第五版上册标准答案】,即||≠. ?但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1-2 分析与解dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,dtdrds表示速度矢量;在自然坐标系中速度大小可用公式v?计算,在直dtdt2这是速度矢量在位矢方向上的一个分量;2?dx??dy?角坐标系中则可由公式v??????求解.故选(d).?dt??dt?1-3 分析与解dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,dt起改变速度大小的作用;drds在极坐标系中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;dtdt而dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d). dt1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为x?dxv??dtll2?h2,其中绳长l 随时间t 而变化.小船速度dldl,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为vdtl2?h2?v0l2?h2/l?v0方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(c). dx?0来确定其运动方向改变的dtdxd2x点速度和加速度可用和两式计算.dtdt2点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据dx?0 得知质点的换向时刻为 tp?2s (t=0不合题意) dtdxdt2t?4.0sdx??48m?s?1dtt?4.0s?2??36m.s1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中ab、cd 段斜率为定值,即匀变速直线运动;而线段bc 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.解将曲线分为ab、bc、cd 三个过程,它们对应的加速度值分别为 aab?vb?va?20m?s?2(匀加速直线运动),abc?0(匀速直线运动)tb?taacd?vd?vc??10m?s?2 (匀减速直线运动)td?tc根据上述结果即可作出质点的a-t 图[图(b)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为1x?x?v0t?t22用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作v?20m?s?1的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].ds?(dx)2?(dy)2,最后用s??ds积分求s.这是一个抛物线方程,轨迹如图(a)所示.解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,y?2?12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.2222x2?y2?x0?y0?2.47mq(dx)2?(dy)2,由轨道1xdx,代入ds,则2s内路程为 240s??ds??p4?x2dx?5.91m1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为 vx?dxdy??10?60t,vy??15?40t dtdtv0?v0x?v0y?18.0m?s?122v0yv0x32(2) 加速度的分量式为ax?dvdvx?60m?s?2 , ay?y??40m?s?2dtdtax?ay?72.1m?s?222ay21-10分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为 y1?v0t?121aty2?h?v0t?gt2 22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h?0.705s g?a(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt?0.716m 2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有 0?h?1(g?a)t2t?22h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为1h??v0t?at2 则d?h?h??0.716m21-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的o′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至oxy 坐标系中,即得oxy 坐标系中质点p 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.t,则质点p 的tx??rsiny???rcos坐标变换后,在oxy 坐标系中有x?x??rsint, y?y??y0??rcost?r tt则质点p 的位矢方程为r?rsind2ttttta?1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.v?当杆长等于影长时,即s =h,则【篇三:物理学教程第二版马文蔚下册课后答案完整版】放置,其周围空间各点电场强度e(设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(b)中的()题 9-1 图板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(b).9-2 下列说法正确的是( )(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(b).9-3 下列说法正确的是( )(a) 电场强度为零的点,电势也一定为零(b) 电场强度不为零的点,电势也一定不为零(c) 电势为零的点,电场强度也一定为零(d) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(d).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(a) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(b) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(c) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(d) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(b).虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.中子电量为10-21-21 e,e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为qmax??1?2??8?10?21e二个氧原子间的库仑力与万有引力之比为范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带21e 的上夸克和两个带?e的下夸克构成.若将夸克作为经典粒33求它们之间的相互作用力.解由于夸克可视为经典点电荷,由库仑定律f 与径向单位矢量er 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求p点的电场强度.分析依照电场叠加原理,p点的电场强度等于各点电荷单独存在时在p点激发电场强度的矢量和.由于电荷量为q的一对点电荷在p点激发的电场强度大小相等、方向相反而相互抵消,p点的电场强度就等于电荷量为2.0q的点电荷在该点单独激发的场强度.解根据上述分析ep?题 9-7 图9-8 若电荷q均匀地分布在长为l 的细棒上.求证:(1) 在棒的延长线,(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即l→∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq =qdx/l,它在点p 的电场强度为de?e??de接着针对具体问题来处理这个矢量积分.(1) 若点p 在棒的延长线上,带电棒上各电荷元在点p 的电场强度方向相同,e??ldei(2) 若点p 在棒的垂直平分线上,如图(a)所示,则电场强度e 沿x 轴方向的分量因对称性叠加为零,因此,点p 的电场强度就是e??deyj??lsin?dej证 (1) 延长线上一点p 的电场强度e电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点p的电场强度e 的方向沿y 轴,大小为1q/l此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r2/l2 <<1,带电长直细棒可视为无限长带电直线.电场强度的大小.。
大学物理第五版下 课后答案 ~
加速度的表达式,代入 t 值后,即可求得结果.
解 (1) 将 x = 0.10 cos(20πt + 0.25π)(m) 与 x = Acos(ωt + ϕ ) 比较后可得:振幅 A =
0.10m,角频率 ω = 20π s−1 ,初相ϕ =0.25 π ,则周期 T = 2π / ω = 0.1 s ,频率 v = 1/T Hz .
时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.
题 9-10 图
分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看
是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b)所示的坐标.设
系统平衡时物体所在位置为坐标原点 O,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴,
x − t 、 v − t 及 a − t 图如图所示.
9-7 若简谐运动方程为 x = 0.10 cos(20πt + 0.25π)(m) ,求:(1) 振幅、频率、角频率、
周期和初相;(2) t = 2s 时的位移、速度和加速度.
分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式
动的初相位为(
3 (A) π
2
)
1 (B) π
2
(C) π
(D) 0
分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差
是 π(即反相位).运动方程分别为 x1
=
Acosωt 和 x2 =
A cos(ωt + π).它们的振幅不同.对
大学物理第五版下册答案讲解
本学期全部作业题目和答案第九章 振动9-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4分析与解 简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π200=-+=p p t ω.(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.m Aa m A E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫ ⎝⎛== 则动能为 43P K /E E E E =-=9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=/ 解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位 ()()[]rad1.48arctan11cos cos sin sin arctan22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得 ,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得(),...2,1,0,π25.1π2π1223±±=+=++=k k k第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π-(E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T=6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确.10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( ) ()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-//分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-9 已知一波动方程为()()m 2-π10sin 05.0x t y =.(1) 求波长、频率、波速和周期;(2) 说明x =0 时方程的意义,并作图表示.题10-9 图分析 采用比较法.将题给的波动方程改写成波动方程的余弦函数形式,比较可得角频率ω、波速u ,从而求出波长、频率等.当x 确定时波动方程即为质点的运动方程y =y (t ).解 (1) 将题给的波动方程改写为()[]()m 2/ππx/5t π10cos 05.0--=y 与()[]0cos ϕω+-=u x t A y /比较后可得波速u =15.7 m·s-1 , 角频率ω=10πs-1 ,故有 m 14.3,s 2.0/1,Hz 0.5π2/======uT l v T ωv(2) 由分析知x =0 时,方程()()m 2/ππ10cos 05.0-=t y 表示位于坐标原点的质点的运动方程(如图).10-16 平面简谐波的波动方程为()()m 24cos 080πx πt y -=..求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差.解 (1) 将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为π2.82=(2) 从波动方程可知波长λ=1.0 m .这样,x 1 =0.80 m 与x 2 =0.30 m 两点间的相位差π/Δπ2Δ=⋅=λx π10-19 如图所示,两振动方向相同的平面简谐波波源分别位于A 、B 两点.设它们相位相同,且频率均为υ=30Hz ,波速u =0.50 m·s -1 .求在P 点处两列波的相位差.分析 在均匀介质中,两列波相遇时的相位差Δφ一般由两部分组成,即它们的初相差φA -φB 和由它们的波程差而引起的相位差2πΔr /λ.本题因φA =φB ,故它们的相位差只取决于波程差.解 在图中的直角三角形ABP 中cm 5130sin o .==AP BP两列波在点P 处的波程差为Δr =AP -BP ,则相位差为π8.1/π2/π2Δ===u r Δλr Δv题10-19图10-23 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题10-23 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1 在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos P 1t T A λλt TA y 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos P 3t TA t T A y 设反射波的波动方程为()/π2/π2cos 3+-=λx T t A y ,则反射波在x =-3λ/4处引起的振动为 ⎪⎭⎫ ⎝⎛++=π23π2cos P 3t T A y 与上式比较得π2-=,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt T A x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.10-24 一弦上的驻波方程式为()()()m π550cos π6.1cos 100.32t x y -⨯=(1) 若将此驻波看成是由传播方向相反,振幅及波速均相同的两列相干波叠加而成的,求它们的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t =3.0 ×10-3 s 时位于x =0.625 m 处质点的振动速度.分析 (1) 采用比较法.将本题所给的驻波方程,与驻波方程的一般形式相比较即可求得振幅、波速等.(2) 由波节位置的表达式可得相邻波节的距离.(3) 质点的振动速度可按速度定义v =d y /d t 求得.解 (1) 将已知驻波方程 ()()()m π550cos π6.1cos 100.32t x y -⨯=与驻波方程的一般形式()()t λx A y v π2cos /π2cos 2=作比较,可得两列波的振幅A =1.5 ×10-2 m ,波长λ=1.25 m ,频率υ=275 Hz ,则波速u =λυ=343.8m·s -1 .(2) 相邻波节间的距离为()[]()m625024124112k 1k .///==+-++=-=∆+λλλk k x x x (3) 在t =3.0 ×10-3 s 时,位于x =0.625 m 处质点的振动速度为 ()()1sm 2.46π550cos π6.1cos π5.16d /d -⋅-=-==t x t y v第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).题11-1 图11-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题11-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).11-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题11-3图分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )11-4 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( )(A ) 2 个 (B ) 3 个 (C ) 4 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹因此第k 级暗纹对应的单缝波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.由题意23sin /λθ=b ,即对应第1 级明纹,单缝分成3 个半波带.正确答案为(B ).11-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,02dsin =±=k λk θ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,答案为(D ).11-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光?分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5 条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ.此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么?),故mm 97822.=∆x 。
大学物理学(第五版)下册第十章 波动 补充例题
y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
6 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1)t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
r1
11 如图所示, x 0 处有一运动方程为 y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3 λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
13 一警车以25m· s-1的速度在静止的空 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m· s-1的客 车,则客车上人听到的警笛声波频率是多 少? (设空气中声速为u=330m· s-1 )
14 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km· h-1,乙的 速度为70.0km· h-1,如图所示.甲潜艇发出一 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km· h-1,试求:(1) 乙潜艇接收到的信号频率;(2)甲潜艇接 收到的从乙潜艇反射回来的信号频率.
) 甲 50.0km· h-1 )
)
)
)
)
)
乙 70.0km· h-1
y/m
u 0.08m s 1
O -0.04
《大学物理》下册(第五版)课后答案
第九章振动9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3两个同周期简谐运动曲线如图(a)所示,x1 的相位比x2 的相位()(A)落后π2(B)超前π2(C)落后π(D)超前π分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图9-4当质点以频率ν作简谐运动时,它的动能的变化频率为()(A)v(B)v (C)2v2(D)4v分析与解质点作简谐运动的动能表式为E k=1mω2 A 2sin2 (ωt2+ϕ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν 的两倍.因而正确答案为(C).9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为()3(A)π21(B)π2(C)π(D)0分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x1=A cosωt 和x2=Acos(ωt +π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1 =而正确答案为(D).Acosωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 mv = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为题9-8图∑F=P -F '=-ρgSx =-kx式中k =ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑F =m d2 x / d2t 可得货轮运动的微分方程为d2 x / d2t +ρgSx / m = 0令ω2 =ρgS / m ,可得其振动周期为T =2π / ω = 2π9-9设地球是一个半径为R 的均匀球体,密度ρ= 5.5 ⨯103 kg ⋅ m-3 .现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为m / ρgSm / k x xF = -Gm x m式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π = = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ1 2π(k + k )/ m 1 21 2F = mg si n θ - k 2 (x 2 + x 2' )= mg si n θ - k 1 (x 1 + x 1') 将式(1)代入式(2)得(2) F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12π k / m = 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2πk k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 mR d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t2+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10-2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即 t =0 时,x =x 0 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5 ,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3.k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭分析 求运动方程,也就是要确定振动的三个特征物理量 A 、ω 和 φ.其中振动的角频率是 由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k /m ,k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2 == 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2ppp p题9-14 图(2)图(a)中点P 的位置是质点从A/2 处运动到正向的端点处.对应的旋转矢量图如图(c)所示.当初相取ϕ0 =-π / 3 时,点P 的相位为ϕp =ϕ0 +ω(t - 0)= 0 (如果初相取成=5π / 3 ,则点P 相应的相位应表示为ϕp =ϕ0 +ω(t -0)=2π .(3)由旋转矢量图可得ω(t - 0)=π/ 3 ,则t =1.6 s .9-15作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到x =A/2 处;(3)由x =A/2 处到最大位移处.解采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O.(1))平衡位置x1到最大位移x3处,图中的旋转矢量从位置 1 转到位置 3 ,故∆ϕ1=π / 2 ,则所需时间∆t1=∆ϕ1 / ω=T / 4(2)从平衡位置x1到x2=A/2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2则所需时间=π / 6 ,∆t2=∆ϕ2 / ω=T / 12(3)从x2=A/2 运动到最大位移x3处,图中旋转矢量从位置 2 转到位置3,有∆ϕ0=π / 3 ,则所需时间∆t3=∆ϕ3 / ω=T / 6N 题 9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t 2(1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max2A ' = mg / mω2 = gT 2 / 4π2 = 6.2 ⨯10-2 m(3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω = 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s (2) a = A ω 2 = 4.5 ⨯10-2 m ⋅ s -2 (3) 从分析中已知 v 0 = - Aωsin= Aω / 2 ,即 sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为d θ/d t = -θmax ωsi n (ωt + ϕ ) = -θmax ω = -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.1 - cos2 (ωt + ϕ ) l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω = 2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx +(2 v / ω ) ' 20 0x + 20 0( v/ ω) 211A ==本题也可用机械能守恒定律求振幅A.9-24如图所示,劲度系数为k 的轻弹簧,系一质量为m1的物体,在水平面上作振幅为A的简谐运动.有一质量为m2的粘土,从高度h 自由下落,正好在(a)物体通过平衡位置时,(b)物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化?(2)振幅有何变化?题9-24 图分析谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式A =)求得两种情况下的振幅.解(1)由分析可知,在(a)、(b)两种情况中,粘土落下前后的周期均为T =2π / ω =2πT '=2π / ω'=2π物体粘上粘土后的周期T′比原周期T 大.(2)(a)设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A、v 和A′、v′.由动量守恒定律和机械能守恒定律可列出如下各式kA'2 / 2 =m v2 / 2 (1)kA'2 / 2 =(m+m)v'2 / 22(2)联立解上述三式,可得m1v=(m1+m2)v'A'=(3)即A′<A,表明增加粘土后,物体的振幅变小了.(b)物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v′=m1v/(m1+m2)=0,因而振幅不变,即m2gk1 +2khm1+m2m1/ k(m1+m2)/ km1/(m1+m2)AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1(2) 简谐运动的能量 E = 1 mA 2ω 2 = 7.90 ⨯10-5 J (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A = 合振动初相位= 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ ) 2 12ϕ3 = ϕ1 + 2k π = 2k π + 0.75π, k= 0,±1,±2,...要使 x 1 +x 3 的振幅最小,即两振动反相,则由()得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 = 2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同。
大学物理第五版下册
⼤学物理第五版下册第9、10章振动与波动习题⼀、选择题1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外⼒F 的关系分别由下列四式表⽰(式中a 、b 为正常数).其中不能使质点作简谐振动的⼒是[ ] (A) abx F = (B) abx F -=(C) b ax F +-= (D) a bx F /-=2. 如图4-1-5所⽰,⼀弹簧振⼦周期为T .现将弹簧截去⼀半,仍挂上原来的物体, 则新的弹簧振⼦周期为 [ ] (A) T (B) 2T (C) 1.4T (D) 0.7T3. 在简谐振动的运动⽅程中,振动相位)(?ω+t 的物理意义是 [ ] (A) 表征了简谐振⼦t 时刻所在的位置 (B) 表征了简谐振⼦t 时刻的振动状态 (C) 给出了简谐振⼦t 时刻加速度的⽅向(D) 给出了简谐振⼦t 时刻所受回复⼒的⽅向⾓, 然后放⼿任其作4. 如图4-1-9所⽰,把单摆从平衡位置拉开, 使摆线与竖直⽅向成微⼩的摆动.若以放⼿时刻为开始观察的时刻, ⽤余弦函数表⽰这⼀振动, 则其振动的初相位为[ ] (A) (B) 2π或π23(C) 0 (D) π5. 两质点在同⼀⽅向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅⼀半的地⽅时, 其运动⽅向都相反.则这两个振动的相位差为[ ] (A) π (B)π32 (C) π34 (D) π54 6. ⼀质点作简谐振动, 振动⽅程为)cos(ω+=t A x .则在2Tt =(T 为振动周期) 时, 质点的速度为 [ ] (A) ?ωsin A - (B) ?ωsin A (C) ?ωcos A - (D) ?ωcos A7. ⼀物体作简谐振动, 其振动⽅程为)4πcos(+=t A x ω.则在2Tt = (T 为周期)时, 质点的加速度为 (A) 222ωA - (B) 222ωA (C) 223ωA - (D) 223ωA 8. ⼀质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最⼤位移⼀半处的最短时间为 [ ] (A)6T (B) 8T (C) 12T(D) T 127 9. 某物体按余弦函数规律作简谐振动, 它的初相位为2π3, 则该物体振动的初始状态为[ ] (A) x 0 = 0 , v 0 0 (B) x 0 = 0 , v 0<0 (C) x 0 = 0 , v 0 = 0 (D) x 0 = A , v 0 = 010. 有⼀谐振⼦沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振⼦过2Ax =处向x 轴正⽅θ+图4-1-9图4-1-5向运动, 则其运动⽅程可表⽰为[ ] (A) )21cos(t A x ω= (B) )cos(2t A x ω= (C) )3π2sin(--=T t A x ω (D) )3π2cos(-=T t A x ω11. 当⼀质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ] (A) ν4 (B) ν2 (C) ν (D)2ν 12. 已知⼀简谐振动系统的振幅为A , 该简谐振动动能为其最⼤值⼀半的位置是 [ ] (A)(B)(C)(D)3. 简谐振动的振幅由哪些因素决定?[ ] (A) 谐振⼦所受的合外⼒ (B) 谐振⼦的初始加速度 (C) 谐振⼦的能量和⼒常数 (D) 谐振⼦的放置位置14. 如果两个同⽅向同频率简谐振动的振动⽅程分别为π)433cos(73.11+=t x (cm)和π)413cos(2+=t x (cm),则它们的合振动⽅程为 [ ] (A) π)433cos(73.0+=t x (cm) (B) π)413cos(73.0+=t x (cm)(C) π)1273cos(2+=t x (cm) (D) π)1253cos(2+=t x (cm) 15. 两个同⽅向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此⼆分振动的相位差为 [ ] (A)2π (B) 3π2 (C) 4π(D) π 16. 将⼀个弹簧振⼦分别拉离平衡位置1 cm 和2 cm 后, 由静⽌释放(弹簧形变在弹性范围内), 则它们作谐振动的[ ] (A) 周期相同 (B) 振幅相同(C) 最⼤速度相同 (D) 最⼤加速度相同17. 关于振动和波, 下⾯⼏句叙述中正确的是 [ ] (A) 有机械振动就⼀定有机械波(B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的18. 下列函数f ( x , t )可以⽤来表⽰弹性介质的⼀维波动, 其中a 和b 是正常数.则下列函数中, 表⽰沿x 轴负⽅向传播的⾏波是[ ] (A) )sin(),(bt ax A t x f += (B) )sin(),(bt ax A t x f -= (C) )cos()cos(),(bt ax A t x f = (D) )sin()sin(),(bt ax A t x f =19. 已知⼀列机械波的波速为u , 频率为ν, 沿着x 轴负⽅向传播.在x 轴的正坐标上有两个点x 1和x 2.如果x 1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B))(π221x x u -ν (C) π (D) )(π212x x u-ν20. 已知⼀平⾯余弦波的波动⽅程为)01.05.2π(cos 2x t y -=, 式中 x 、y 均以cm 计.则在同⼀波线上, 离x = 5 cm 最近、且与 x = 5 cm 处质元振动相位相反的点的坐标为 [ ] (A) 7.5 cm (B) 55 cm (C) 105 cm (D) 205 cm21. 若⼀平⾯简谐波的波动⽅程为)cos(cx bt A y -=, 式中A 、b 、c 为正值恒量.则 [ ] (A) 波速为c (B) 周期为b 1 (C) 波长为c π2 (4) ⾓频率为bπ2 22. ⼀平⾯简谐横波沿着Ox 轴传播.若在Ox 轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) ⽅向总是相同 (B) ⽅向有时相同有时相反 (C) ⽅向总是相反 (D) ⼤⼩总是不相等23. ⼀简谐波沿Ox 轴正⽅向传播,t =0时刻波形曲线如图4-1-56所⽰,其周期为2 s .则P 点处质点的振动速度v 与时间t 的关系曲线为 [ ]24. 平⾯简谐机械波在弹性介质中传播时, 在传播⽅向上某介质元在负的最⼤位移处, 则它的能量是 [ ] (A) 动能为零, 势能最⼤(B) 动能为零, 势能为零 (C) 动能最⼤, 势能最⼤ (D) 动能最⼤, 势能为零25. 有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波 [ ] (A) 是相⼲波 (B)相⼲后能形成驻波(C) 是⾮相⼲波 (D) 以上三种情况都有可能26. 已知两相⼲波源所发出的波的相位差为, 到达某相遇点P 的波程差为半波长的两倍, 则P 点的合成情况是[ ] (A) 始终加强 (B) 始终减弱(C) 时⽽加强, 时⽽减弱, 呈周期性变化(D) 时⽽加强, 时⽽减弱, 没有⼀定的规律27. 两列完全相同的余弦波左右相向⽽⾏, 叠加后形成驻波.下列叙述中, 不是驻波特性的是 [ ] (A) 叠加后, 有些质点始终静⽌不动 (B) 叠加后, 波形既不左⾏也不右⾏(C) 两静⽌⽽相邻的质点之间的各质点的相位相同(D) 振动质点的动能与势能之和不守恒28. 平⾯正弦波)π3π5sin(4y t x +=与下⾯哪⼀列波相叠加后能形成驻波? [ ] (A) )2325π(2sin 4x t y += (B) )2325π(2sin 4x t y -= (C) )2325π(2sin 4y t x += (D) )2 325π(2sin 4yt x -=⼆、填空题v xuy PA012Aωvs/t D 20ωv15.0()A 12st ()Aω-12vAω-05.0()C s/t /t 图4-1-561. ⼀质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T ,振幅为A .(1) 若t = 0 时质点过x = 0处且向x 轴正⽅向运动,则振动⽅程为x = .(2) 若t = 0时质点在2Ax =处且向x 轴负⽅向运动,则质点⽅程为x = . 2. ⼀质点沿x 轴作简谐振动, 其振动⽅程为: π)31π2cos(4-=t x (cm).从t =0时刻起, 直到质点到达2-=x cm 处、且向 x 轴正⽅向运动的最短时间间隔为.3. ⼀个作简谐振动的质点,其谐振动⽅程为π)23cos(π1052+?=-t x (SI).它从计时开始到第⼀次通过负最⼤位移所⽤的时间为.4. ⼀质点作简谐振动, 频率为2 Hz .如果开始时质点处于平衡位置, 并以-1s m π?的速率向x 轴的负⽅向运动,则该质点的振动⽅程为.5. ⼀谐振动系统周期为0.6 s, 振⼦质量为200 g .若振⼦经过平衡位置时速度为-1s cm 12?,则再经0.2 s 后该振⼦的动能为.6.劲度系数为100N ?m -1的轻质弹簧和质量为10g 的⼩球组成⼀弹簧振⼦.第⼀次将⼩球拉离平衡位置4cm, 由静⽌释放任其振动; 第⼆次将⼩球拉离平衡位置2cm 并给以 2 m.s -1的初速度任其振动.这两次振动的能量之⽐为.数为-1m N 40?的竖直7. 如图4-2-9所⽰,将⼀个质量为20 g 的硬币放在⼀个劲度系放置的弹簧上, 然后向下压硬币使弹簧压缩1.0 cm, 突然释放后, 这个硬币将飞离原来位置的⾼度为.8. 质量为0.01 kg 的质点作简谐振动, 振幅为0.1m, 最⼤动能为0.02 J .如果开始时质点处于负的最⼤位移处, 则质点的振动⽅程为.9 ⼀物体放在⽔平⽊板上,这⽊板以Hz 2=ν的频率沿⽔平直线作简谐运动,物体和⽔平⽊板之间的静摩擦系数50.0=s µ,物体在⽊板上不滑动的最⼤振幅max A = .10. 如果两个同⽅向同频率简谐振动的振动⽅程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为.11. 已知由两个同⽅向同频率的简谐振动合成的振动,其振动的振幅为20 cm, 与第⼀个简谐振动的相位差为6π.若第⼀个简谐振动的振幅为cm 3.17cm 310=, 则第⼆个简谐振动的振幅为 cm ,两个简谐振动的相位差为.12. 已知⼀平⾯简谐波的⽅程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与λ432=x 两点处介质质点的速度之⽐是.13. 已知⼀⼊射波的波动⽅程为)4π4πcos(5xt y +=(SI), 在坐标原点x = 0处发⽣反射, 反射端为⼀⾃由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为.图4-2-914. 有⼀哨⼦, 其空⽓柱两端是打开的, 基频为5000 Hz, 由此可知,此哨⼦的长度最接近 cm .15. 已知⼀平⾯简谐波沿x 轴正向传播,振动周期T = 0.5 s ,波长λ = 10 m , 振幅A = 0.1m .当t = 0时波源振动的位移恰好为正的最⼤值.若波源处为原点,则沿波传播⽅向距离波源为2λ处的振动⽅程为.当2T t =时,4λ=x 处质点的振动速度为. 16. 图4-2-20表⽰⼀平⾯简谐波在 t = 2 s 时刻的波形图,波的振幅为 0.2 m ,周期为4 s .则图中P 点处质点的振动⽅程为.17. ⼀简谐波沿BP ⽅向传播,它在B 点引起的振动⽅程为t A y π2cos 11=.另⼀简谐波沿CP ⽅向传播,它在C 点引起的振动⽅程为()ππ2cos 22+=t A y .P 点与B 点相距0.40 m ,与C 点相距0.50 m ,如图4-2-21所⽰.波速均为u =0.20 m ?s -1.则两波在P 的相位差为.18. 如图4-2-22所⽰,⼀平⾯简谐波沿Ox 轴正⽅向传播,波长为λ,若1P 点处质点的振动⽅程为)π2cos(1?ν+=t A y ,则2P 点处质点的振动⽅程为,与1P 点处质点振动状态相同的那些点的位置是.19. 两相⼲波源1S 和2S 的振动⽅程分别是t A y ωcos 1=和π)21(cos 2+=t A y ω.1S 距P 点3个波长,2S 距P 点421个波长.两波在P 点引起的两个振动的相位差的绝对值是.20. 如图4-2-26所⽰,1S 和2S 为同相位的两相⼲波源,相距为L ,P 点距1S 为r ;波源1S 在P 点引起的振动振幅为1A ,波源2S 在P 点引起的振动振幅为2A ,两波波长都是λ,则P 点的振幅A =.三、计算题1. ⼀质量为10 g 的物体在x ⽅向作简谐振动,振幅为24 cm ,周期为4 s .当t =0时该物体位于x = 24 cm 处.求:(1) 当t =0.5 s 时物体的位置及作⽤在物体上⼒的⼤⼩.(2) 物体从初位置到x =-12 cm 处所需的最短时间,此时物体的速度.系数k =241-m N ?,重2. 如图 4-3-5所⽰,有⼀⽔平弹簧振⼦,弹簧的劲度恒⼒F =10 N 向左作物的质量m =6 kg .最初重物静⽌在平衡位置上,⼀⽔平此时撤去⼒F .当重物⽤于物体,(不计摩擦),使之由⽔平位置向左运动了0.05 m ,运动到左⽅最远位置时开始计时,求该弹簧振⼦的运动⽅程.3. 如图4-3-12所⽰,⼀质点作简谐振动,在⼀个周期内相继通过距离为12cm 的两点A 、图4-3-5P(m)y A 传播⽅向(m)x图4-2-20 图4-2-21PB1r 2r ...CLr 1S P 2S图4-2-26x1P2P O 1L 2L图4-2-22B ,历时2s ,并且在A 、B 两点处具有相同的速度;再经过2 s 后,质点⼜从另⼀⽅向通过B 点.试求质点运动的周期和振幅.4. 有两个振动⽅向相同的简谐振动,其振动⽅程分别为(cm)2ππ2cos 3(cm)π)π2cos(421??+=+=t x t x (1) 求它们的合振动⽅程;(2) 另有⼀同⽅向的简谐振动(cm ))π2cos(233?+=t x ,问当3?为何值时,31x x +的振幅为最⼤值?当3?为何值时,31x x +的振幅为最⼩值?5. ⼀简谐波,振动周期21=T s ,波长λ =10 m ,振幅A = 0.1 m. 当t = 0时刻,波源振动的位移恰好为正⽅向的最⼤值.若坐标原点和波源重合,且波沿Ox 轴正⽅向传播,求:(1) 此波的表达式;(2) 41T t =时刻,41λ=x 处质点的位移; (3) 42T t =时刻,41λ=x 处质点振动速度.6 已知⼀平⾯简谐波的⽅程为 (SI))24(πcos x t A y +=(1) 求该波的波长λ,频率ν和波速度u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置; (3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t .7. 有⼀平⾯波沿x 轴负⽅向传播,s 1=t 时的波形如图4-3-23所⽰,波速1s m 2-?=u ,求该波的波函数. 8. ⼀弦上的驻波⽅程式为 I)(S )π550cos()π6.1cos (1000.32t x y -?=(1) 若将此驻波看作传播⽅向相反的两列波叠加⽽成,求两列波的振幅及波速;(2) 求相邻波节之间的距离;(3) 求s 1000.33-?=t 时,位于m 625.0=x 处质点的振动速度.9. ⼀沿弹性绳的简谐波的波动⽅程为??-=210π2cos x t A y (SI),波在m 11=x 的固定端反射.设传播中⽆能量损失,反射是完全的.试求:(1) 该简谐波的波长和波速; (2) 反射波的波动⽅程;(3) 驻波⽅程,并确定波节的位置.第11章光学练习题⼀、选择题11. 如图所⽰,⽤厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两⽚透明介质分别盖住杨⽒双缝实验中的上下两缝, 若⼊射光的波长为, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该介质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ17. 如图所⽰,在杨⽒双缝实验中, 若⽤⼀⽚厚度为d 1的透光云母⽚将双缝装置中的上⾯⼀个缝挡住; 再⽤⼀⽚厚度为d 2的透光云母⽚将下⾯⼀个缝挡住, 两云母⽚的折射率均为n , d 1>d 2, ⼲涉条纹的变化情况是[ ] (A) 条纹间距减⼩(B) 条纹间距增⼤ (C) 整个条纹向上移动(D) 整个条纹向下移动18. 如图所⽰,在杨⽒双缝实验中, 若⽤⼀⽚能透光的云母⽚将双缝装置中的上⾯⼀个缝盖住, ⼲涉条纹的变化情况是 [ ] (A) 条纹间距增⼤(B) 整个⼲涉条纹将向上移动 (C) 条纹间距减⼩(D) 整个⼲涉条纹将向下移动26. 如图(a)所⽰,⼀光学平板玻璃A 与待测⼯件B 之间形成空⽓劈尖,⽤波长λ=500nm(1nm = 10-9m)右边条纹的直线部分的切线相切.则⼯件的上表⾯缺陷是 [ ] (A) 不平处为凸起纹,最⼤⾼度为500 nm (B) 不平处为凸起纹,最⼤⾼度为250 nm (C) 不平处为凹槽,最⼤深度为500 nm (D) 不平处为凹槽,最⼤深度为250 nm 43.光波的衍射现象没有声波显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波(B) 光波传播速度⽐声波⼤(C) 光是有颜⾊的 (D) 光的波长⽐声波⼩得多53. 在图所⽰的单缝夫琅⽲费衍射实验中,将单缝K 沿垂直光的⼊射光(x 轴)⽅向稍微平移,则[ ] (A) 衍射条纹移动,条纹宽度不变 (B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中⼼不动,条纹变宽(D) 衍射条纹不动,条纹宽度不变 54. 在图所⽰的单缝夫琅⽲费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微⼩移动,则屏幕E 的中央衍射条纹将 [ ] (A) 变窄,同时上移(B) 变窄,同时下移 (C) 变窄,不移动 (D) 变宽,同时上移K S1L LxaE f K S1L L x a E f55. 在图所⽰的单缝夫琅⽲费衍射实验中,将单缝宽度a 稍稍变窄,同时使汇聚透镜L 2沿x 轴正⽅向作微⼩移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移(B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. ⼀衍射光栅由宽300 nm 、中⼼间距为900 nm 的缝构成, 当波长为600nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. ⽩光垂直照射到每厘⽶有5000条刻痕的光栅上, 若在衍射⾓? = 30°处能看到某⼀波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 483. 如图所⽰,起偏器A 与检偏器B 的偏振化⽅向相互垂直,偏振⽚C 位于A 、B 中间且与A 、B 平⾏,其偏振化⽅向与A 的偏振化⽅向成30°夹⾓. 当强度为I 的⾃然光垂直射向A ⽚时,最后的出射光强为 [ ] (A) 0(B)2I(C)8I(D) 以上答案都不对84. 如图所⽰,⼀束光强为I 0的⾃然光相继通过三块偏振⽚P 1、P 2、P 3后,其出射光的强度为80II =.已知P 1和P 3的偏振化⽅向相互垂直.若以⼊射光线为轴转动P 2, 问⾄少要转过多少⾓度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90° 86. 两偏振⽚堆叠在⼀起,⼀束⾃然光垂直⼊射其上时没有光线通过.当其中⼀偏振⽚慢慢转动时, 投射光强度发⽣的变化为 [ ] (A) 光强单调增加(B) 光强先增加,后⼜减⼩⾄零 (C) 光强先增加,后减⼩,再增加(D) 光强先增加,然后减⼩,再增加,再减⼩⾄零1. 在相同的时间内,⼀束波长为λ的单⾊光在空⽓和在玻璃中[ ] (A) 传播的路程相等,⾛过的光程相等 (B) 传播的路程相等,⾛过的光程不相等 (C) 传播的路程不相等,⾛过的光程相等 (D) 传播的路程不相等,⾛过的光程不相2. 真空中波长为的单⾊光, 在折射率为n 的均匀透明介质中从a 点沿某⼀路径传到b 点.若a 、b 两点的相位差为π3,则此路径的长度为[ ] (A)n23λ (B)nλ3 (C)λ23(D) λn 233. 相⼲光波的条件是振动频率相同、相位相同或相位差恒定以及[ ] (A) 传播⽅向相同 (B) 振幅相同 (C) 振动⽅向相同 (D) 位置相同I A BC I1P 3P 2P KS1L L x a E f4. 如图所⽰,有两个⼏何形状完全相同的劈形膜:⼀个由空⽓中的玻璃形成玻璃劈形膜; ⼀个由玻璃中的空⽓形成空劈形膜.当⽤相同的单⾊光分别垂直照射它们时, 从⼊射光⽅向观察到⼲涉条纹间距较⼤的是[ ] (A) 玻璃劈形膜(B) 空⽓劈形膜(C) 两劈形膜⼲涉条纹间距相同 (D) 已知条件不够, 难以判定5. ⽤波长可以连续改变的单⾊光垂直照射⼀劈形膜, 如果波长逐渐变⼩, ⼲涉条纹的变化情况为[ ] (A) 明纹间距逐渐减⼩, 并背离劈棱移动 (B) 明纹间距逐渐变⼩, 并向劈棱移动 (C) 明纹间距逐渐变⼤, 并向劈棱移动 (D) 明纹间距逐渐变⼤, 并背向劈棱移动6. ⽜顿环实验中, 透射光的⼲涉情况是[ ] (A) 中⼼暗斑, 条纹为内密外疏的同⼼圆环 (B) 中⼼暗斑, 条纹为内疏外密的同⼼圆环(C) 中⼼亮斑, 条纹为内密外疏的同⼼圆环 (D) 中⼼亮斑, 条纹为内疏外密的同⼼圆环7. 若⽤波长为的单⾊光照射迈克⽿孙⼲涉仪, 并在迈克⽿孙⼲涉仪的⼀条光路中放⼊⼀厚度为l 、折射率为n 的透明薄⽚, 则可观察到某处的⼲涉条纹移动的条数为[ ] (A)λln )1(4- (B)λln(C)λln )1(2- (D)λln )1(-8. 如图12-1-44所⽰,波长为的单⾊光垂直⼊射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平⾯上,若整个实验装置浸⼊折射率为n 的液体中, 则在屏上出现的中央明纹宽度为[ ] (A) na f λ(B) na f λ(C) naf λ2(D) anf λ29. 在⼀光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在⼊射光波长⼀定的情况下, 光栅的[ ] (A) 光栅常数越⼩ (B)衍射图样中亮纹亮度越⼩ (C) 衍射图样中亮纹间距越⼩ (D) 同级亮纹的衍射⾓越⼩ 10. ⼀束平⾏光垂直⼊射在⼀衍射光栅上,当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3, 6, 9, …等级次的主极⼤均不出现.[ ] (A) a b a 2=+ (B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+11. ⾃然光以ο60的⼊射⾓照射到不知其折射率的某⼀透明介质表⾯时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射⾓为ο30 (B) 折射光为部分线偏振光,折射⾓为ο30 (C) 折射光为线偏振光,折射⾓不能确定 (D) 折射光为部分线偏振光,折射⾓不能确定 12. 关于光的⼲涉,下⾯说法中唯⼀正确的是[ ](A) 在杨⽒双缝⼲涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ(B) 在劈形膜的等厚⼲涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λλfaEL(C) 当空⽓劈形膜的下表⾯往下平移2λ时, 劈形膜上下表⾯两束反射光的光程差将增加2λ (D) ⽜顿⼲涉圆环属于分波振⾯法⼲涉⼆、填空题1. 如图12-2-1所⽰,折射率为2n 、厚度为e 的透明介质薄膜的上⽅和下⽅的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若⽤波长为λ的单⾊平⾏光垂直⼊射到该薄膜上,则从薄膜上、下表⾯反射的光束(⽤①与②⽰意)的光程差是2. 真空中波长= 400 nm 的紫光在折射率为 n =1.5 的介质中从A 点传到B 点时, 光振动的相位改变了5, 该光从A 到B 所⾛的光程为.4. 如图所⽰,在双缝⼲涉实验中SS 1=SS 2,⽤波长为λ的光照射双缝S 1和S 2,通过空⽓后在屏幕E 上形成⼲涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ____________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________.5. 两条狭缝相距2 mm, 离屏300 cm, ⽤600 nm 的光照射时, ⼲涉条纹的相邻明纹间距为___________mm.6. 将⼀块很薄的云母⽚(n = 1.58)覆盖在杨⽒双缝实验中的⼀条缝上,这时屏幕上的中央明纹中⼼被原来的第7级明纹中⼼占据.如果⼊射光的波长λ = 550 nm, 则该云母⽚的厚度为___________. 9. 如图所⽰,在玻璃(折射率n 3 = 1.60)表⾯镀⼀层MgF 2(折射n 2=1.38)薄膜作为增透膜.为了使波长为500 nm 的光从空⽓(折射率n 1=1.00)正⼊射时尽可能减少反射,MgF 2膜的最⼩厚度应是.10. ⽤⽩光垂直照射厚度e = 350 nm 的薄膜,若膜的折射率n 2 = 1.4 , 薄膜上⾯的介质折射率为n 1,薄膜下⾯的介质折射率为n 3,且n 1 < n 2 < n 3.则透射光中可看到的加强光的波长为.14. 波长为λ的平⾏单⾊光垂直地照射到劈尖薄膜上,劈尖薄膜的折射率为n ,第⼆级明纹与第五条明纹所对应的薄膜厚度之差是 _____________. 15. 两玻璃⽚中夹满⽔(⽔的折射率34=n )形成⼀劈形膜, ⽤波长为λ的单⾊光垂直照射其上, 若要使某⼀条纹从明变为暗, 则需将上⾯⼀⽚玻璃向上平移.22. 若在迈克⽿孙⼲涉仪的可动反射镜M 移动0.620mm 的过程中,观察到⼲涉条纹移动了2300条,则所⽤光波的波长为.23. 在迈克⽿孙⼲涉仪的⼀条光路中,放⼊⼀折射率为n ,厚度为d 的透明介质薄⽚,放⼊后,这条光路的光程改变了.25. 如果单缝夫琅⽲费衍射的第⼀级暗纹发⽣在衍射⾓为ο30=?的⽅位上,所⽤的单⾊光波长为nm 500=λ,则单缝宽度为.26. ⼀束平⾏光束垂直照射宽度为1.0 mm 的单缝上,在缝后放⼀焦距为2.0 mm 的汇聚透镜.已知位于透镜焦平⾯处的中央明纹的宽度为2.0 mm ,则⼊射光波长约为.29 ⽤半波带法讨论单缝衍射暗条纹中⼼的条件时,与中央明条纹旁第三个暗条纹中⼼相对应的半波带的数⽬是__________.30. 平⾏单⾊光垂直⼊射于单缝上,观察夫琅⽲费衍射.若屏上P 点处为第三级暗纹,则单缝处波⾯相应地可划分为___________ 个半波带.若将单缝宽度缩⼩⼀半,P 点处将是_________级________纹.36. ⼀衍射光栅, 狭缝宽为a , 缝间不透明部分宽为b .当波长为600 nm 的光垂直照射时, 在某⼀衍射⾓ ? 处出现第⼆级主极⼤.若换为400 nm 的光垂直⼊射时, 则在上述衍射⾓ ? 处出现缺级, b ⾄少是a 的倍. 38. 已知衍射光栅主极⼤公式(a +b ) sin ?=±k λ,k =0, 1, 2, ….在k =2的⽅向上第⼀条缝与第六条缝对应点发出的两条衍射光的光程差?=_____________.40. 当⾃然光以58?⾓从空⽓射⼊到玻璃板表⾯上时, 若反射光为线偏振光, 则透射光的折射⾓为_________. 41. ⼀束⾃然光⼊射到空⽓和玻璃的分界⾯上, 当⼊射⾓为60?时反射光为完全偏振光, 则此玻璃的折射率为_________.44. ⼀束由⾃然光和线偏振光组成的混合光,让它垂直通过⼀偏振⽚.若以此⼊射光束轴旋转偏振⽚,测得透射光强度的最⼤值是最⼩值的7倍;那么⼊射光束⾃然光和线偏振光的光强⽐为_____________ 三、计算题8. ⽤⽩光垂直照射置于空⽓中的厚度为0.50 µm 的玻璃⽚.玻璃⽚的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最⼤限度的增强?13. 图12-3-13所⽰为⼀⽜顿环装置,设平凸透镜中⼼恰好与平玻璃接触,透镜凸表⾯的曲率半径是R =400 cm .⽤单⾊平⾏光垂直⼊射,观察反射光形成的⽜顿环,测得第5个明环的半径是0.30 cm .(1) 求⼊射光的波长;(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数⽬.18. 在某个单缝衍射实验中,光源发出的光含有两种波长1λ和2λ,并垂直⼊射于单缝上.假如1λ的第⼀级衍射极⼩与2λ的第⼆级衍射极⼩相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极⼩相重合?19. 某种单⾊平⾏光垂直地⼊射在⼀单缝上, 单缝的宽度a = 0.15 mm .缝后放⼀个焦距f = 400 mm 的凸透镜,在透镜的焦平⾯上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求⼊射光的波长.30. ⼀衍射光栅,每厘⽶有200条透光缝,每条透光缝宽为a = 2?10-3 cm ,在光栅后⽅⼀焦距f = 1 m 的凸透镜.现以nm 600=λ的单⾊平⾏光垂直照射光柵,求:(1) 透光缝a 的单缝衍射中央明区条纹宽度; (2) 在透光缝a 的单缝衍射中央明纹区内主极⼤条数.31. 波长λ = 600nm 的单⾊光垂直⼊射到⼀光柵上,测得第⼆级主级⼤的衍射⾓为30o ,且第三级是缺级. (1) 光栅常量(a +b )等于多少?(2) 透光缝可能的最⼩宽度a 等于多少?(3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极⼤的级次.36 两个偏振⽚叠在⼀起,欲使⼀束垂直⼊射的线偏振光经过这两个偏振⽚之后振动⽅向转过了90°,且使出射光强尽可能⼤,那么⼊射光振动⽅向和两偏振⽚的偏振化⽅向之间的夹⾓应如何选择?这种情况下的最⼤出射光强与⼊射光强的⽐值是多少?第13章热⼒学基础⼀、选择题2. 对于物体的热⼒学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程⽆关 (B) 摩尔热容量的⼤⼩与所经历的过程⽆关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越⾼(D) 以上说法都不对4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的⼀种量度(B) 功是描写系统与外界相互作⽤的物理量(C) ⽓体从⼀个状态到另⼀个状态, 经历的过程不同, 则对外做的功也不⼀样 (D) 系统具有的能量等于系统对外做的功5. 理想⽓体物态⽅程在不同的过程中有不同的微分表达式, 式T R MmV p d d 表⽰ [ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程 9. 热⼒学第⼀定律表明[ ] (A) 系统对外做的功不可能⼤于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所做的功不等于系统传给外界的热量 (D) 热机的效率不可能等于110. 对于微⼩变化的过程, 热⼒学第⼀定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等体膨胀 (C) 等压膨胀 (D) 绝热膨胀13. ⼀定量的理想⽓体从状态),(V p 出发, 到达另⼀状态)2,(V p .⼀次是等温压缩到2V, 外界做功A ;另⼀次为绝热压缩到2V, 外界做功W .⽐较这两个功值的⼤⼩是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能⽐较19. 同⼀种⽓体的摩尔定压热容⼤于摩尔定容热容, 其原因是 [ ] (A) 膨胀系数不同 (B) 温度不同(C) ⽓体膨胀需要做功 (D) 分⼦引⼒不同28. ⼀定量的理想⽓体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, ⽓体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同30. ⼀定量的理想⽓体, 从同⼀状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩⽐等温压缩的终态压强[ ] (A) 较⾼ (B) 较低 (C) 相等 (D) ⽆法⽐较31. ⼀定质量的理想⽓体从某⼀状态经过压缩后, 体积减⼩为原来的⼀半, 这个过程可以是绝热、等温或等压过程.如果要使外界所做的机械功为最⼤, 这个过程应是[ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可33. ⼀定质量的理想⽓体经历了下列哪⼀个变化过程后, 它的内能是增⼤的? [ ] (A) 等温压缩 (B) 等体降压 (C) 等压压缩 (D) 等压膨胀34. ⼀定量的理想⽓体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图9-1-34所⽰.在这个循环中, ⽓体必然[ ] (A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界做功 35. 提⾼实际热机的效率, 下⾯⼏种设想中不可⾏的是 [ ] (A) 采⽤摩尔热容量较⼤的⽓体作⼯作物质 (B) 提⾼⾼温热源的温度 (C) 使循环尽量接近卡诺循环(D) ⼒求减少热损失、摩擦等不可逆因素36. 在下⾯节约与开拓能源的⼏个设想中, 理论上可⾏的是[ ] (A) 在现有循环热机中进⾏技术改进, 使热机的循环效率达100% (B) 利⽤海⾯与海⾯下的海⽔温差进⾏热机循环做功 (C) 从⼀个热源吸热, 不断作等温膨胀, 对外做功 (D) 从⼀个热源吸热, 不断作绝热膨胀, 对外做功38. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成 (B) 完成⼀次卡诺循环必须有⾼温和低温两个热源 (C) 卡诺循环的效率只与⾼温和低温热源的温度有关(D) 完成⼀次卡诺循环系统对外界做的净功⼀定⼤于0 43. 根据热⼒学第⼆定律判断, 下列哪种说法是正确的[ ] (A) 热量能从⾼温物体传到低温物体, 但不能从低温物体传到⾼温物体 (B) 功可以全部变为热, 但热不能全部变为功 (C) ⽓体能够⾃由膨胀, 但不能⾃由压缩(D) 有规则运动的能量能够变为⽆规则运动的能量, 但⽆规则运动的能量不能变为有规则运动的能量45. “理想⽓体和单⼀热源接触作等温膨胀时, 吸收的热量全部⽤来对外做功.”对此说法, 有以下⼏种评论, 哪⼀种是正确的? [ ] (A) 不违反热⼒学第⼀定律, 但违反热⼒学第⼆定律 (B) 不违反热⼒学第⼆定律, 但违反热⼒学第⼀定律 (C) 不违反热⼒学第⼀定律, 也不违反热⼒学第⼆定律。
物理学(第五版)下册波动作业答案
物理学(第五版)下册波动作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN波动作业答案1.{一平面简谐波沿Ox轴正方向传播,t= 0时刻的波形图如图所示,则P处介质质点的振动方程是()}A.(SI)B.(SI)C.(SI)D.(SI)答案:A2.如图所示,S1和S2为两相干波源,它们的振动方向均垂直于图面,发出波长为的简谐波,P点是两列波相遇区域中的一点,已知,,两列波在P点发生相消干涉.若S1的振动方程为,则S2的振动方程为()}A.B.C.D.答案:D3.两相干波源S1和S2相距,(为波长),S1的相位比S2的相位超前,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的相位差是()}A.0B.C.D.答案:C4.在弦线上有一简谐波,其表达式为(SI)为了在此弦线上形成驻波,并且在x= 0处为一波腹,此弦线上还应有一简谐波,其表达式为()}A.(SI)B.(SI)C.(SI)D.(SI)答案:D5.沿着相反方向传播的两列相干波,其表达式为和.在叠加后形成的驻波中,各处简谐振动的振幅是()}A.AB.2AC.D.答案:D6.{一平面余弦波在t= 0时刻的波形曲线如图所示,则O点的振动初相为()}A.0B.C.D.(或)答案:D7.{如图所示,有一平面简谐波沿x轴负方向传播,坐标原点O的振动规律为),则B点的振动方程为()}A.B.C.D.答案:D8.{如图,一平面简谐波以波速u沿x轴正方向传播,O为坐标原点.已知P点的振动方程为,则()}A.O点的振动方程为B.波的表达式为C.波的表达式为D.C点的振动方程为答案:C9.一声波在空气中的波长是0.25 m,传播速度是340 m/s,当它进入另一介质时,波长变成了0.37 m,它在该介质中传播速度为______________.答案:503 m/s10.一平面简谐波的表达式为(SI),其角频率=_____________,波速u=_______________,波长= _________________.答案:125 rad/s|338 m/s | 17.0 m11.图为t=T/ 4 时一平面简谐波的波形曲线,则其波的表达式为________________________.答案:(SI)12.一平面简谐波沿Ox轴正方向传播,波长为.若如图P1点处质点的振动方程为,则P2点处质点的振动方程为_________________________________;与P1点处质点振动状态相同的那些点的位置是___________________________.答案:|(k=±1,±2,…)13.如图所示,一平面简谐波沿Ox轴负方向传播,波长为,若P处质点的振动方程是,则该波的表达式是_______________________________;P处质点____________________________时刻的振动状态与O处质点t1时刻的振动状态相同.答案:|,k= 0,±1,±2,…[只写也可以]14.如图所示,波源S1和S2发出的波在P点相遇,P点距波源S1和S2的距离分别为和,为两列波在介质中的波长,若P点的合振幅总是极大值,则两波在P点的振动频率___________,波源S1的相位比S2的相位领先_______.答案:相同.|.15.在固定端x= 0处反射的反射波表达式是.设反射波无能量损失,那么入射波的表达式是y1= ________________________;形成的驻波的表达式是y= ________________________________________.答案:|16.如果入射波的表达式是,在x= 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y2= _______________________________;在x=处质点合振动的振幅等于______________________.答案:|A17.如图,一平面波在介质中以波速u=20 m/s沿x轴负方向传播,已知A点的振动方程为(SI).(1) 以A点为坐标原点写出波的表达式;(2) 以距A点5 m处的B点为坐标原点,写出波的表达式.答案: 解:(1)坐标为x点的振动相位为2分波的表达式为(SI) 2分(2)以B点为坐标原点,则坐标为x点的振动相位为(SI) 2分波的表达式为(SI) 2分18.如图所示,两相干波源在x轴上的位置为S1和S2,其间距离为d=30 m,S1位于坐标原点O.设波只沿x轴正负方向传播,单独传播时强度保持不变.x1=9 m和x2=12 m处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.答案:{解:设S1和S2的振动相位分别为和.在x1点两波引起的振动相位差即① 2分在x2点两波引起的振动相位差即② 3分②-①得m 2分由①2分当K=-2、-3时相位差最小1分19.设入射波的表达式为,在x= 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1)反射波的表达式; (2)合成的驻波的表达式;(3)波腹和波节的位置.答案:{解:(1)反射点是固定端,所以反射有相位突变,且反射波振幅为A,因此反射波的表达式为3分(2)驻波的表达式是3分(3)波腹位置:, 2分,n= 1, 2, 3, 4,…波节位置:2分,n= 1, 2, 3, 4,…20.在弹性媒质中有一沿x轴正向传播的平面波,其表达式为(SI).若在x=5.00 m处有一媒质分界面,且在分界面处反射波相位突变,设反射波的强度不变,试写出反射波的表达式.A. (%)试题编号:E17549 25608答案:{解:反射波在x点引起的振动相位为3分反射波表达式为(SI) 2分或(SI)。
物理学(第五版)下册答案
2011大学物理下答案第9章 简谐振动一、简答题1. 怎样判定一个振动是否做简谐振动?写出简谐振动的运动学方程。
答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数时,该质点的运动便是简谐振动。
或:质点的位移x 与加速度a 的关系为正比反向关系时,该质点的运动便是简谐振动。
运动学方程为()ϕω+=t A x c o s 。
2. 从动力学的角度说明什么是简谐振动,并写出其动力学方程。
答案:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足x dt x d 222ω-=3.简谐运动的三要素是什么?各由什么因素决定。
答案: 振幅、周期、初相位。
其中振幅和初相位由初始条件决定,周期由振动系统本身的性质决定二、选择题 1C 、2A 、3B三、 填空题1、 平衡 ;最大位置 ;A 22±。
2、 6 ; 2π ;2π-。
3、 π43;1.5s ;3s 。
四、计算题解答:122()m m u m v +=图9-1221211()222cos())2kA m m u Ax A tωπϕπωϕ=+⇒====+=2、解:(1)质点在a、b、c、d处的振动方向如图所示(2)由旋转矢量法可知,a点对应的相位41π=ϕ,d点对应的相位为π=ϕ232t∆ω=ϕ∆π=π-π=∆ϕ∆=ω∴12534123ts1t=时,41π=ϕ4t1π=ϕ+ω=ϕ∴61254π-=π-π=ϕ∴则该质点的振动方程为))(6125cos(mtAxππ-=3解答:(1)21mmk+=ωT=kmm2122+=πωπ(2)动量守恒m2V=(m1+m2)V0)(2120mmVmV+=kgmx/2=A=2220ωVx+=22122)(1gmmkVkgm++4、答案:根据题意图9-3 mA02.0)1(=,2/πω=πων2=∴,Hz41=学海无涯苦作舟!(2)势能 总能由题意(3)从平衡位置运动到的最短时间为 T / 8。
物理学(第五版)下册答案
物理学(第五版)下册答案量E=1/2kA^2,动能K=E-2p=1/2kA^2-kA^2=-1/2kA^2,因为动能为负数,所以振动不可能通过平衡位置。
___:1.判断一个振动是否为简谐振动的方法是,观察质点离开平衡位置的位移x随时间t变化的规律,如果遵从余弦函数或正弦函数,则该质点的运动为简谐振动。
简谐振动的运动学方程为x=Acos(ωt+φ)。
2.从动力学的角度来看,简谐振动是指物体在线性回复力作用下在平衡位置做周期性往复运动。
其动力学方程为d^2x/dt^2=-ω^2x。
3.简谐运动的三要素是振幅、周期和初相位。
其中振幅和初相位由初始条件决定,周期由振动系统本身的性质决定。
选择题:1.C。
2.A。
3.B填空题:1.平衡,最大位置,±π/2;2.6,2;-π/2;3.π,1.5s,3s。
计算题:1.解答:(m1+m2)u=m2v,kA=(m1+m2)u^2,A=sqrt(2(m1+m2)k/u),ω=sqrt(k/(m1+m2)),φ=π/2.2.解答:(1) 振动方向如图所示,(2) 相位差Δφ=φd-φa=3π/2-π/4=5π/4,Δt=1s,ω=Δφ/Δt=5π/4,所以振动方程为x=Acos(5π/4t-π/6)。
3.解答:(1) ω=sqrt(k/m),T=2π/ω=2πsqrt(m/k),(2) 动量守恒m1v1+m2v2=(m1+m2)v,解得v=(m1v1+m2v2)/(m1+m2),由能量守恒E=1/2kA^2=1/2(m1+m2)v^2,解得A=sqrt(2E/k),代入式子得x=sqrt(2E/k)cos(sqrt(k/(m1+m2))t)。
4.答案:(1) A=0.02m,ω=π/2,所以ν=ω/2π=1/4 Hz,T=1/ν=4s,φ=-π/3;(2) 势能Ep=kx^2/2,总能量E=Ep+Ek=1/2kA^2,动能Ek=E-Ep=-1/2kA^2,因为Ek为负数,所以振动不可能通过平衡位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.如图所示,一平面简谐波沿Ox轴负方向传播,波长为 ,若P处质点的振动方程是 ,则该波的表达式是_______________________________;P处质点____________________________时刻的振动状态与O处质点t1时刻的振动状态相同.
答案:125 rad/s|338 m/s | 17.0 m
11.图为t=T/ 4时一平面简谐波的波形曲线,则其波的表达式为________________________.
答案: (SI)
12.一平面简谐波沿Ox轴正方向传播,波长为 .若如图P1点处质点的振动方程为 ,则P2点处质点的振动方程为_________________________________;与P1点处质点振动状态相同的那些点的位置是___________________________.
谐波,其表达式为()
}
A. (SI)
B. (SI)
C. (SI)
D. (SI)
答案:D
5.沿着相反方向传播的两列相干波,其表达式为
和 .
在叠加后形成的驻波中,各处简谐振动的振.
D.
答案:D
6.{
一平面余弦波在t= 0时刻的波形曲线如图所示,则O点的振动初相 为()
}
A.0
B.
15.在固定端x= 0处反射的反射波表达式是 .设反射波无能量损失,那么入射波的表达式是y1= ________________________;形成的驻波的表达式是y= ________________________________________.
答案: |
16.如果入射波的表达式是 ,在x= 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y2= _______________________________;在x= 处质点合振动的振幅等于______________________.
答案: |A
17.如图,一平面波在介质中以波速u=20 m/s沿x轴负方向传播,已知A点的振动方程为 (SI).
(1)以A点为坐标原点写出波的表达式;
(2)以距A点5 m处的B点为坐标原点,写出波的表达式.
答案:解:(1)坐标为x点的振动相位为
2分
波的表达式为 (SI) 2分
(2)以B点为坐标原点,则坐标为x点的振动相位为
}
A.
B.
C.
D.
答案:D
3.两相干波源S1和S2相距 ,( 为波长),S1的相位比S2的相位超前 ,在S1,S2的连线上,S1外侧各点(例如P点)两波引起的两谐振动的相位差是()
}
A.0
B.
C.
D.
答案:C
4.在弦线上有一简谐波,其表达式为
(SI)
为了在此弦线上形成驻波,并且在x= 0处为一波腹,此弦线上还应有一简
答案:C
9.一声波在空气中的波长是0.25 m,传播速度是340 m/s,当它进入另一介质时,波长变成了0.37 m,它在该介质中传播速度为______________.
答案:503 m/s
10.一平面简谐波的表达式为 (SI),其角频率 =_____________,波速u=_______________,波长 = _________________.
(SI) 2分
波的表达式为 (SI) 2分
18.如图所示,两相干波源在x轴上的位置为S1和S2,其间距离为d=30 m,S1位于坐标原点O.设波只沿x轴正负方向传播,单独传播时强度保持不变.x1=9 m和x2=12 m处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.
答案:{
解:设S1和S2的振动相位分别为 和 .在x1点两波引起的振动相位差
即 ① 2分
在x2点两波引起的振动相位差
即 ② 3分
②-①得
m 2分
由① 2分
当K=-2、-3时相位差最小 1分
19.设入射波的表达式为 ,在x= 0处发生反射,反射点为一固定端.设反射时无能量损失,求
(1)反射波的表达式;(2)合成的驻波的表达式;
(3)波腹和波节的位置.
答案:{
解:(1)反射点是固定端,所以反射有相位突变 ,且反射波振幅为A,因此反
射波的表达式为 3分
(2)驻波的表达式是
3分
(3)波腹位置: , 2分
,n= 1, 2, 3, 4,…
波节位置: 2分
,n= 1, 2, 3, 4,…
20.在弹性媒质中有一沿x轴正向传播的平面波,其表达式为 (SI).若在x=5.00 m处有一媒质分界面,且在分界面处反射波相位突变 ,设反射波的强度不变,试写出反射波的表达式.
波动作业答案
1.{
一平面简谐波沿Ox轴正方向传播,t= 0时刻的波形图如图所示,则P处介质质点的振动方程是()
}
A. (SI)
B. (SI)
C. (SI)
D. (SI)
答案:A
2.如图所示,S1和S2为两相干波源,它们的振动方向均垂直于图面,发出波长为 的简谐波,P点是两列波相遇区域中的一点,已知 , ,两列波在P点发生相消干涉.若S1的振动方程为 ,则S2的振动方程为()
C.
D. (或 )
答案:D
7.{
如图所示,有一平面简谐波沿x轴负方向传播,坐标原点O的振动规律为 ),则B点的振动方程为()
}
A.
B.
C.
D.
答案:D
8.{
如图,一平面简谐波以波速u沿x轴正方向传播,O为坐标原点.已知P点的振动方程为 ,则()
}
A.O点的振动方程为
B.波的表达式为
C.波的表达式为
D.C点的振动方程为
答案: | ,k= 0,±1,±2,…[只写 也可以]
14.如图所示,波源S1和S2发出的波在P点相遇,P点距波源S1和S2的距离分别为 和 , 为两列波在介质中的波长,若P点的合振幅总是极大值,则两波在P点的振动频率___________,波源S1的相位比S2的相位领先_______.
答案:相同.| .
A. (%)
试题编号:E17549 25608
答案:{
解:反射波在x点引起的振动相位为
3分
反射波表达式为
(SI) 2分
或 (SI)