工业机器人电控ppt讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业机器人控制系统构成方案比较
基于PLC的运动控制
基于PC+运动控制卡的运动控制
纯PC机控制
基于PLC的运动控制
PLC进行运动控制有两种: 1、利用PLC的某些输出端口使用脉冲输出指令来产生脉冲
驱动电机,同时使用通用I/O或者计数部件来实现电机 的闭环位置控制;
2、使用PLC外部扩展的位置模块来进行电机的闭环位置控 制,从而可以大大提高运动控制的速度和精度。
基于PC+运动控制卡的机器人控制
单纯的PC控制
完全采用PC机的全软件形式的机器人系统。在高 性能工业PC和嵌入式PC(配备专为工业应用而开发的主 板)的硬件平台上,可通过软件程序实现PLC和运动控 制等功能,实现机器人需要的逻辑控制和运动控制。当 然,PC机同时具有高性能的任务管理功能和人机交互功 能。在通过高速的工业总线进行PC与驱动器的实时通讯 ,显著的提高机器人的生产效率和灵活性。不过,在提 供灵活的应用平台的同时,也大大提高了开发难度和延 长了开发周期。由于其结构的先进性,这种结构代表了
传感器的分类
称重传感器:电阻应变式称重传感器,用于检测工件重量。 机械开关:普通接近开关,用于检测运动部分是否到位。 光电开关:包括对射式、反射板式、漫反射式红外线光电开关, 用于检测工件位置。 磁性开关:用于检测运动部分是否到位。 材质传感器:用于检测工件材质。 位移传感器:滑动电阻式位移传感器,用于检测孔深。 颜色传感器:包括颜色传感器和色标传感器,用于检测工件颜色。 色标传感器形状传感器 光纤传感器:光在调制区内,外界信号与光的相互作用,可能引起 光的强度,波长,频率,相位,偏振态等光学性质的变 化,从而形成不同的调制---抗干扰能力
• • • • • • • • •
触觉传感器 红外传感器 力传感器 超声传感器 激光传感器 电子罗盘—倾角 GPS 条码扫描器 电子标签
常用可编程控制器PLC
欧姆龙CP1H:拥有4路高速脉冲输出和4轴高速计数功能,运算速度快, 自带模拟量输入输出接口,非常适合码垛机和桌面柔性加 工系统,本体价格低廉,但部分扩展模块(如Profibus总 线模块和以太网模块)价格较高。 三菱FX3U:拥有3路高速脉冲输出,运算速度快,适合桌面柔性加工系统 和自动化输送线单元,本体价格较高。模拟量需要扩展。 西门子S200系列:拥有2路低速脉冲输出,适合自动化输送线单元,本 体价格低廉,但部分扩展模块价格较高。模拟量需要扩展。 西门子S200XP系列:拥有2路高速脉冲输出,自带模拟量输入输出接口, 适合码垛机和桌面柔性加工系统(需增加定位模块),本体 价格低廉,但部分扩展模块价格较高。
未来机器人控制结构的发展方向。
机器人的关键部件简介
编码器
驱动器
传感器
编码器
闭环控制是提高机器人控制系统运动精度的重要手段, 而位置检测传感器则是构成闭环控制必不可少的重要元件。 位置检测传感器对控制对象的实际位置进行检测,并将位 置信息传送给运动控制器,由运动控制器根据控制对象的 实际值调整输出信号。常用的位置传感器有电位器、编码 器、光栅尺、差动变压器、旋转变压器等。 以输出信号来分,有增量型编码器和绝对型编码器。 工业机器人电机都是应用的绝对编码器。
VD1080=VD1033+VD1053+1。
SM0.1:首次扫描周期时该位打开,用途是调用初始化子程序。
2、电机控制子程序和初始化
PTO0_CTRL在程序中只使用一 次,并且在每次扫描时得到执行,所 以使用SM0.0作为EN的输入。
EN:使能端,用SM0.0连接,保持常通; I_STOP:有效时电机立即停止; D_STOP:有效时电机减速停止; Done:完成标志。为“1”时表明上一指令执行完成; Error:显示错误代码,“0”表示无错误; C_Pos:HSC计数器功能开启时,表示运行脉冲数,否则为0。
交流伺服电机驱动器
交流伺服的组成: 永磁同步交流伺服电动机; 全数字交流永磁同步伺服驱动器。
伺服驱动器有两个部分组成: 驱动器硬件和控制算法; 控制算法是决定交流伺服系统性能好坏的关键技 术。
伺服驱动器的接线: • 1. 主回路接线 1)驱动器R、S、T电源线的连接; 2)驱动器与电动机电源线之间的接线; • 2. 控制电源类接线 1)R 、T控制电源接线; 2)I/O接口控制电源接线; • 3. 信号指令线 1)指令接口 2)I/O接口 3)反馈检测类接线 • 4. 通讯接线
西门子PLC(CPU224)控制电机正反转
一、设计思路 1、用PLC控制一维运动平台实现电机的自动正反转运行及手动正反转运行; 2、一维运动平台的行程两端各有一行程开关,分别定义为正向限位和负向 限位; 3、在电机自动正反转运行前,需对电机进行复位。复位的过程是:启动电 机往负向运行,运行至负向限位后,往正向运行一段距离,将该位置作为 电机自动正反转运行的初始位置; 4、复位完成后,按下正转按钮,电机往正向运行一段距离(该距离通过运 动包络参数设定),到位后停止。按下反转按钮,电机往负向运行一段距 离,到位后停止; 5、如正反转运行过程中,触动行程开关,电机停止运行。此时可通过手动 正反转按钮控制电机运行离开限位开关,或按下复位按钮对平台重新复位; 6、触动行程开关后,需重新复位才能进行自动正反转运行控制; 7、在电机运行过程中,任何时刻均可通过“停止按钮”和“急停按钮”控 制其停止运行; 8、停止运行后,需重新复位才能进行自动正反转运行控制; 9、“复位指示灯”、“运行指示灯”和“停止指示灯”用来指示一维平台 的运行状态。
I0.1:正转按钮; V100.1:正转运行状态; V101.2:复位完成标志。正反转自动运行前必须复位完成;
Q0.2:电机方向; VD1104:正反转脉冲数,同VD1100参数一样, 在“数据块”的“用户定义1”中设置. VD1104-VD1080= VD1043。
5、反转
VD60.1:运动包络运行完成标志,PTO0_CTRL中的“Done”参数; v100.2:反转运行状态; v101.4:反转结束;
五、运动包络设定步骤
在开始编写程序前,首先设定运动包络, 步骤如下: (1)双击左图所示“向导—PTO/PWM”,出 现“脉冲输出向导”窗口。
(2)选择Q0.0,单击“下一步”。
(3)选择“线性脉冲串输出(PTO)”,单击“下一步”。
(4)设置项目中应用的电机最高速度、最低速度和电机启动/停止速度。
7、手动反转
手动反转是对电机的点动控制,需要一直按住按钮,电机才能运行。 运行至负限位后,即使按住按钮也不能运行,只能正向运行。
8、紧急停止
紧急停止:运行至正负限位时,对系统的保护策略。 任何情况下,按下紧急停止按钮,使系统紧急停止。
9、输出 (1)、包络运行
EN:使能端,用SM0.0链接表示保持常通; START:参数开启时,执行运动包络,为确保命令只发送一次,使用上升沿信号; Profile:设定的运动包络编号; Abort:位控模块停止参数。开启后停止运行当前包络并减速停止; Done:完成标志。模块完成该子程序时,此参数为“1”; Error:错误代码,为“0”表示无错误; C_Profile:包含位控模块当前执行的轮廓; C_Step:目前正在执行的轮廓步骤; C_Pos:如果PTO向导的HSC计数器功能已启用,C_Pos参数包含用脉冲数目表示的模块;否 则此数值始终 为0。
Hale Waihona Puke Baidu
3、复位
VD1100:复位返回脉冲数,在数据块的“用户定义1”进行设置。 根据电机的减速比和驱动器的细分以及电机行程设置。
VD1043:运行包络恒速段脉冲数; VD1100-VD1080= VD1043。
4、正转
VD60.1:运动包络运行完成标志,PTO0_CTRL中的“Done”参数; v100.1:正转运行状态; v101.3:正转结束;
(5)单击“下一步”,设置加减速时间。
(6)单击“下一步”。
(7)点击“新包络”,选择“是”。
(8)图27灰色部分激活,在其中选择“相对位置”,设置好参数, 其中步0的目标位置不要设置太小,需大于加减速脉冲数之和。
(9)单击“确认”。
(10)将参数”VB0”更改为“VB1000”,需注意,不要在程序中再重复 定义“VB1000—VB1069”;单击“下一步”。
(11)单击“完成”,在弹出的对话框中选择“是”。 (12)运动包络设置完成。在调用子程序中出现Q0.0对应的位控子程序。
六、PLC程序
1、上电初始化
Q0.2:驱动器方向信号 Q0.4:复位指示灯熄灭 Q0.6:停止指示灯点亮 VD1033:运动包络加速脉冲数; VD1053:运动包络减速脉冲数; VD1080:运动包络加减速脉冲;
I0.2:反转按钮; V100.2:反转运行状态; V101.2:复位完成标志。正反转自动运行前必须复位完成;
Q0.2:电机方向; VD1104:正反转脉冲数,同VD1100参数一样, 在“数据块”的“用户定义1”中设置。 VD1104-VD1080= VD1043。
6、手动正转
手动正转是对电机的点动控制,需要一直按住按钮,电机才能运行。 运行至正限位后,即使按住按钮也不能运行,只能反向运行。
二、机械本体
三、硬件电路
S7-200 CPU提供两个高速脉冲输出点(Q0.0和Q0.1),可以 分别工作在PTO(脉冲串输出)和PWM(脉宽调制)状态下。使用 PTO或PWM可以实现速度、位置的开环运动控制。 PTO功能可以输出一串脉冲,用户可以控制脉冲的周期(频率) 和个数。PWM功能可以连续输出一串占空比可调的脉冲,用户可以控 制脉冲的周期和脉宽(占空比)。 高速脉冲输出点和普通数字量输出点共用输出映像Q0.0和 Q0.1。当在Q0.0和Q0.1上激活PTO或PWM功能时,PTO/PWM发 生器对输出拥有控制权,输出波形不受其他影响。 只有晶体管输出类型的CPU能够支持高速脉冲输出功能。
工业机器人电气控制系统简述
机器人电气控制系统概述
机器人控制系统的基本结构
工业机器人控制系统构成方案比较
机器人的关键部件简介
常用可编程控制器PLC
机器人控制系统的基本结构
从基本机构上看,一个典型的机器人电气控制系统 主要由上位计算机、运动控制器、驱动器、电动机、执 行机构和反馈装置构成。
(2)、点动运行
EN:使能端,SM0.0保持常通; RUN:启用该参数加速至设定速度运行,停用该参数电机减速停止; Speed:设定手动运行的最高速度; Error:本子程序的错误代码,“0”表示无错误; C_Pos:如果PTO向导的HSC计数器功能已启用,C_Pos参数包含用脉冲数目表示的模块; 否则此数值始终为零。
四、运动包络 包络(Profile)是一个预先定义的以位置为横坐标, 以速度为纵坐标的曲线,包络是运动的图形描述。 一个包络由多段组成,每一段包含一个达到目标速度的 加减速过程,和以目标速度匀速运行的一串指定数量的脉冲 。如果是单段运动控制或者是多段运动控制的最后一段,还 应该包括一个由目标速度到停止的减速过程。 PTO主要通过包络来实现位置控制。位置控制想到通过 参数设置来创建包络,并用图形方式显示包络曲线,自动生 成位置控制用的子程序。
传感器
在机器人控制系统中有各种不同的物理量(如位移、压 力、速度等)需要测量与控制,如果没有传感器对原始的各 种参数进行精确而可靠的检测,那么对机器人的各种控制是 无法实现的。因此能把各种不同的非电量转换成电量的传感 器便成为机器人控制系统中不可缺少的组成部分。
传感器: 传感器是一种以一定的精确度将被测量(如位 移、力、加速度等)转换为与之有确定对应关系的、易于精 确处理和测量的某种物理量(如电量)的测量部件或装置。
电气元器件
断路器:系统的总电源 开关,同时为系统提供 过流、短路及漏电保护; 噪声滤波器:过 滤供电系统中的 电噪声
交流继电接触器: 进行强电的开关控 制
直流继电器:进行弱 电的开关控制;
开关电源:提供控 制系统所需的直流 电源
按钮、指示灯、 急停按钮:负责 系统运行的控制、 状态指示及紧急 停止。
相关文档
最新文档