单容水箱液位PID整定实验

合集下载

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS)一、实验目的1)、熟悉单容水箱液位反馈PID控制系统硬件配置和工作原理。

2)、熟悉用P、PI和PID控制规律时的过渡过程曲线。

3)、定性分析不同PID控制器参数对单容系统控制性能的影响。

二、实验设备CS4000型过程控制实验装置,DCS系统、 PC机,监控软件。

三、实验原理一阶单容水箱PID控制方框图图为单回路上水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用EPA系统控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如下图中的曲线①、②、③所示。

P、PI和PID 调节的阶跃响应曲线四、实验步骤(1)关闭出水阀,将CS4000 实验对象的储水箱灌满水(至最高高度)。

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。

实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。

2. 液位传感器:用于实时监测水箱的液位。

3. 控制器:采用PID控制器,用于调节水箱液位。

4. 电源和信号线:提供电力和信号传输。

实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。

2. 将PID控制器与液位传感器连接,建立控制回路。

3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。

4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。

5. 开始实验,记录初始液位和控制器输出设定值。

6. 观察液位的变化,并记录实时液位值。

7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。

8. 结束实验,记录最终液位和控制器参数。

实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。

2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。

3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。

4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。

5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。

结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。

通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。

实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。

题目3 上水箱液位PID整定

题目3 上水箱液位PID整定

题目三、上水箱液位PID整定一、课程设计主要任务及要求1、了解单容液位控制系统的结构与组成。

2、掌握单容液位定值控制系统调节器参数的整定方法。

3、进行P、PI和PID三种调节器参数整定。

4、比较三种调节器的控制效果。

二、课设使用的实验设备1. THJ-FCS型高级过程控制系统实验装置。

2. 计算机及相关软件。

三、设备工作原理图3-1 上水箱单容液位定值控制系统(a)结构图(b)方框图本实验系统结构图和方框图如图3-1所示。

被控量为上水箱(也可采用中水箱或下水箱)的液位高度,实验要求它的液位稳定在给定值。

将压力传感器LT1检测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

四、控制系统流程图本控制系统的流程图如图3-2所示。

图3-2 控制系统的流程图上水箱液位检测信号LT1为标准的模拟信号,直接传送到SIEMENS的模拟量输入模块SM331,SM331和分布式I/O模块ET200M直接相连,ET200M挂接到PROFIBUS-DP总线上,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP(CPU315-2 DP为PROFIBUS-DP总线上的DP主站),这样就完成了现场测量信号到CPU的传送。

本实验的执行机构为带PROFIBUS-PA通讯接口的阀门定位器,挂接在PROFIBUS-PA 总线上,PROFIBUS-PA总线通过LINK和COUPLER组成的DP链路与PROFIBUS-DP总线交换数据,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP,这样控制器CPU315-2 DP 发出的控制信号就经由PROFIBUS-DP总线到达PROFIBUS-PA总线来控制执行机构阀门定位器。

五、内容与步骤实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9开至适当开度,其余阀门均关闭。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。

二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。

PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。

PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。

其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。

2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。

常见的液位传感器有浮球式、压力式、电容式等多种类型。

本实验中采用电容式液位传感器进行测量。

3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。

系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。

三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。

2. 设置PID参数根据实际情况,设置合适的PID参数。

其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。

3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。

根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。

随着时间的推移,观察液位是否能够稳定在设定值附近。

4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。

可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。

实验3 液位数字PID计算机控制系统实验

实验3 液位数字PID计算机控制系统实验

实验3 液位数字PID控制及参数整定提示:希望大家在做实验之前仔细阅读实验指导书,并且编写三个程序(P、PI、PID)争取能够到实验室就进行调节,观察效果,进行整定参数。

一、实验目的1、通过实验进一步学习单回路反馈控制系统的组成和工作原理。

2、掌握P、PI和PID调节器原理,并编写比例控制算法,比例积分控制算法,比例、积分、微分控制算法,并进行参数整定,使得液位控制在20cm处,超调量不超过10%,稳态误差5%。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备过程控制实验装置、万用表、计算机控制教学实验开发平台CC-1型、ADS1.2软件开发环境,实验连接线数根。

三、实验原理图1 闭环控制系统原理图图1为单回路水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

2021年单容水箱液位组态控制实验报告

2021年单容水箱液位组态控制实验报告

4 单容水箱液位组态控制试验汇报学院: 自动化学院班级:学号:姓名:单容水箱液位组态一.试验目:1.熟悉单容水箱液位调整阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档组态过程5.掌握WINCC 消息系统组态过程6.掌握WINCC 报表系统组态过程二: 单容水箱试验原理1、 试验结构介绍水流入量Qi 由调整阀u 控制, 流出量Qo 则由用户经过闸板开度来改变。

被调量为水位H 。

分析水位在调整阀开度扰动下动态特征。

直接在调整阀上加定值电流, 从而使得调整阀含有固定开度。

(能够经过智能调整仪手动给定, 或者AO 模块直接输出电流。

)调整水箱出口到一定开度。

忽然加大调整阀上所加定值电流观察液位随时间改变, 从而能够取得液位数学模型。

经过物料平衡推导出公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中, F 是水槽横截面积。

在一定液位下, 考虑稳态起算点, 公式能够转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路响应函数, C=F 就是水容, k H R 02=就是水阻。

给定值 图4-1单容水箱液位数学模型测定试验假如经过对纯延迟惯性系统进行分析, 则单容水箱液位数学模型能够使用以下S 函数表示: )1()(0+=TS S KR S G 。

相关理论计算能够参考清华大学出版社1993年出版《过程控制》, 金以慧编著。

2、 控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调整阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线, 如图4-2所表示:图4-2 单容水箱液位飞升特征此时液位测量高度184.5 mm, 实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。

实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。

根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。

实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。

2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。

3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。

4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。

5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。

6. 重复步骤3-5,直到达到所需的控制效果。

实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。

通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。

如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。

结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。

同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。

这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告本次实验以单容水箱液位PID控制系统为研究对象,通过实验来探究PID控制系统在单容水箱液位控制中的应用。

实验采用的硬件设备包括一台多功能数据采集仪、一个电动水泵、一个水箱、一个液位传感器以及一台电脑。

液位传感器负责实时监测水箱的液位高度,然后将液位信号传输给多功能数据采集仪,再通过电脑处理分析数据。

电动水泵负责将水加入到水箱中,实现液位的上升。

在实验中我们需要采用PID控制算法对液位进行控制。

PID控制器是由比例控制器(P)、积分控制器(I)和微分控制器(D)三个部分组成的一种常见的控制算法。

比例控制器根据当前偏差值来进行控制,积分控制器主要解决由于比例控制器的积累误差,使系统达到静态稳态的需求,微分控制器则是对系统输出信号的变化率进行调整,在系统响应速度方面起到了重要的作用。

PID控制器综合了三种控制器的优点,因此在工业自控领域中得到了广泛的应用。

在实验的开始,我们首先需要计算PID控制参数,包括比例系数Kp、积分时间Ti和微分时间Td。

计算出这些参数之后,我们需要将它们输入到控制器中,使得控制器能够根据当前的液位值来进行控制。

实验过程中,需要适当控制电动水泵的运行时间和运行速度,使得液位能够平稳地上升,同时又不超过设定的上限值。

在实验中,我们首先对比例系数进行了调整。

我们发现当比例系数过大时,液位的波动会变得非常剧烈,表现为液位的快速上升和下降。

当比例系数过小时,系统的响应速度将会比较慢,导致液位不能够很好地达到设定值。

通过实验我们调整了比例系数,使得液位能够更加稳定地上升,并且在液位接近设定值时,系统能够迅速地响应。

我们也对积分时间和微分时间进行了调整,并且通过分析实验数据,我们最终确定了比例系数为1.8、积分时间为0.2秒和微分时间为0.1秒。

通过本次实验,我们深入了解了PID控制系统在单容水箱液位控制中的应用,也体验了PID控制系统参数调整的过程。

我们相信,在实际工程中,PID控制系统的应用会带来更大的效益。

过程控制实验——单容水箱属性测试及PID参数整定

过程控制实验——单容水箱属性测试及PID参数整定

过程控制实验——单容水箱属性测试及PID参数整定一、实验目的1)、熟悉单容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

3)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

4)、分析分别用P 、PI 和PID 调节时的过程图形曲线。

5)、定性地研究P 、PI 和PID 调节器的参数对系统性能的影响。

二、实验设备AE2000A 型过程控制实验装置、MCGS 程序运行环境、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理1)、对象特性测试设单容水箱的输入为1Q ,输出为2Q ,液位为h 调节输入输出,当系统平衡时:1122Q (t )(t )0Q -=; 当系统由于输入变化处于动态时:12(t)(t)Q (t)(t)dv dh Q A dt dt-==⋅; 22(t)h Q R =; 12(t)(t)Q (t)h dh A R dt⇒-=⋅ 21212H(s)(s)Q (s)(s)(s)1R H As H R Q AR s ⇒-=⋅⇒=+拉氏变换得到传递函数为 22(s)11R K G AR s s τ==++令1Q 有阶跃变化量0X ,拉氏变换式 10(s)Q x s = 则 0001(s)(Ts 1)Tkx kx kx H s s s ==-++取拉氏反变换:0(t)(1e )tT h kx -=-当t →∞ 00()H(0)()H(0)Kx x H H K ∞-∞-=⇒=t T = 100(T)Kx (1e )0.632Kx H -=-= 2)、PID 参数整定加入PID 控制后的系统框图如下图有经验可知 :,,,,0,,p p r s i p o r s p K M T T T M T t t M ↑⇒↑↓↓↓↓⇒↑=↑⇒↓↓↓经验试凑法;① P (,0i o T T =∞=)此时0p K =↑,并给系统一个阶跃信号,观察波形直到第一次峰值和第二次峰值之比大于4;1②PI (0o T =)适当减小p K ,逐渐减小i T ,给系统一个阶跃信号,观察波形直到第一次峰值和第二次峰值之比大于4;1③PID适当增大p K ,i T ,0o T 逐渐增大,重复上述操作,得到合适的PID 参数。

a3000实验水箱液位调节阀之PID篇

a3000实验水箱液位调节阀之PID篇

单容水箱液位控制系统的实验一、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。

二、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

二、单容水箱系统模型图12.1液位控制的实现本实验采用计算机PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2.2 被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度s----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

上水箱液位 PID 整定实验实验报告

上水箱液位 PID 整定实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位 PID 整定实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.12实验一上水箱液位 PID 整定实验一、实验目的1.了解单容液位定值控制的结构与组成。

2.掌握单容液位定值控制调节器参数的整定和投运方法。

3.研究调节器相关参数的变化对系统静、动态性能的影响。

4.了解 P、PI、PD 和 PID 四种调节器分别对液位控制的作用。

5.掌握控制系统的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验系统结构图和方框图如图1所示。

被控量为上水箱(也可采用中水箱或下水箱)的液位高度,实验要求上水箱的液位稳定在给定值。

将压力传感器 LT1 检测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制上水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为 PI 或 PID 控制。

图 1 上水箱单容液位定值控制(a)结构图 (b)方框图四、实验内容与步骤本实验选择上水箱作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门 F1-1、F1-6、F1-10、F1-11 全开,将中水箱出水阀门 F1-9 开至适当开度(50%左右),其余阀门均关闭。

1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

2.接通总电源空气开关,合上单相,打开钥匙开关,给系统上电,将相应旋钮开关打至开,给 S7-300PLC 及电动调节阀上电。

3.打开 Step 7 软件,并打开“S7-300PLC”程序进行下载,然后将S7-300PLC 置于运行状态,然后运行 WinCC 组态环境,打开“S7-300PLC 控制系统”工程,然后进入 WinCC 运行环境,在主菜单中点击“实验三、上水箱液位 PID 整定实验”,进入实验三的监控界面。

实验04单容水箱液位定值控制实验组态指导

实验04单容水箱液位定值控制实验组态指导

实验4单容水箱液位定值控制实验组态指导、实验目的1、 通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、 分析分别用P 、PI 和PID 调节时的过程图形曲线。

3、 定性地研究P 、PI 和PID 调节器的参数对系统性能的影响 4•学习三维力控软件组态软件。

、实验设备A3000现场仿真模型系统 三维力控组态软件三、实验原理1、控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI , PD 控制器特性。

控制逻辑如图5-2-1 所示:水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀 R 来改变。

被调量为水位 H 。

使 用P,PI ,PID 控制,看控制效果,进行比较。

控制策略使用PI 、PD 、PID 调节。

实际上,可以通过控制连接到水泵上的变频器来控制压力,效果可能更好。

2、控制系统接线表测量或控制量测量或控制量 标号下水箱液位 LT103 调节阀FV1013 •定义流程图流程图包括:两个水箱,四个阀门(含一个控制调节阀),图5-2-1单容下水箱液位定值控制实验一个泵,一个控制器4.定义位号液位:LT103, LT105阀门:JV201,JV303,JV206,FV101流量监测:FT102泵开关:P102液位控制器:LIC101 (演示实验中为控制器PIDO )泵频率:RPM25.数据库组态打开实时数据库的数据库组态新建以下各点模拟点:LT103,LT105, FV101, FT102, JV303 , RPM2 (参数设置见模型变量对照表)数字点:JV206,JV201,P102,(参数设置见模型变量对照表)控制点:LIC101 (数据连接中,选择PV值为内部连接LT103.PV ,控制方向为正向)四.组态结果五、图形组态过程1. 画出水箱在工具箱中,选取矩形工具,在界面上画出矩形 右键点击矩形,选取对象属性; 在风格中,点击过渡色,并选择填充风格 在矩形中间插入文字(选择工具箱中的文本工具) 利用画线工具画出水箱的底线,侧线; 选中所有水箱图线,在操作菜单中,选择“打成组” 2. 画出阀门及连接线在工具菜单中,选择子图,进入子图列表打开子图精灵,选择阀门 选择所需要的阀门,双击采用 调节阀门的高度,大小,位置 选择画线工具,画出管线 右键点击管线,选择对象属性 选择线为立体,并选择颜色,是否带有箭头 拷贝线和阀门,画出所有的阀门3. 画出泵在工具菜单中,选择子图,进入子图列表 打开子图精灵,选择泵选择所需要的泵,双击采用 调节泵的高度,大小,位置4.画出LIC101设定按钮5. 组态显示点“1号大储水箱”融帆财 ( 1WLIC101在显示点上输入井号: ####.##,如图所示 在相应的位置输入说明文字6. 组态监视实时趋势曲线空l^Esastr 3比何前,弈牡 旦比直站i 3审詛酸?越監 空1单客XJ3泯住辭氏卷 旦湘冇顷址杲性 旦阳何笑曲械3喉融胶电弈骗到细TJ&W 曲旳旦卿]翻曲戲E 主1诙HW 曲轄3Cf 囱"1士 屯曲 Q 科廉 ⑥文档吒罚 3如越料曲樓+旦?》砌?曲麝田甫翻匡 卫1潭后舌兵鑒 田滑后1妆蜀曲他 3SS1 円*娈・ :+:凹时 回引问 Q -在实时趋势图上添加显示点画出液位显示画出一个矩形, 动画连接中,选择百分比填充(垂直),变量选择LT103.PV,大水箱的液位选择LT105.PV同色酉丹郎語电醪乞匚期|吧|因圈IB 到「世 Times New PjJ|! ■- ] H : / If [ ‘1线空 F [鐵埜一二JI-六. 1.动画组态过程 S :件(日鏑巴査駅必IM (D 懂也:曲特咬罚絢封 爵口翔肋:比«JLT1Irvaoitv 水-ILJ!Bh 艸 紐| 聊|3 厂使用衰达式炸抑i輔水械瞇制赠盘J 曲密辺|jf ■+*记录 at 且宅义累单---- 加£iirtr |io毎隔[z~ 亍沁一FtHSU格式厂毎厂冃厂日w BT p SJ u 砂■ RSiS 痢碗丽切于悻I抑的93»匡朋|i — [5 2逊E!向 ■尋 Mt'TJH®—TflOl l~~F量丈厂一量才■厂 -|箱对曲创 也于[?EiS r 513A 明| -------------------------wi 帕討问拒m 丽-3k 旦3色 tg 空土密 I 、+ ■J -i E (sal m 門23空 迹砂X z it ul**~^• ffi I pp曰亡]冒口盟色叩去功作仝尺寸紐转移动二,瞒相关动件电纱数伯输小示r _蟆拟| r 移 ] r 丰荷串数值前岀尺卄LIC101「杂顶厂一隈性动惟|厂#. ##«我达式»筑充到卡大旳(0 |1 埴充到長血伯pr 上面 a 下面tttttf.fi |wtf局D#时# 一治fM*- *曼凰选怪I组态关联显示点将各个显示点选择数值输出对应的变量定义普通阀门开关点选数值输入显示,开关量,输入变量名称:JV206.PV4.定义泵开关2. 3.5.定义LIC101设定按钮6.定义FV101设置运行,测试组态结果。

单容水箱液位控制实验报告

单容水箱液位控制实验报告

单容水箱液位控制实验报告单容水箱液位控制实验报告一、引言液位控制是自动化领域中一个重要的研究课题。

在许多工业领域,如化工、石油、食品等,液位的准确控制对生产过程的稳定性和安全性至关重要。

本实验旨在通过搭建一个单容水箱液位控制系统,探究液位控制的原理和方法,并验证控制系统的性能。

二、实验装置及原理1. 实验装置本实验采用的实验装置包括:单容水箱、液位传感器、控制器、执行器和数据采集系统。

2. 原理介绍液位传感器通过测量液位高度将其转换为电信号,并传输给控制器。

控制器根据接收到的信号,通过控制执行器的开关状态,调节水箱进出水的流量,以达到控制液位的目的。

数据采集系统用于记录和分析实验数据。

三、实验步骤1. 搭建实验装置首先,将液位传感器安装在水箱内部,并连接到控制器。

接下来,连接执行器和控制器,并确保所有连接线路正确无误。

最后,将数据采集系统与控制器连接,确保数据采集的准确性。

2. 系统校准在实验开始之前,对液位传感器进行校准。

校准的目的是确定液位传感器输出信号与实际液位之间的关系,以确保控制系统的准确性。

3. 进水控制实验将水箱放置在合适的位置,并将进水管道连接到水箱。

打开进水阀门,控制器开始接收液位传感器的信号,并根据设定的目标液位调节进水阀门的开关状态。

记录下实验过程中的液位变化情况。

4. 出水控制实验将出水管道连接到水箱,并打开出水阀门。

控制器根据液位传感器的信号,控制出水阀门的开关状态,以维持设定的目标液位。

同样,记录下实验过程中的液位变化情况。

四、实验结果与分析通过实验数据的记录和分析,我们可以得出如下结论:1. 进水控制实验在进水控制实验中,我们观察到当液位低于目标液位时,控制器打开进水阀门,增加水箱内的水量;当液位高于目标液位时,控制器关闭进水阀门,减少水箱内的水量。

实验结果表明,控制系统能够有效地调节进水流量,使液位保持在目标值附近。

2. 出水控制实验在出水控制实验中,我们观察到当液位低于目标液位时,控制器关闭出水阀门,减少水箱内的出水量;当液位高于目标液位时,控制器打开出水阀门,增加水箱内的出水量。

单容水箱液位定值控制实验

单容水箱液位定值控制实验

实验上水箱液位定值控制系统实验目的1•了解闭环控制系统的结构与组成。

2•了解单闭环液位控制系统调节器参数的整定。

3 •观察阶跃扰动对系统动态性能的影响。

二. 实验设备1.THJ-2型高级过程控制系统装置2.计算机、上位机MCG组态软件、RS232-485转换器1只、串口线1根三. 实验原理------------------------------------------------------单回路控制系统的结构/方框图:它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。

系统的给定量是某一定值,要求系统的被控制量稳定至给定量。

由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。

本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。

系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。

由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。

其实验图如下:JE*辅过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过 LT1的测量变送使上水箱的液位反馈给 LC1, LC1控制电动调节阀的开度进而控 制入水流量,达到所需要的液位并保持稳定。

四•实验接线 其接线图为:图中LT2改接为LT1'0 i >1/ IN2N…MI /五•实验内容及步骤1 •按图要求,完成系统的接线。

2 •接通总电源和相关仪表的电源。

3•打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。

4•设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱 打水,待其液位达到给定量所要求的值, 且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。

5 •启动计算机,运行MCG 组态软件软件,并进行下列实验:]N一 2 JWVW A.1 0____ 戋删1卞仪控制■ -- 圧力覺退BPLT I旧日日■* rA广一三梱堪打泵I 3SUV单相电踊输出 尊相I单IT・I设定其智能调节仪的参考参数为:SV=8cmP=20; 1=40 ; D=0 CF=Q ADDR=1 Sn=33; diH=50;dil=0;上水箱出水阀开度:45% 运行MCG组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:其系统达到稳态的实验数据为:S.07.918M7:5R B n QB.O8.010:48:08S.08.010:48:13B+08.D系统大约在5分钟左右到达稳态,记录下的曲线为阶跃响应曲线。

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告一、实验目的本实验旨在设计并实现一个单容水箱液位PID控制系统,通过对水箱液位的测量和控制,达到稳定控制水箱液位的目的。

二、实验原理1. 液位测量原理:利用浮球开关检测水箱内部液位高度,并将其转换为电信号输出。

2. PID控制原理:PID控制器是一种经典的控制算法,它根据当前误差、误差变化率和误差积分值来计算输出信号,从而调节被控对象的状态。

三、实验步骤1. 设计电路:根据所需控制系统的功能要求,设计出相应的电路图。

本实验采用Arduino开发板作为主要控制器,通过连接电路板上的传感器和执行器来完成液位测量和PID调节功能。

2. 编写程序:在Arduino开发环境中编写程序代码。

首先需要进行传感器数据采集和处理,然后根据PID算法计算出输出信号,并将其发送到执行器上进行调节。

3. 调试系统:在完成硬件连接和程序编写后,需要对系统进行调试。

首先进行传感器测试,确保能够准确地检测到液位高度,并将其转换为电信号输出。

然后进行PID算法测试,通过手动调节控制器的参数,观察系统的响应情况,并逐步优化控制器的参数。

4. 实验结果:通过实验验证,本设计的单容水箱液位PID控制系统能够准确地检测到水箱内部液位高度,并能够根据设定值进行自动调节。

在实验过程中,我们不断优化控制器的参数,最终实现了稳定控制水箱液位的目标。

四、实验总结本实验通过设计和实现单容水箱液位PID控制系统,深入了解了传感器数据采集、PID算法计算和执行器控制等相关知识。

在实验过程中,我们遇到了很多问题,但通过不断尝试和优化,最终成功完成了任务。

这次实验对我们的学习和提高有很大帮助,在今后的学习和工作中也将会有所裨益。

单容水箱液位定值控制系统

单容水箱液位定值控制系统

实验八单容水箱液位定值控制系统一、实验目的1. 理解单容水箱液位定值控制的基本方法及原理;2. 了解压力传感器的使用方法;3. 学习PID控制参数的配置;。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验台平台2. THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)3. PC机1台(含上位机软件“THBDC-1”)4. THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID 控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm四、实验步骤1. 调节好单容水箱的出水口阀门的大小,连接实验电路:1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

2. 启动计算机,在桌面双击图标THTJ-1,运行实验软件。

实验六 单容下水箱液位调节阀PID 单回路控制

实验六 单容下水箱液位调节阀PID 单回路控制

实验六 单容下水箱液位调节阀PID 单回路控制1、实验目的(1)学会操作A3000过程控制实验系统;(2)了解PID控制规律,学习初步整定参数。

2、实验内容及步骤1、单容下水箱液位 PID 控制流程图如下图所示。

单容下水箱液位调节阀PID单回路控制测点清单如下表所示。

水介质由泵P102 从水箱V104 中加压获得压头,经由调节阀FV-101 进入水箱V103,通过手阀QV-116 回流至水箱V104 而形成水循环;其中,水箱V103的液位由LT-103 测得,用调节手阀QV-116 的开启程度来模拟负载的大小。

本例为定值自动调节系统,FV-101 为操纵变量,LT-103 为被控变量,采用PID 调节来完成。

2、在现场系统上,打开手阀QV102、QV105,调节下水箱闸板QV116开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将IO面板的下水箱液位输出连接到AI0,IO面板的电动调节阀控制端连到AO0。

注意:具体那个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

启动右边水泵P102和调节阀。

5、启动计算机组态软件,进入测试项目界面。

启动调节器,设置各项参数,可将调节器的手动控制切换到自动控制。

6、设置比例参数。

观察计算机显示屏上的曲线,待被调参数基本稳定于给定值后,可以开始加干扰测试。

3、实验报告(1)设计一个报表:实验开始后,每20分钟记录一组数据,包括调节阀控制、V103液位、SP三个变量。

(2)改变参数设置,记录相应的变量曲线图。

(3)通过曲线图对比,谈谈对PID参数整定的心得。

ECS700单容水箱液位pid监控实验.docx

ECS700单容水箱液位pid监控实验.docx

第一章浙江中控ECS-700 装置实验实验四 ECS-700 单容水箱液位 PID 监控实验4.1 实验目的熟悉 ECS-700 系统的实验环境,通过对实验室 DCS 系统的实际操作,加深对集散控制系统概念的理解;掌握利用 ECS-700 组态软件 VisualField 对 DCS 控制对象现场参数进行配置,完成结构组态并实现单容水箱液位 PID 控制策略的组态;掌握利用 ECS-700 组态软件 VisualField 对 DCS 监控程序的配置,并实现单容水箱液位 PID 控制流程图监控画面的组态;掌握 ECS-700 系统组态发布流程,实现系统控制组态下载和监控组态发布;能够利用所编制组态程序对单容水箱液位进行单回路液位监控。

4.2 实验内容ECS-700 系统是 WebField 系列控制系统之一,是在总结 JX-300XP,ECS-100等WebField 系列控制系统广泛应用的基础上设计、开发的面向大型联合装置的大型高端控制系统,其融合了先进的控制技术、开放的现场总线标准、工业以太网安全技术等,为用户提供了一个可靠的、开放的控制平台。

ECS-700 系统按照提高可靠性原则进行设计,可以充分保证系统安全可靠;系统内部所有部件均支持冗余,在任何单一部件故障的情况下仍能稳定正常的工作。

同时, ECS-700 系统具备故障安全功能,模块在网络故障的情况下,进入预设的安全状态,保证人员、工艺设备的安全。

ECS-700 系统具备完善的工程管理功能,包括多工程师协作工作、组态完整性管理、单点组态在线下载等,并提供完善的操作记录以及故障诊断记录。

ECS-700 系统作为开放的控制平台,其融合了最新的现场总线技术和网络技术,支持 HART 、 FF、PROFIBUS、EPA 等国际标准现场总线的接入和多种异构系统综合集成。

VisualField 软件包是基于Windows 操作系统的自动控制应用软件平台,在ECS-700 系统中完成系统组态、数据服务和实时监控等功能。

实验二、单容水箱液位PID整定实验

实验二、单容水箱液位PID整定实验

实验二、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备AE2000B1型过程控制实验装置、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理图2-15图2-15为单回路上水箱液位控制系统。

单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。

本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。

根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。

当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。

一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。

一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。

对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单容水箱液位PID整定实验
一、实验目的
1、通过实验熟悉单回路反馈控制系统的组成和工作原理。

2、分析分别用P、PI和PID调节时的过程图形曲线。

3、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备
AE2000型过程控制实验装置、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验框图
图1单回路水箱液位控制系统的方框图
四、实验结果
表1用试凑法整定PID调节器的参数
调节器参数调节器名称比例度δ积分时间
Ti(S)
微分时间
Td(S)
P 3
PI 3 0.65
PID 2 0.65 0.1
图2 P调节响应曲线
图3 PI调节响应曲线
图4 PID调节响应曲线
五、实验结果分析
在实现应用中,PID调节器的参数常用下述实验的方法来确定。

用临界比例度法去整定PID调节器的参数是既方便又实用的。

用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。

比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

相关文档
最新文档