2011年高考数学真题(江西.理)含详解
2011年普通高等学校招生全国统一考试数学卷(湖南.理)含详解
2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。
(3)球的体积公式343V R π=,其中R 为求的半径。
一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件 D .既不充分又不必要条件 答案:A解析:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。
3.设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+C .942π+D .3618π+答案:B解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:正视图侧视图俯视图图12()P K k ≥ 0.0500.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关” 答案:C解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选C.5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。
2011年湖北高考数学理科试卷(带详解)
2011年普通高等学校招生全国统一考试(湖北卷)数 学(理工农医类)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.i 为虚数单位,则20111i 1i +⎛⎫= ⎪-⎝⎭( )A.i -B.1-C.iD.1 【测量目标】复数代数形式的四则运算.【考查方式】给出复数的代数式,根据四则运算化简求解. 【难易程度】容易 【参考答案】A【试题解析】因为()221i 1i i 1i 1i ++==--,所以201120114502331i i i i i 1i ⨯++⎛⎫====- ⎪-⎝⎭,故选A.2.已知{}1,log 2>==x x y y U ,⎭⎬⎫⎩⎨⎧>==2,1x x y y P ,则U P =ð ( )A. ⎪⎭⎫⎢⎣⎡+∞,21B.⎪⎭⎫⎝⎛21,0 C.()+∞,0 D. ()⎪⎭⎫⎢⎣⎡+∞∞-,210,【测量目标】集合的基本运算.【考查方式】给出全集和一个子集,根据反函数和对数函数性质化简,再利用集合的基本运算求解. 【难易程度】容易 【参考答案】A【试题解析】由已知()+∞=,0U ,⎪⎭⎫ ⎝⎛=21,0P ,所以1,2U P ⎡⎫=+∞⎪⎢⎣⎭ð,故选A.3.已知函数()x x x f cos sin 3-=,x ∈R ,若()1f x …,则x 的取值范围为 ( ) A.ππππ,3x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟B.π2π2ππ,3x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟C.π5πππ,66x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟 D.π5π2π2π,66x k x k k ⎧⎫++∈⎨⎬⎩⎭Z 剟 【测量目标】两角和与差的正弦,三角函数的定义域和周期性.【考查方式】给出三角函数的解析式,利用两角和与差的正弦化简,再根据三角函数的值域求解定义域.【难易程度】中等 【参考答案】Bcos 1x x -…得π1sin 62x ⎛⎫- ⎪⎝⎭…,(步骤1) 则ππ5π2π2π666k x k +-+剟,解得π2π2ππ3k x k ++剟,k ∈Z ,所以选B.(步骤2)4.将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则 ( )A. 0=nB. 1=nC. 2=nD. 3n … 【测量目标】直线与抛物线的位置关系,抛物线的简单几何性质. 【考查方式】给出含未知系数的抛物线函数,根据抛物线的对称性,得到过焦点的两条直线的斜率,从而判断求解. 【难易程度】容易 【参考答案】C【试题解析】根据抛物线的对称性,正三角形的两个 顶点一定关于x 轴对称,且过焦点的两条直线 倾斜角分别为30和150,(步骤1)这时过焦点的直线与抛物线最多只有两个交点,如图所以正三角形 的个数记为n ,2=n ,所以选C.(步骤2)第4题图5.已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξP ( )A. 6.0B. 4.0C. 3.0D. 2.0 【测量目标】随机变量的正态分布,离散型随机变量的概率.【考查方式】给出限制条件下的随机变量的概率,根据正态分布对称性计算其他限制条件下随机变量的概率.【难易程度】容易 【参考答案】C【试题解析】如图,正态分布的密度函数示意图所示,函数关于 直线2=x 对称,所以()5.02=<ξP ,(步骤1)并且()()4220<<=<<ξξP P 则()()()2420<-<=<<ξξξP P P3.05.08.0=-=所以选C.(步骤2)第5题图6.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-x x a a x g x f()1,0≠>a a 且,若()a g =2,则()=2f ( ) A. 2 B.415 C. 417 D. 2a 【测量目标】函数奇偶性的综合应用.【考查方式】给出两个函数间的关系式和一个函数值,求在相同自变量下另一函数值. 【难易程度】中等 【参考答案】B【试题解析】由条件()()22222+-=+-a a g f ,()()22222+-=-+--a a g f ,即 ()()22222+-=+--a a g f ,由此解得()22=g ,()222--=a a f ,(步骤1) 所以2=a ,()41522222=-=-f ,所以选B.(步骤2) 7.如图,用21A A K 、、三类不同的元件连接成一个系统,K 正常工作且21A A 、至少有一个正常工作时,系统正常工作.已知21A A K 、、正常工作的概率依次为9.0、8.0、8.0,则系统正常工作的概率为 ( )第7题图A. 960.0B. 864.0C. 720.0D. 576.0 【测量目标】对立事件的概率,乘法原理.【考查方式】分别给出3个事件的概率,利用对立事件的概率公式得到两个事件概率,再根据乘法原理得出结果. 【难易程度】容易 【参考答案】B【试题解析】21A A 、至少有一个正常工作的概率为()()211A P A P - ()()110.810.810.040.96=--⨯-=-=,(步骤1)系统正常工作概率为()()()()864.096.09.0121=⨯=-A P A P K P ,所以选B.(步骤2)8.已知向量a ()3,z x +=,b ()z y -=,2,且a ⊥b .若y x ,满足不等式1x y +…,则z 的取值范围为 ( ) A. []2,2- B. []3,2- C. []2,3- D. []3,3-【测量目标】平面向量的数量积运算,向量的坐标运算,二元线性规划求目标函数的最值,判断不等式组表示的平面区域.【考查方式】给出两个相互垂直的向量坐标和不等式方程,画出可行域,再利用向量的数量积运算得出目标函数,根据图象求解. 【难易程度】中等 【参考答案】D【试题解析】因为a ⊥b ,()()032=-++z y z x , 则y x z 32+=,y x ,满足不等式1x y +…,(步骤1) 则点()y x ,的可行域如图所示,当y x z 32+=经过点()1,0A 时,y x z 32+=取得最大值3. 当y x z 32+=经过点()1,0-C 时,y x z 32+=取得最小值-3. 所以选D .(步骤2)第8题图9.若实数b a ,满足0,0a b厖,且0=ab ,则称a 与b 互补,记()b a b a b a --+=22,ϕ,那么()0,=b a ϕ是a 与b 互补 ( )A . 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要的条件 【测量目标】充分、必要条件,合情推理.【考查方式】给出关于实数的新定义,根据合情推理求解. 【难易程度】容易 【参考答案】C【试题解析】若实数b a ,满足0,0a b厖,且0=ab ,则a 与b 至少有一个为0,不妨设0=b ,则()0,2=-=-=a a a ab a ϕ;(步骤1) 反之,若()0,22=--+=b a b a b a ϕ0a b =+…两边平方得ab b a b a 22222++=+0=⇔ab ,则a 与b 互补,故选C.(步骤2)10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:()3002t M t M -=,其中0M 为0=t 时铯137的含量,已知30=t 时,铯137的含量的变化率...是2ln 10-(太贝克/年),则()=60M ( ) A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克 【测量目标】导数的运算,导数在实际问题中的应用,导数的几何意义.【考查方式】给出含未知系数的函数,利用导数的运算求出含未知系数导函数,再利用导数的几何意义得到导函数,再计算求解. 【难易程度】容易 【参考答案】D【试题解析】因为()3001ln 2230tM t M -'=-⨯,则()30300130ln 2210ln 230M M -'=-⨯=-,解得6000=M ,所以()302600tt M -⨯=,那么()150416002600603060=⨯=⨯=-M (太贝克),所以选D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分.11.在1831⎪⎪⎭⎫ ⎝⎛-x x 展开式中含15x 的项的系数为 .(结果用数值表示)【测量目标】二项式定理.【考查方式】给出二项式,根据二项式展开式的通项公式求解特定项的系数. 【难易程度】容易 【参考答案】17【试题解析】二项式展开式的通项公式为18118C r r r r T x -+⎛= ⎝1182181C 3rr r r x--⎛⎫=- ⎪⎝⎭,令2152118=⇒=--r r r ,含15x 的项的系数为22181C 173⎛⎫-= ⎪⎝⎭,故填17. 12.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过了保质期饮料的概率为 .(结果用最简分数表示) 【测量目标】对立事件的概率,随机事件与概率.【考查方式】给出问题情境,求出所求事件的对立事件的概率,根据对立事件的概率公式,得到所求事件的概率. 【难易程度】容易 【参考答案】14528 【试题解析】从这30瓶饮料中任取2瓶,设至少取到1瓶已过了保质期饮料为事件A ,从这30瓶饮料中任取2瓶,没有取到1瓶已过了保质期饮料为事件B ,则A 与B 是对立事件,因为()227230C 2713C 1529P B ⨯==⨯,(步骤1) 所以()()145282915132711=⨯⨯-=-=B P A P ,所以填14528.(步骤2)13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升. 【测量目标】等差数列的通项公式.【考查方式】给出实际问题,转化为数列求项的问题,从而联立方程求解,并根据通项公式得出结果.【难易程度】容易 【参考答案】6667 【试题解析】:设该数列{}n a 的首项为1a ,公差为d ,依题意⎩⎨⎧=++=+++439874321a a a a a a a ,即⎩⎨⎧=+=+421336411d a d a ,解得⎪⎪⎩⎪⎪⎨⎧==+6673471d d a ,(步骤1) 则d d a d a a 374115-+=+=6667662134=-=,所以应该填6667.(步骤2) 14.如图,直角坐标系xOy 所在的平面为α,直角坐标系x Oy ''(其中y '轴与y 轴重合)所在的平面为β,45xOx '∠=.(Ⅰ)已知平面β内有一点()P ',则点P '在平面α内的射影P 的坐标为 ; (Ⅱ)已知平面β内的曲线C '的方程是(22220x y ''+-=,则曲线C '在平面α内的射影C 的方程是 .第14题图1【测量目标】曲线与方程,二面角.【考查方式】(1)给出一点的坐标和二面角,根据二面角的定义求解射影点的坐标;(2)给出曲线在一个平面内的方程,根据射影定理求解曲线在另一个平面内的方程. 【难易程度】中等【参考答案】()2,2,()1122=+-y x【试题解析】(Ⅰ)设点P '在平面α内的射影P 的坐标为()y x ,,则点P 的纵坐标和()P '纵坐标相同,所以2=y ,(步骤1) 过点P '作P H Oy '⊥,垂足为H , 连结PH ,则45P HP '∠=,P 的横坐标cos 45x PH P H '== cos 4522x '=== , 所以点P '在平面α内的射影P 的坐标为()2,2;(步骤2)(Ⅱ)由(Ⅰ)得cos 452x x x ''==⨯,y y '=,所以x y y⎧'=⎪⎨'=⎪⎩代入曲线C '的方程 (22220x y ''+-=,得()⇒=-+-0222222y x ()1122=+-y x ,所以射影C 的方程填()1122=+-y x .(步骤3)第14图215.给n 个则上而下相连的正方形着黑色或白色.当4n …时,在所有不同的着色方案中,黑色正方形互不相邻....的着色方案如下图所示:第15题图由此推断,当6=n 时,黑色正方形互不相邻....着色方案共有 种,至少有两个黑色正方形相邻..着色方案共有 种.(结果用数值表示) 【测量目标】合情推理.【考查方式】给出前四项的图象,根据合情推理归纳出后面项的性质求解. 【难易程度】中等 【参考答案】43,21【试题解析】设n 个正方形时黑色正方形互不相邻....的着色方案数为n a ,由图可知, 21=a ,32=a ,213325a a a +=+==, 324538a a a +=+==,由此推断5345813a a a =+=+=,21138546=+=+=a a a ,故黑色正方形互不相邻....着色方案共有21种;(步骤1)由于给6个正方形着黑色或白色,每一个小正方形有2种方法,所以一共有6422222226==⨯⨯⨯⨯⨯种方法,由于黑色正方形互不相邻....着色方案共有21种,所以至少有两个黑色正方形相邻..着色方案共有432164=-种着色方案,故分别填43,21.(步骤2) 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 设ABC △的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC △的周长; (Ⅱ)求()C A -cos 的值.【测量目标】正弦、余弦定理,同角三角函数的基本关系,两角差的余弦.【考查方式】给出三角形的两边长,和第三边所对角的余弦值.(1)根据余弦定理求出第三边长,从而求出三角形的周长;(2)利用同角的三角函数的基本公式求出两个角的正、余弦值,利用两角差的余弦求解.【难易程度】中等【试题解析】(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c∴ABC △的周长为5221=++=++c b a .(步骤1)(Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===cC a A .(步骤2) ∵c a <,∴C A <,故A 为锐角,∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A ,(步骤3) ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. (步骤4) 17.(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20200x 剟时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当0200x剟时,求函数()x v 的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x = 可以达到最大,并求出最大值.(精确到1辆/小时) 【测量目标】求函数的解析式,分段函数,均值不等式求最值,函数的单调性,利用函数单调性求最值.【考查方式】给出实际问题,(1)利用待定系数法求出函数的解析式;(2)运用均值不等式和函数的单调性求出分段函数不同段的最值. 【难易程度】较难【试题解析】(Ⅰ)由题意:当020x <…时,()60=x v ;当20200x剟时,设()b ax x v +=,显然()b ax x v +=在[]200,20是减函数,由已知得⎩⎨⎧=+=+60200200b a b a ,解得⎪⎪⎩⎪⎪⎨⎧=-=320031b a故函数()x v 的表达式为()x v =()60,020,1200,20200.3x x x <⎧⎪⎨-⎪⎩…剟(步骤1)(Ⅱ)依题意并由(Ⅰ)可得()=x f ()60,020,1200,20200.3x x x x x <⎧⎪⎨-⎪⎩…剟当020x <…时,()x f 为增函数,故当20=x 时,其最大值为12002060=⨯;当20200x剟时,()()()220011100002003323x x f x x x +-⎡⎤=-=⎢⎥⎣⎦…,(步骤2) 当且仅当x x -=200,即100=x 时,等号成立.所以,当100=x 时,()x f 在区间[]200,20上取得最大值310000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值100003≈3333,(步骤3)即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时. 18.(本小题满分12分)如图,已知正三棱柱111C B A ABC -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当1=CF 时,求证C A EF 1⊥;(Ⅱ)设二面角E AF C --的大小为θ,求θtan 的最小值.第18题图1【测量目标】异面直线垂直的判定,二面角,线面垂直的判定,空间直角坐标系,空间向量的数量积运算,空间向量的夹角问题. 【考查方式】(法一)(Ⅰ)通过面面垂直到线面垂直,在利用射影定理和三垂线定理求证异面直线的垂直;(Ⅱ)找出二面角的平面角,通过解三角形求解二面角.(法二)建立空间直角坐标系,(Ⅰ)利用空间向量的数量积运算求证;(1)先找出两个平面的两个法向量,再利用法向量的数量积运算求出二面角的大小. 【难易程度】较难 【试题解析】.解法1:过E 作EN AC ⊥于N ,连结EF . (Ⅰ)如图,连结NF 、1AC ,由直棱柱的性质知,底面ABC ⊥侧面1AC , 又底面ABC 侧面1AC AC =,且EN ABC ⊂底面, 所以1,EN AC NF ⊥面侧为EF 在侧面1AC 内的射影.(步骤1)在Rt CNE △中,cos60=1CN CE = . 则由114CF CN CC CA ==,得1NF AC ∥,又11,AC AC ⊥故1NF AC ⊥. 由三垂线定理知1.EF AC ⊥(步骤2)(Ⅱ)如图,连结,AF 过N 作NM AF ⊥于M ,连结ME .由(Ⅰ)知EN ⊥侧面1AC ,根据三垂线定理得EM AF ⊥, 所以EMN C AF E ∠--是二面角的平面角,即,EMN θ∠=(步骤3)设,FAC α∠=则045α<….在Rt CNE △中,sin60NE EC = 在Rt AMN △中,sin =3sin MN AN αα= ,故tan =.3sin NE MN θα=又045α< …,0sin 2α∴<…故当sin 2α=即当45α= 时,tan θ达到最小值,tan θ==此时F 与1C 重合.(步骤4) 解法2:(Ⅰ)建立如图所示的空间直角坐标系,则由已知可得1(0,0,0),(0,4,0),(0,0,4),(0,4,1),A B C A E F于是1(0,4,4),(,1).CA EF =-=则1(0,4,4)(,1)0440,CA EF =-=-+=故1EF AC ⊥.(步骤5) (Ⅱ)设,(04),CF λλ=<…平面AEF 的一个法向量为(,,),x y z m =则由(Ⅰ)得(0,4,).F λ(0,4,),AE AF λ== 于是由,AE AF ⊥⊥m m 可得00AE AF ⎧=⎪⎨=⎪⎩m m即3040y y z λ+=+=⎪⎩,取,,4).λ=-m 又由直三棱柱的性质可取侧面1AC 的一个法向量为(1,0,0)=n ,(步骤6)于是由θ为锐角可得cos θθ===m nm n所以tan θ=由1104,tan 4λθλ<=得,即剠?. 故当4,λ=即点F 与点1C 重合时,tan θ(步骤7)第18题图2 第18题图3 第19题图419.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,且满足:1(0)a a a =≠,n n rS a =+1(n *∈N ,,1)r r ∈≠-R . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在k *∈N ,使得1+k S ,k S ,2+k S 成等差数列,试判断:对于任意的m ∈N *,且2m …,1+m a ,m a ,2+m a 是否成等差数列,并证明你的结论.【测量目标】根据数列的前n 项和写数列的通项公式,等差数列的性质.【考查方式】给出首项、数列前n 和与通项公式的关系式,(1)由此得到数列的递推公式,再分类讨论求出函数的通项公式;(2)利用等差数列的性质求证.【难易程度】较难【试题解析】(Ⅰ)由已知1n n a rS +=,可得21,n n a rS ++=两式相减可得2111(),n n n n n a a r S S ra ++++-=-=即21(1),n n a r a ++=+又21a ra ra ==,所以当0r =时,数列{}n a 为:,0,0a …,,…;当0,1r r ≠≠-时,由已知0,a ≠所以0(),n a n *≠∈N于是由21(1),n n a r a ++=+可得211()n n a r n a *++=+∈N 23,,,n a a a ∴…,…成等比数列,22(1).n n n a r r a -∴=+,…综上,数列{}n a 的通项公式为2,1,(1),2n n a n a r r a n -=⎧=⎨+⎩…(步骤1) (Ⅱ)对于任意的,m *∈N 且122,,,m m m m a a a ++…成等差数列,证明如下:当0r =时,由(Ⅰ)知,,10,2,n a n a n =⎧=⎨⎩… ∴对于任意的,m *∈N 且122,,,m m m m a a a ++…成等差数列;(步骤2) 当0,1r r ≠≠-时,21211,,k k k k k k k S S a a S S a +++++=++=+若存在,k *∈N 使得12,,k k k S S S ++成等差数列,则122,k k k S S S +++=12222k k k k S a a S ++∴++=,即212.k k a a ++=-(步骤3)由(Ⅰ)知,23,,,n a a a …,…的公比12,r +=-于是对于任意的,m *∈N 且12,2,m m m a a +=-…从而24,m m a a +=122,m m m a a a ++∴+=即12,,m m m a a a ++成等差数列.综上,对于任意的,m *∈N 且2,m …12,,m m m a a a ++成等差数列.(步骤4)20. (本小题满分14分)平面内与两定点1(,0),A a -,2(,0)(0)A a a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值的关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m ∈-+∞ ,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点.试问:在1C 上,是否存在点N ,使得12F NF △的面积2S m a =.若存在,求12tan F NF 的值;若不存在,请说明理由.【测量目标】圆锥曲线中的探索性问题,直线的斜率,曲线与方程,空间向量的数量积运算.【考查方式】(Ⅰ)给出两点的坐标,两直线斜率公式得出曲线的方程,再根据m 的取值范围分类讨论C 的形状;(Ⅱ)给定m 的值求出1C 曲线方程和2C 的交点坐标,联立1C 和三角形面积方程,从而再利用空间向量的数量积运算求解.【难易程度】较难【试题解析】(Ⅰ)设动点为M ,其坐标为(,),x y当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a===-+-即222(),mx y ma x a -=≠± 又1(,0)A a -、2(,0)A a 的坐标满足222mx y ma -=,故依题意,曲线C 的方程为222.mx y ma -=(步骤1)当1m <-时,曲线C 的方程为22221,x y a ma+=-C 是焦点在y 轴上的椭圆; 当1m =-时,曲线C 的方程为222,x y a +=C 是圆心在原点的圆;当10m -<<时,曲线C 的方程为22221,x y a ma+=-C 是焦点在x 轴上的椭圆; 当0m >时,曲线C 的方程为22221,x y a ma -=C 是焦点在x 轴上的双曲线.(步骤2) (Ⅱ)由(Ⅰ)知,当1m =-时,1C 的方程为222;x y a +=当(1,0)(0,)m ∈-+∞ 时,2C的两个焦点分别为12((F F -对于给定的(1,0)(0,),m ∈-+∞ 1C 上存在点000(,)(0)N x y y ≠使得2S m a =的充要条件是22200020,0,12.2x y a y m a ⎧+=≠⎪⎨=⎪⎩ ①②由①得00,y a <…由②得0y =当0,a <0,m <或0m <…时, 存在点N ,使2;S m a =,a >即1m -<<或m >时 不存在满足条件的点N .(步骤3)当110,22m ⎡⎫⎛∈⎪ ⎢⎪ ⎣⎭⎝⎦ 时,由100(,),NF x y =-- 200(,),NF x y =-可得22221200(1)NF NF x m a y ma =-++=-令112212,,,NF r NF r F NF θ==∠=则由21212cos ,NF NF rr ma θ==- 可得212,cos ma r r θ=- 从而22121sin 1sin tan ,22cos 2ma S r r ma θθθθ==-=-于是由2S m a =, 可得221tan ,2ma m a θ-=即2tan m mθ=-.(步骤4) 综上可得:当m ⎫∈⎪⎪⎣⎭时,在1C 上,存在点N ,使得2S m a =,且12tan 2;F NF =当m ⎛∈ ⎝⎦时,在1C 上,存在点N ,使得2,S m a =且12tan 2;F NF =-当11(1,()22m ∈-+∞ 时,在1C 上,不存在满足条件的点N .(步骤5) 21.(本小题满分14分)(Ⅰ)已知函数()ln 1f x x x =-+,(0,)x ∈+∞,求函数()f x 的最大值;(Ⅱ)设11,(1,2,,)a b k n =…均为正数,证明:(1)若112212+n n n a b a b a b b b b +++++………,则12121n b b b n a a a ……;(2)若121n b b b ++=…+,则1222212121++n b b b n n b b b b b b n +……剟.【测量目标】利用导数求函数的最值,不等式恒成立问题.【考查方式】(Ⅰ)给出函数,利用导数的运算求出导函数,再利用导函数的单调性得到最值点求解最值;(Ⅱ)利用不等式的基本性质求证.【难易程度】较难【试题解析】(Ⅰ)()f x 的定义域为(0,).+∞令1()10,f x x'=-=解得 1.x = 当01x <<时,()0,f x '>()f x 在(0,1)内是增函数;当1x >时,()0,()f x f x '<在(1,)+∞内是减函数;故函数()f x 在1x =处取得最大值(1)0.f =(步骤1)(Ⅱ)(1)由(Ⅰ)知(0,)x ∈+∞时,有()(1)0,f x f =…即ln 1.x x -…0,k k a b > 从而有ln 1,k k a a -…得ln (1,2,).k k k k k b a a b b k n -=…,…求和得111ln .k n n n b kk k k k k k a a b b ===-∑∑∑…(步骤2) 111,ln 0,k n n n b k k k kk k k a b b a ===∴∑∑∑ 剟即1212ln()0,k b b b k a a a ……12121n b b b n a a a ∴…….(步骤3)(2)①先证12121.n b b b n b b b n…… 令1(1,2,),k k a k n nb ==…,则11111,n n n k k k k k k a b b n ======∑∑∑于是 由(1)得1212111nb b b n nb nb nb ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……1,即1212+121,n n b b b b b b n n n b b b ++=……… 12121.n b b b n b b b n ∴……(步骤4)②再证122221112+.n b b b n n b b b b b b ++………记21.nk k S b ==∑令21111(1,2,,),1,n n n k k k k k k k k k b a k n a b b b S S ========∑∑∑… 于是由(1)的12121,n bb b n b b b S S S ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…… 即121212+222121212,.n n nb b b b bb b b b n n n b b b S S b b b b b b ++=∴++…………+剟 综上①②,(2)得证.(步骤5)。
2024年新课标I卷高考数学真题(含答案)
2024年新课标I 卷高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2011年高考全国数学试卷(新课标)-文科(含详解答案)
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2018年高考数学真题试卷(上海卷)(秋考)含逐题详解
2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名,准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔,水笔或圆珠笔作答非选择题.一,填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E ,F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克,3克,1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
2011年广东高考数学理科试题及答案详解(含有所有题目及详解)
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”. 2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.其中,x y 表示样本均值.n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i -.,1)1()1()12(12z :B i i i i i 故选解析-=-+-=+=【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为xyO 2 2 AA .0B .1C .2D .33. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D .4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM OA =⋅的最大值为 A .42 B .32 C .4 D .3【解析】C;目标函数即2z x y =+,画出可行域如图所示,代入端点比较之,易得当2,2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为C.,O(0,0),,x y ;1A :22故选故直线与圆有两个交点由于直线经过圆内的点组成的集体上的所有点表示直线集合上的所有点组成的集合表示由圆集合解析==+B y xA .63B .93C .123D .183【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为3的四棱柱,又平行四边形的底边长为3,高为3,所以面积 33S =,从而所求几何体的体积93V Sh ==,故选B .8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z =,故必有..1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2006年高考数学试卷(江西卷.理)含详解
2006年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
4.考试结束,监考人员将试题卷和答题卡一并收回。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}2、已知复数z 3i )z =3i ,则z =( )A .322 B. 344 C. 322 D.3443、若a >0,b >0,则不等式-b <1x<a 等价于( ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4、设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA F A ∙ =-4则点A 的坐标是( )A .(2,±) B. (1,±2) C.(1,2)D.(2,)5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)6、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC+,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201 8、在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( ) A.23008 B.-23008 C.23009 D.-230099、P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.910、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=42111、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A. S 1<S 2B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )C理科数学第Ⅱ卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
2011年安徽高考数学理科试卷(带详解)
2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数a 1+2-ii为纯虚数,则实数a 为 ( )A.2B.-2C.1-2D.12【测量目标】复数的基本概念及代数形式的四则运算.【考查方式】给出一个含未知数的复数,令其为纯虚数,运用公式求解. 【难易程度】容易 【参考答案】A 【试题解析】 法一:()()()()()a a a a 1+2+1+2-+2+1==2-2-2+5i i i ii i i 为纯虚数,所以,a a 2-=0=2; 法二:设a b 1+=2-ii i得a b b 1+=+2i i ,所以,b a =1=2; 法三:()a a -1+=2-2-i i i i i为纯虚数,所以a =2; 2.双曲线x y 222-=8的实轴长是( )A.2B.C. 4 【测量目标】双曲线的标准方程.【考查方式】给出一个双曲线方程,求出实轴长. 【难易程度】容易 【参考答案】C【试题解析】双曲线方程可变为x y 22-=148,所以,a a 2=4=2,实轴长a 2=4. 3.设()f x 是定义在R 上的奇函数,当x 0…时,()f x x x 2=2-,则()f 1=( )A.-3B.-1C.1D.3 【测量目标】函数的奇偶性的综合运用.【考查方式】给出在某一区间上一个函数方程,已知函数是奇函数,求解函数值. 【难易程度】容易 【参考答案】A【试题解析】法一:()f x 是定义在R 上的奇函数,且x 0…时, ()f x x x 2=2-()()()()2112113f f ∴=--=--+-=-,故选A.法二:设0x >,则0x -<,()f x 是定义在R 上的奇函数,且x 0…时,()f x x x 2=2-,()()()2222f x x x x x ∴-=---=+,(步骤1)又()()f x f x -=-,()22f x x x ∴=--,()212113f ∴=-⨯-=-,故选A. (步骤2) 4.设变量,x y 满足1,x y +…则2x y +的最大值和最小值分别为( )A.1,-1 B.2,-2 C.1,-2 D.2,-1 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出一个二元不等式,求目标函数的最值. 【难易程度】中等 【参考答案】B【试题解析】 法一:特值验证:当0,1x y ==时,22x y +=,故排除A ,C ;当0,1x y ==-时,22x y +=-,故排除D ,答案为B.法二:画出不等式1,x y +…表示的平面区域,平移目标函数线,易知当直线2x y u +=经过点B ,D 时分别对应u 的最大值和最小值,所以max min 2,2u u ==-.第4题图法三:已知条件是含绝对值的不等式,所以目标函数的最大值和最小值一定互为相反数,易知0,1x y ==时,22x y +=,故选B法四:绝对值不等式表示的区域是以(0,1),(1,0),(0,1),(1,0)--为顶点的正方形,线性规划一定在顶点处取得最优解,带入目标函数计算可得最大值、最小值分别为2,2-. 5.在极坐标系中,点(,)π23到圆2cos ρθ=的圆心的距离为( )A.2 【测量目标】极坐标与参数方程及点到圆心的距离.【考查方式】给出一个点坐标和参数方程,求出点到圆心之间的距离. 【难易程度】容易 【参考答案】D【试题解析】 极坐标(,)π23化为直角坐标:cos cos sin sin x y ρθρθπ⎧==2=1⎪⎪3⎨π⎪==2=⎪3⎩,即圆2cos ρθ=的方程为222x y x +=即22(1)0x y -+=,圆心到点(1故选D. 6.一个空间几何体的三视图如图所示,则该几何体的表面积( )第6题图A.48B.32+C.48+D.80 【测量目标】由三视图求几何体的表面积.【考查方式】给出三视图及其各边边长,求出其表面积. 【难易程度】中等 【参考答案】C【试题解析】几何体是以侧视图等腰梯形为底面的直四棱柱,所以该几何体的表面积为12(24)44421642S =⨯⨯+⨯+⨯+⨯+⨯487=+故选C. 7命题“所有能被2整除的数都是偶数”的否定..是 ( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数都是偶数D.存在一个能被2整除的数不是偶数 【测量目标】含有一个量词的命题的否定.【考查方式】给出含有一个量词的命题,求出其特称命题. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是特称命题,“所有”对于“存在一个”,同时否定结论,答案为D. 8.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,8,B =则满足S A ⊆且S B ≠∅ 的集合S 的个数为( ) A.57 B.56 C.49 D.8 【测量目标】集合间的关系及基本运算.【考查方式】给出两个集合与他们之间的集合关系,求出其中一个集合的个数. 【难易程度】容易 【参考答案】B【试题解析】 法一:集合A 的子集有6264=个,满足S B =∅ 的子集就是集合{1,2,3}的所有子集,一共有328=个,所以集合S 的个数为632264856-=-=.法二:集合S 是集合A 的子集且至少含有集合{4,5,6}的一个元素,所以将S 看作集合{4,5,6}的非空子集与集合{1,2,3}的子集的并集,因此一共有33(21)256-⨯=个.9.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若π()()6f x f …对x ∈R 恒成立,且π()(π)2f f >,则()f x 的单调递增区间是( )A.ππ[π,π]()36k k k -+∈Z B.π[π,π]()2k k k +∈Z C.π2π[π,π]()63k k k ++∈Z D.π[π,π]()2k k k -∈Z 【测量目标】三角函数的单调性、最值.【考查方式】给出一个三角函数及其最值,求出其单调递增区间. 【难易程度】较难 【参考答案】C【试题解析】对x ∈R 时,π()()6f x f …恒成立,所以ππ()sin()163f ϕ=+=±, 可得π5π2π2π66k k ϕϕ=+=-或,(步骤1) 因为π()sin(π)sin (π)sin(2π)sin 2f f ϕϕϕϕ=+=->=+=,故sin 0ϕ<, 所以5π2π6k ϕ=-,所以5π()sin 26f x x ⎛⎫=- ⎪⎝⎭,(步骤2) 函数单调递增区间为π5ππ2π22π262k x k -+-+剟, 所以π2π[π,π]()63x k k k ∈++∈Z ,答案为C. (步骤3) 10.函数()(1)mnf x ax x =-在区间[0,1]上的图象如图所示,则,m n 的值可能是 ( ) A.1,1m n == B.1,2m n == C.2,1m n == D.3,1m n ==第10题图【测量目标】函数图象的应用.【考查方式】给出一个含未知量的复合函数在某一区间的图象,求出未知量. 【难易程度】较难【参考答案】B【试题解析】由图得,原函数的极大值点小于0.5, 当1,1m n ==时,()21(1)(),24a f x ax x a x =-=--+在12x =处有最值,所以A 不可能;(步骤1) 当1,2m n ==时,232()(1)(2),f x ax x a x x x =-=-+()(31)(1)f x a x x '∴=--, 令()100,,3f x x x '=⇒==即函数在13x =处有最值所以B 可能;(步骤2) 当2,1m n ==时,223()(1)(),f x ax x a x x =-=-有2()(32)(23),f x a x x ax x '=-+=- 令()200,,3f x x x '=⇒==即函数在23x =处有最值,所以C 不可能;(步骤3) 当3,1m n ==时,343()(1)()f x ax x a x x =-=-+,有2()(43)f x ax x '=-+, 令()300,,4f x x x '=⇒==即函数在34x =处有最值,所以D 不可能. (步骤4) 第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.如图所示,程序框图(算法流程图)的输出结果是 .第11题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图,阅读并运行程序,得出结果. 【难易程度】中等 【参考答案】15【试题解析】 第1次进入循环体有:00T =+, 第2次有:01T =+,第3次有:012T =++,……第n 次有:012(1)T n =++++- ,(步骤1) 令(1)1052n n T -=>,解得15n >(负值舍去),(步骤2) 故16,n =此时输出15k =.(步骤3) 12.设()x a a x a x a x 2122101221-1=+++L ,则a a 1011+= .【测量目标】二项式定理.【考查方式】给出一个二项式,通过公式展开二项式,求出其中两项系数的和. 【难易程度】容易 【参考答案】0【试题解析】,a a 1011分别是含x 10和x 11项的系数,所以C ,a 111021=-C a 101121=,所以a a 1011+=C C 10112121-=0.13.已知向量,a b 满足()()+2-=-6g a b a b ,且1=a ,2=b ,则a 与b 的夹角为 . 【测量目标】平面向量的夹角问题.【考查方式】给出两个向量之间的关系等式及各自的模长,求出它们之间的夹角. 【难易程度】中等 【参考答案】π3【试题解析】设a 与b 的夹角为θ,依题意有:22(2)()272cos 6θ+-=+-=-+=- a b a b a a b b ,(步骤1) 所以1cos =2θ,(步骤2)因为0πθ剟,故π=3θ.(步骤3) 14.已知ABC △的一个内角为120,并且三边长构成公差为4的等差数列,则ABC △的面积为 .【测量目标】余弦定理及三角形面积.【考查方式】给出一个三角形的内角度数及三边关系,求出三角形的面积. 【难易程度】中等【参考答案】【试题解析】不妨设角120,A c b =<,则4,4a b c b =+=-,于是222(4)(4)1cos1202(4)2b b b b b +--+==--,解得=10b ,所以1=sin1202S bc = .15.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是 .(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线【测量目标】新定义,直线的性质,命题的判定.【考查方式】给出一个新定义,根据新定义判断给出五个命题的正确性. 【难易程度】较难 【参考答案】①③⑤【试题解析】①正确,如直线12y =+,不经过任何整点(10,2x y ==;0x ≠,y 是无理数)(步骤1)②错误,直线y =k 与b 都是无理数,但直线经过整点(1,0);(步骤2) ③正确,当直线经过两个整点时,它经过无数多个整点;(步骤3) ④错误,当10,2k b ==时,直线12y =不通过任何整点;(步骤4)⑤正确,比如直线y =只经过一个整点(0,0).(步骤5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的指定区域内.16.(本小题满分12分)设2e ()1xf x ax =+,其中a 为正实数.(Ⅰ)当34=a 时,求)(x f 的极值点; (Ⅱ)若)(x f 为R 上的单调函数,求a 的取值范围【测量目标】导数的运算,利用导数求函数的极值,利用函数的单调性求参数范围. 【考查方式】给出一个含参数函数,(Ⅰ)给出参数的值求极值点,(Ⅱ)给出其单调性,求参数的取值范围.【难易程度】中等【试题解析】对)(x f 求导得22212()e (1)xax axf x ax +-'=+①(步骤1)(Ⅰ)当34=a 时,若0)(='x f ,则03842=+-x x ,解得21,2321==x x (步骤2) 结合①,可知所以,21=x 是极小值点,22=x 是极大值点. (步骤3) (Ⅱ)若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件0a >,知2210ax ax -+…(步骤4)在R 上恒成立,因此2444(1)0a a a a ∆=-=-…,由此并结合0a >,知01a <….(步骤5) 17.(本小题满分12分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1,2OA OD ==,,,,OAB OAC ODE ODF △△△△都是正三角形.(Ⅰ)证明直线BC EF ; (Ⅱ)求棱锥F OBED -的体积.第17题图【测量目标】线线平行的判定,棱锥的体积,空间向量及其运算.【考查方式】给出一个多面体,其中两个面互相垂直,有4个正三角形,证明两条直线平行和求解棱锥的体积.【难易程度】较难 【试题解析】(Ⅰ)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于OAB △与ODE△都是正三角形,所以1,2OB DE=2OG OD =,(步骤1) 同理,设G '是线段DA 与线段FC 延长线的交点,有2OG OD '==,又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合. (步骤2)在GED △和GFD △中,由12OB DE 和12OC DF , 12OC DF =,12OB DE =可知,B C 分别是GE 和GF 的中点,所以BC 是GEF △的中位线,故BC EF .(步骤3)(向量法)过点F 作FQ AD ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系.由条件知E ),F (,B (3,022-),C (30,,22-). (步骤1) 则有)23,0,23(-=,)3,0,3(-=EF .(步骤2) 所以2=,即得BC EF .(步骤3)第17题(Ⅰ)图(Ⅱ)由1,2,60OB OE EOB ==∠= ,知EOB S =(步骤4)而ODE △是边长为2的正三角形,故OED S =所以OBED EOB ODE S S S =+=233.(步骤5) 过点F 作FQ AD ⊥,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F OBED -的高,且FQ =,所以13.32F OBED OBED V FQ S -== (步骤6) 18.(本小题满分13分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令n n T a lg =,1n …. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan n n n b a a += ,求数列{}n b 的前n 项和n S .【测量目标】对数和指数的运算,两角差的正切公式,等比和等差数列及其前n 项和. 【考查方式】考查灵活运用基本知识解决问题的能力,创新思维能力和运算求解能力. 【难易程度】较难【试题解析】(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则1212n n n T t t t t ++=①(步骤1)2121n n n T t t t t +⋅+= ②(步骤2)①×②并利用231210,(12)i n i n t t t t in +-+==+ 剟,得)2(2210+=n n T ,lg 2, 1.n n a T n n ∴==+…(步骤3) (Ⅱ)由题意和(Ⅰ)中计算结果,知tan(2)tan(3),1n b n n n =++ …(步骤4) 另一方面,利用tan(1)tan tan1tan((1))1tan(1)tan k kk k k k+-=+-=-+得tan(1)tan tan(1)tan 1tan1k kk k +-+=- (步骤5)所以22133tan(1)tan tan(3)tan 3tan(1)tan (1)tan1tan1nn n n i i i i k k n S b k k n ++===+-+-==+=-=-∑∑∑ (步骤6)19.(本小题满分12分) (Ⅰ)设1,1,x y厖证明111x y xy xy x y++++…; (Ⅱ)设1,a bc <剟证明log log log log log log a b c b c a b c a a b c ++++….【测量目标】基本不等式证明不等式.【考查方式】考查对数函数的性质和对数换底公式, 不等式的性质等基本知识,考查代数式的恒等变形和推理论证能力. 【难易程度】中等【试题解析】证明:(Ⅰ)由于1,1,x y 厖所以111x y xy xy x y++++…(步骤1) 2()1()xy x y y x xy ⇔++++…(步骤2)将上式中的右式减左式,得22(())(()1)(()1)(()())y x xy xy x y xy xy x y x y ++-++=--+-+(1)(1)()(1)(1)(1)(1)(1)(1)xy xy x y xy xy xy x y xy x y =+--+-=---+=--- 既然1,1,x y 厖所以(1)(1)(1)0xy x y ---…,从而所要证明的不等式成立. (步骤3)(Ⅱ)设y c x b b a ==log ,log ,由对数的换底公式得xy c yb x a xy a ac b c ====log ,1log ,1log ,1log (步骤4) 于是,所要证明的不等式即为111x y xy xy x y++++…(步骤5) 其中log 1,log 1a b x b y c==厖,故由(Ⅰ)立知所要证明的不等式成立. (步骤6)20.(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟.如果前一个人10分钟内不能完成任务则撤出,再派下一个人,现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为123,,P P P ,假设123,,P P P 互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先、乙次之、丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为321,,q q q ,其中321,,q q q 是123,,P P P 的一个排列,求所需派出人员数目X 的分布列和均值(数学期望)EX ;(Ⅲ)假定1231P P P >>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小.【测量目标】随机事件与概率,离散型随机变量的期望.【考查方式】考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类讨论思想,应用意识与创新意识.【难易程度】较难【试题解析】(Ⅰ)无论以怎样的顺序派出人员,任务不能被完成的概率都是123(1)(1)(1)P P P ---,(步骤1)所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于1231231213231231(1)(1)(1)P P P P P P PP PP P P PP P ----=++---+(步骤2)(Ⅱ)当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是EX =1q +21)1(q q -+)1)(1(21q q --=212123q q q q +--(步骤3)(Ⅲ)(方法一)由(Ⅱ)的结论知,当甲最先、乙次之、丙最后的顺序派人时,EX =212123q q q q +--根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于123,,P P P 的任意排列321,,q q q ,都有121212123232q q q q P P PP --+--+…(*)(步骤4)事实上, 12121212(32)(32)q q q q P P PP ∆=--+---+(步骤5)112212122()()P q P q PP q q =-+--+1122112122211122112122()()()()(2)()(1)()(1)[()()]0P q P q P q P q P q P P q q P q q P P q q =-+-----=--+---+-+……即(*)成立. (步骤6)(方法二)(ⅰ)可将(Ⅱ)中所求的EX 改写为12121)(3q q q q q -++-,若交换前两人的派出顺序,则变为22121)(3q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减少均值. (步骤4)(ⅱ)也可将(Ⅱ)中所求的EX 改写为211)1(23q q q ---,若交换后两人的派出顺序,则变为111)1(23q q q ---.由此可见,若保持第一个派出的人选不变,当12q q <时,交换后两人的派出顺序也可减少均值. (步骤5)综合(ⅰ)(ⅱ)可知,当123(,,)P P P =),,(321q q q 时,EX 达到最小.即完成任务概率大的人优先派出,可减少所需派出人员数目的均值,这一结论是合乎常理的. (步骤6)21.(本小题满分13分)设0>λ,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点Q 满足λ=,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足λ=,求点P 的轨迹方程.第21题图【测量目标】直线与抛物线的位置关系,圆锥曲线中的轨迹问题.【考查方式】考查直线和抛物线的方程,平面向量的概念,性质与运算,动点的轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力.【难易程度】较难【试题解析】由λ=知,,Q M P 三点在同一条垂直于x 轴的直线上,故可设(),,P x y ()0,,Q x y (步骤1)()2,,M x x 则)(202x y y x -=-λ,即y x y λλ-+=20)1( ①(步骤2)再设),(11y x B ,由QA BQ λ=,即)1,1(),(0101y x y y x x --=--λ,解得110(1),(1)x x y y λλλλ=+-⎧⎨=+-⎩ ②(步骤3)将①式代入②式,消去0y ,得1221(1),(1)(1)x x y x y λλλλλλ=+-⎧⎨=+-+-⎩ ③(步骤4) 又点B 在抛物线2x y =上,所以211x y =,再将③式代入211x y =,得,))1(()1()1(222λλλλλλ-+=-+-+x y x (步骤5) 整理得0)1()1()1(2=+-+-+λλλλλλy x 因0>λ,两边同除以)1(λλ+,得 012=--y x故所求点P 的轨迹方程为12-=x y .(步骤6)。
2023年高考全国甲卷理科数学试题真题(含答案详解)
2023年高考全国甲卷理科数学试题一、单选题34 ..已知向量,,a b c 满足1,2a b c ===,且0a b c ++=,则cos ,a c b c 〈--〉=( B .25- C .25 D .45.设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =和5354S S =-,则4S =B .658 C .15 D .40,则PBC的面积为(23 5PF=,则二、填空题.在ABC中∠三、解答题nS为数列}na的通项公式;ABC A B C中,111上两点0⋅=,求FM FN⎫⎪⎭的取值范围.α2023年高考全国甲卷理科数学试题答案详解一、单选题 1.设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,∁U (M ∪N)=( ) A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣ C .{32,}xx k k Z =-∈∣ D .∅ 【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z = 所以,∁U (M ∪N )={x|x =3k,k ∈Z }.故选:A .2.设()()R,i 1i 2,a a a ∈+-=,则=a ( )A .-1B .0 ·C .1D .2【答案】C【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=。
所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.3.执行下面的程序框图,输出的B =( )A .21B .34C .55D .89【答案】B.已知向量,,a b c 满足1,2a b c ===,且0a b c ++=,则cos ,a c b c 〈--〉=( B .25- C .25 D .45【分析】作出图形,根据几何意义求解.【详解】因为0a b c ++=,所以a ⃗+即2222a b a b c ++⋅=,即1+1+2a 所以0a b ⋅=. 如图,设,,OA a OB b OC c ===,2,OAB 是等腰直角三角形22, 322=, 310ACD =, ,cos a c b c ACB 〈--〉=∠:D..设等比数列{}n a 的各项均为正数,前1582q.+=.815.某地的中学生中有60%的同学爱好滑冰,生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为(3π3π7π3π3π7π11,则PBC 的面积为(利用全等三角形的证明方法依次证得PDO PCO ≅和PDB PCA ≅,从而得到PA ,由此在PBC 中利用余弦定理与三角形面积公式即可得解;和1cos 3PCB ∠=,从而求得3PA PC ⋅=-,再利用空间向量的数量从而求得17PB =,由此在PBC 中利用余弦定理与三角形面积公,所以PDO PCO ≅,则∠,所以PDB PCA ≅,则PA 45PCA =︒。
2011年全国各地高考理科数学试题汇编汇总(江西.文)含详解
2011年全国各地高考数学试题(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh =其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log21xxxx4.曲线xy e=在点A(0,1)处的切线斜率为( )A.1B.2C.eD.1e答案:A 解析:1,0,0'===exey x5.设{na}为等差数列,公差d = -2,nS为其前n项和.若1011S S=,则1a=( )A.18B.20C.22D.24答案:B 解析:20,10,1111111110=∴+==∴=adaaaSS6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====fffffxf x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为em,众数为om,平均值为x,则( )A.e om m x== B.e om m x=<C.e om m x<< D.o em m x<<答案:D 计算可以得知,中位数为 5.5,众数为5所以选D父亲身高x(cm) 174 176 176 176 178儿子身高y(cm) 175 175 176 177 177A.y = x-1B.y = x+1C.y = 88+12x D.y = 176C 线性回归方程bxay+=,()()()∑∑==---=niiniiixxyyxxb121,x bya-=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
高考数学10年真题专题解析—常用逻辑用语
常用逻辑用语年份题号考点考查内容2011课标卷理10命题及其关系平面向量模与夹角、命题真假判断2012新课标理2命题及其关系复数的概念与运算、命题真假的判定2014卷1理9全称量词与特称量词二元一次不等式表示的平面区域、全称命题与特称命题真假的判定卷2文3充分条件与必要条件导数与极值的关系、充要条件的判定2015卷1理3全称量词与特称量词特称命题的否定2017卷1理2命题及其关系复数的有关概念与运算2019卷2理7充分条件与必要条件面面平行的判定与性质、充要条件判定卷3文111.全称量词与特称量词2.简单逻辑联结词二元一次不等式表示的平面区域、全称命题与特称命题真假判断、含逻辑联结词命题的判定2020卷2文理16简单逻辑联结词含逻辑联结词命题真假的判断卷3理16命题及其关系命题真假的判断,三角函数图象及其性质考点出现频率2021年预测考点5命题及其关系4/102021年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假判断、特称命题与全称命题真假判断及其否定的书写、充要条件的判定,其中充要条件判定为重点.考点6简单逻辑联结词2/10考点7全称量词与特称量词3/10考点8充分条件与必要条件2/10考点5命题及其关系1.(2020新课标III 理16)关于函数()1sin sin f x x x=+.①()f x 的图像关于y 轴对称;②()f x 的图像关于原点对称;③()f x 的图像关于2x π=对称;④()f x 的最小值为2.其中所有真命题的序号是.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,∴函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误,故答案为:②③.2.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3p B .1p ,4p C .2p ,3p D .2p ,4p 【答案】B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .3.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈3:||1[0,3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈其中真命题是A .14,p p B .13,p p C .23,p p D .24,p p【答案】A 【解析】由1a b +==>得,1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
2018年高考数学真题试卷(理)(天津卷)含逐题详解
2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名,准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()R A C B = (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45 (3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件 (5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -=(C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ⋅的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2019年高考数学真题试卷(上海卷)(春考)含逐题详解
2019年上海市春季高考数学试卷2019.01一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4,5}A =,{3,5,6}B =,则AB =2. 计算:22231lim 41n n n n n →∞-+=-+ 3. 不等式|1|5x +<的解集为 4. 函数2()f x x =(0)x >的反函数为5. 设i 为虚数单位,3i 65i z -=+,则||z 的值为6. 已知二元线性方程组22214x y x a y a+=-⎧⎨+=⎩有无穷多解,则实数a =7. 在61()x x+的二项展开式中,常数项的值为 8. 在ABC 中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB =9. 首届中国国际进口博览会在上海举行,某高校拟派4人参与连续5天的志愿者活动,其 中甲连续参加2天,其余每人各参加1天,问有多少种不同的安排种数 (结果用数值表示)10. 如图,正方形OABC 的边长为a (1)a >,函数23y x =交 AB 于点Q ,函数12y x -=与BC 交于点P ,当||||AQ CP + 最小时,a 的值为11. 已知P 为椭圆22142x y +=上任意一点,Q 与P 关于x 轴对称,1F ,2F 为椭圆的左右焦点,若有121F P F P ⋅≤,则向 量1F P 与2F Q 的夹角范围为12. 已知t ∈R ,集合[,1][4,9]A t t t t =+++,0A ∉,若存在正数λ,对任意a A ∈. 都有A aλ∈,则t 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 下列函数中,值域为[0,)+∞的是( )A. 2x y =B. 12y x = C. tan y x = D. cos y x = 14. 已知a ,b ∈R ,则“22a b >”是“||||a b >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件15. 已知平面α,β,γ两两垂直,直线a ,b ,c 满足:a α⊆,b β⊆,c γ⊆,则直线a ,b ,c 不可能是( )A. 两两垂直B. 两两平行C. 两两相交D. 两两异面16. 平面直角坐标系中,两动圆1O ,2O 的圆心分别为1(,0)a ,2(,0)a ,且两圆均过定点(1,0). 两圆与y 轴正半轴分别交于点1(0,)y ,2(0,)y ,若12ln ln 0y y +=,点1211(,)a a 的轨迹为Γ. 则Γ所在的曲线可能是( )A. 直线B. 圆C. 椭圆D. 双曲线三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,正三棱锥P ABC -中,侧棱长为2,底面边长为3,M ,N 分别是PB 和BC 的中点. (1)求异面直线MN 与AC 所成角的大小. (2)求三棱锥P ABC -的体积.18. 已知数列{}n a 中,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S .(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19. 改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍. 卫生总费用包 括个人现在支出,社会支出,政府支出,下表为2012年~2015年我国卫生费用中个人现金 支出,社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用 (亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元) 占卫生总费用比重(%) 绝对数(亿元) 占卫生总费用比重(%) 绝对数(亿元) 占卫生总费用比重(%) 2012 28119.00 9656.32 A 10030.70 35.67 8431.98 29.99 2013 31668.95 10729.3433.88 11393.79 35.98 9545.81 30.14 2014 35312.40 B 31.99 13437.75 38.05 10579.23 29.96 201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)计算A ,B 的数据,并指出2012年到2015年之间我国卫生总费用中个人现金支出占 比和社会支出占比的变化趋势.(2)设1t =表示1978年,第n 年卫生总费用与年份t 之间拟合函数 6.44200.1136357876.6053()1tf t e -=+.研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.20. 已知抛物线24y x =,F 为焦点,P 为准线l 上一动点,线段PF 与抛物线交于点Q . 定义||()||FP d P FQ =. (1)若点P 坐标为8(1,)3--,求()d P .(2)求证:存在常数a ,使得2()||d P FP a =+恒成立.(3)设1P ,2P ,3P 为准线l 上的三点,且1223||||PP P P =,试比较13()()d P d P +与22()d P 的大小.21. 若{}n a 是等差数列,公差(0,]d π∈,数列{}n b 满足:sin()n n b a =,n ∈*N . 记{|,}n S x x b n ==∈*N . (1)设10a =,23d π=,求集合S . (2)设12a π=,试求d 的值,使得集合S 恰有两个元素.(3)若集合S 恰有三个元素,且n T n b b +=,其中T 为不超过7的正整数,求T 所有可能值.2019年上海市春季高考数学试卷2019.01一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4,5}A =,{3,5,6}B =,则AB =2. 计算:22231lim 41n n n n n →∞-+=-+ 3. 不等式|1|5x +<的解集为 4. 函数2()f x x =(0)x >的反函数为5. 设i 为虚数单位,3i 65i z -=+,则||z 的值为6. 已知二元线性方程组22214x y x a y a+=-⎧⎨+=⎩有无穷多解,则实数a =7. 在61()x x+的二项展开式中,常数项的值为 8. 在ABC 中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB =9. 首届中国国际进口博览会在上海举行,某高校拟派4人参与连续5天的志愿者活动,其 中甲连续参加2天,其余每人各参加1天,问有多少种不同的安排种数 (结果用数值表示)10. 如图,正方形OABC 的边长为a (1)a >,函数23y x =交 AB 于点Q ,函数12y x -=与BC 交于点P ,当||||AQ CP + 最小时,a 的值为11. 已知P 为椭圆22142x y +=上任意一点,Q 与P 关于x 轴对称,1F ,2F 为椭圆的左右焦点,若有121F P F P ⋅≤,则向 量1F P 与2F Q 的夹角范围为12. 已知t ∈R ,集合[,1][4,9]A t t t t =+++,0A ∉,若存在正数λ,对任意a A ∈. 都有A aλ∈,则t 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 下列函数中,值域为[0,)+∞的是( )A. 2x y =B. 12y x = C. tan y x = D. cos y x = 14. 已知a ,b ∈R ,则“22a b >”是“||||a b >”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件15. 已知平面α,β,γ两两垂直,直线a ,b ,c 满足:a α⊆,b β⊆,c γ⊆,则直线a ,b ,c 不可能是( )A. 两两垂直B. 两两平行C. 两两相交D. 两两异面16. 平面直角坐标系中,两动圆1O ,2O 的圆心分别为1(,0)a ,2(,0)a ,且两圆均过定点(1,0). 两圆与y 轴正半轴分别交于点1(0,)y ,2(0,)y ,若12ln ln 0y y +=,点1211(,)a a 的轨迹为Γ. 则Γ所在的曲线可能是( )A. 直线B. 圆C. 椭圆D. 双曲线三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,正三棱锥P ABC -中,侧棱长为2,底面边长为3,M ,N 分别是PB 和BC 的中点. (1)求异面直线MN 与AC 所成角的大小. (2)求三棱锥P ABC -的体积.18. 已知数列{}n a 中,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S .(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19. 改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍. 卫生总费用包 括个人现在支出,社会支出,政府支出,下表为2012年~2015年我国卫生费用中个人现金 支出,社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用 (亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元) 占卫生总费用比重(%) 绝对数(亿元) 占卫生总费用比重(%) 绝对数(亿元) 占卫生总费用比重(%) 2012 28119.00 9656.32 A 10030.70 35.67 8431.98 29.99 2013 31668.95 10729.3433.88 11393.79 35.98 9545.81 30.14 2014 35312.40 B 31.99 13437.75 38.05 10579.23 29.96 201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)计算A ,B 的数据,并指出2012年到2015年之间我国卫生总费用中个人现金支出占 比和社会支出占比的变化趋势.(2)设1t =表示1978年,第n 年卫生总费用与年份t 之间拟合函数 6.44200.1136357876.6053()1tf t e -=+.研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.20. 已知抛物线24y x =,F 为焦点,P 为准线l 上一动点,线段PF 与抛物线交于点Q . 定义||()||FP d P FQ =. (1)若点P 坐标为8(1,)3--,求()d P .(2)求证:存在常数a ,使得2()||d P FP a =+恒成立.(3)设1P ,2P ,3P 为准线l 上的三点,且1223||||PP P P =,试比较13()()d P d P +与22()d P 的大小.21. 若{}n a 是等差数列,公差(0,]d π∈,数列{}n b 满足:sin()n n b a =,n ∈*N . 记{|,}n S x x b n ==∈*N . (1)设10a =,23d π=,求集合S . (2)设12a π=,试求d 的值,使得集合S 恰有两个元素.(3)若集合S 恰有三个元素,且n T n b b +=,其中T 为不超过7的正整数,求T 所有可能值.参考答案一. 填空题1. {3,5}2. 23. (6,4)-4. 1()f x -=(0)x >5. 6. 2- 7. 15 8.9. 24 10. 11. 1[arccos ,]3ππ- 12. 3-或1二. 选择题13. B 14. C 15. B 16. A三. 解答题17.(1),(2)34. 18.(1)22n S n n =+,(2)3(1,0)(0,)4-. 19.(1):34.34A ,:11295.41B ,个人现金支出占比逐渐减少,社会支出占比逐渐增多. (2)单调递增,51t =,2028年首次超过12万亿. 20.(1)83,(2)2a =,(3)132()()2()d P d P d P +>.21.(1){,(2)23d π=或d π=,(3)3,4,5,6.。
2011年高考数学真题(全国Ⅱ.理)含详解
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题上作答无效........。
3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z =1+,z 为z 的共轭复数,则z z -z -1=(A )-2 (B )- (C ) (D )2(2)函数y =x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k =(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9 (6)已知直二面角α –ι- β, 点A ∈α ,AC ⊥ ι ,C 为垂足,B ∈β,BD ⊥ ι,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )3(B (C) (D) 1 (7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D)20种(8)曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A )13 (B )12 (C )23 (D )1(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则5()2f -= (A )12- (B )14- (C )14 (D )12(10)已知抛物线C:2y =4x 的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos(A) 54 (B)53 (C).—53 (D) —54(11)已知平面α截一球面得圆M,过圆心M 且与 成60 二面角的平面β截该球面得N 。
2024年高考全国甲卷数学(理)真题卷(含答案与解析).
绝密★启用前2024年普通高等学校招生全国统一考试理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A 10iB. 2iC. 10D. 2-2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,53. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2-B.73C. 1D. 25. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4B. 3C. 2D.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) .A.16B.13C.12D.237. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.8.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 19. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件 B. “3x =-”是“//a b r r”的必要条件 C. “0x =”是“a b ⊥r r ”充分条件D. “1x =-”是“//a b r r”的充分条件10. 设αβ、两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )的是为A. 2B. 3C. 4D. 二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______. 15. 已知1a >,8115log log 42a a -=-,则=a ______. 16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间 26 24 0 50 乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82818. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21 已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程; (2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A. 10iB. 2iC. 10D. 2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A2. 集合{}}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,5.【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解. 【详解】因为{}}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B =I ,(){}2,3,5A A B =I ð 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2- B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭. 故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( ) A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F -、()20,4F 、()6,4-P , 则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=. 故选:A.7. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B. 8. 已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B. 1-C.D. 1【答案】B 【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭, 故选:B .9. 已知向量()()1,,,2a x x b x =+=r r,则( )A. “3x =-”是“a b ⊥r r”的必要条件B. “3x =-”是“//a b r r”的必要条件C. “0x =”是“a b ⊥r r”的充分条件D. “1x =-”是“//a b r r”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥r r 时,则0a b ⋅=r r,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==r r ,故0a b ⋅=r r,所以a b ⊥r r,即充分性成立,故C 正确;对B ,当//a b r r时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b r r不成立,即充分性不立,故D 错误. 故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.D.【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A. 2B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5 【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =, 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭. 故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台高分别为)12h r r==-甲,)12h r r==-乙,所以V hV h====甲甲乙乙.15. 已知1a>,8115log log42aa-=-,则=a______.【答案】64【解析】【分析】将8log,log4aa利用换底公式转化成2log a来表示即可求解.【详解】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=,2log1a⇒=-或2log6a=,又1a>,所以622log6log2a==,故6264a==故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b,第三个球的号码为c,则的323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种, 设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品 合格品 不合格品总计 甲车间262450乙车间 70 28 2 100 总计96522150(1)填写如下列联表:优级品非优级品甲车间 乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥0.050 0.010 0.001 k3.841 6.63510828【答案】(1)答案见详解(2)答案见详解 【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析; (2)用频率估计概率可得0.64p =,根据题意计算p +. 【小问1详解】 根据题意可得列联表:.优级品非优级品甲车间 26 24 乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯, 因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异. 【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+ 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+ 【解析】【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-, ∴数列{}n a 是以4为首项,3-为公比的等比数列, 所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++L 0211438312343n n -=⋅+⋅+⋅++⋅L 故1233438312343nn T n =⋅+⋅+⋅++⋅L 所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅L()1313444313n nn --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值. 【答案】(1)证明见详解;(2【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解. 【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =, 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM V 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM V 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==u u u u r u u u r,()2,3BE =u u u r ,设平面BFM 的法向量为()111,,m x y z =r,平面EMB 的法向量为()222,,n x y z =r,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =r ,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u r r,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-r,11cos ,13m n m n m n ⋅===⋅r r r r r r,则sin ,m n =r r , 故二面角F BM E --20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=, 故()()422Δ102443464120k kk=-+->,故1122k -<<, 又22121222326412,3434k k x x x x k k -+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Qy y y x x --==--, 所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==-- 2222212824160243234025k k k k k x --+++==-, 故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 【答案】(1)极小值为0,无极大值.(2)12a ≤- 【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值. (2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围. 【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-, 故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值. 【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数, 故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数, 故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-. 【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a = 【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;在法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值. 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥. 【答案】(1)证明见解析.(2)证明见解析 【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明. (2)根据绝对值不等式并结合(1)中结论即可证明. 【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥, 当a b =时等号成立,则22222()a b a b +≥+, 因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=绝密★启用前2024年普通高等学校招生全国统一考试文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,92.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 23. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2-B.73C. 1D.295. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.236. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )A. 4B. 3C. 2D.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( ) A.16B.C.12D. 8. 函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-大致图像为()A. B.C. D.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成角相等,则m n ⊥其中所有真命题的编号是( ) A. ①③B. ②④C. ①②③D. ①③④11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A.32B.C.D.二、填空题:本题共4小题,每小题5分,共20分.原13题略的的12. 函数()sin f x x x =在[]0,π上的最大值是______. 13. 已知1a >,8115log log 42a a -=-,则=a ______. 14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17. 已知函数()()1ln 1f x a x x =--+. (1)求()f x 单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.18. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.的的(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 直角坐标方程; (2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =I ( )A. {}1,2,3,4B. {}1,2,3C. {}3,4D. {}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算. 【详解】依题意得,对于集合B 中元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =, 于是{1,2,3,4}A B ⋂=. 故选:A 2.设z =,则z z ⋅=( )A. -iB. 1C. -1D. 2【答案】D 【解析】的的【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=. 故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( )A. 5B.12C. 2-D. 72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A. 2- B.73C. 1D.29【答案】D【解析】【分析】可以根据等差数列基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质 根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=. 故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D5. 甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意; 基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B6. 已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为( )的A. 4B. 3C. 2D.【答案】C【解析】 【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===. 故选:C.7. 曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为( )A. 16B.C. 12 D. 【答案】A【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-, 故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯= 故选:A. 8. 函数()()2e e sin x x f x x x -=-+-在区间[ 2.8,2.8]-的大致图像为( )A. B.C. D. 【答案】B【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=, 又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭, 故可排除D.故选:B.9.已知cos cos sin ααα=-,则πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1-C.D. 1【答案】B【解析】 【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+⎪-α⎝⎭, 故选:B .原10题略10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=I .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥ ③若//n α,且//n β,则//m n④若n 与α和β所成的角相等,则m n ⊥其中所有真命题编号是( )A. ①③B. ②④C. ①②③D. ①③④ 【答案】A 的【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=I ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11. 在ABC V 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A. 32B.C.D. 【答案】C【解析】 【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A C B ==. 由余弦定理可得:22294b ac ac ac =+-=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==, 所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +=. 故选:C. 二、填空题:本题共4小题,每小题5分,共20分.原13题略12. 函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==- ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦, 当ππ32x -=时,即5π6x =时,()max 2f x =. 故答案为:213. 已知1a >,8115log log 42a a -=-,则=a ______. 【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14. 曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______. 【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+> 则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =, 当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15. 已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.。
2024 年高考全国甲卷数学(理科)真题卷含答案
2024年高考全国甲卷数学(理)一、单选题1.设5i z =+,则()i z z +=( )2.集合{}1,2,3,4,5,9,A BA ==,则∁AA (AA ∩BB )=( )A .{}1,4,9B .{}3,4,9C .{}1,2,3D .{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A .2− B .73C .1D .25.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A .16B .13C .12D .237.函数()()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .8.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .19.已知向量()()1,,,2a x x b x =+=,则( )A .“3x =−”是“a b ⊥”的必要条件B .“3x =−”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =−”是“//a b”的充分条件是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC D12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( ) A .2B .3C .4D .【答案】C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −= += 得12x y = =− ,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,故选C二、填空题13.1013x +的展开式中,各项系数的最大值是 .14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙.15.已知1a >,8115log log 42a a −=−,则=a . 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .三、解答题17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间26 24 0 50乙车间70 28 2 100总计96 52 2 150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++()2P K k≥0.050 0.010 0.001 k 3.841 6.635 10.82818.记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式;(2)设1(1)n n n b na −−,求数列{}n b 的前n 项和为n T .4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =−+−.(1)当2a =−时,求()f x 的极值; 0f x ≥恒成立,求a 的取值范围.中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a = =+(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.满足.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.。
2008年高考数学试卷(江西.理)含详解
准考证号 姓名(在此卷上答题无效)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C kn P k (1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数sin 2cos2z i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为A .0B .2C .3D .63.若函数()y f x =的值域是1,32⎡⎤⎢⎥⎣⎦,则函数()()1()F x f x f x =+的值域是A .[21,3] B .[2,310] C .[25,310] D .[3,310] 4.123lim1--+→x x x =A .21 B .0 C .-21D .不存在 5.在数列{}n a 中,1112,ln 1n n a a a n +⎛⎫==++⎪⎝⎭,则n a = A .2ln n + B .()21ln n n +- C .2ln n n + D .1ln n n ++ 6.函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是A B C D7.已知12F F 、是椭圆的两个焦点.满足1MF ·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .(0,21] C .(0,22) D .[22,1)8.(1+3x )6(1+41x)10展开式中的常数项为A .1B .46C .4245D .42469.若12120,0a a b b <<<<,且12121a a b b +=+=,则下列代数式中值最大的是A .1122a b a b +B .1212a a b b +C .1221a b a b +D .2110.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 A .1801 B .2881 C .3601 D .480112.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)绝密★启用前2008年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则AE ·AF = .14.不等式132+-xx ≤21的解集为 . 15.过抛物线()220x py p =>的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则FBAF= . 16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图2).有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 经过点PD .若往容器内再注入a 升水,则容器恰好能装满其中真命题的代号是 .(写出所有真命题的代号) .三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中.a 、b 、c 分别为角A 、B 、C 所对的边长,a =23,tan 2B A ++tan 2C =4,sin B sin C =cos 22A.求A 、B 及b 、c .18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令()1,2i i ξ=表示方案i 实施两年后柑桔产量达到灾前产量的倍数. (1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大? 19.(本小题满分12分)等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.(1)求n a 与n b ; (2)证明:11S +21S +……+n S 1<43.20.(本小题满分12分)正三棱锥O ABC -的三条侧棱OA OB OC 、、两两垂直,且长度均为2.E F 、分别是AB AC 、的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA OB OC 、、或其延长线分别相交于111A B C 、、,已知132OA =. (1)证明:11B C ⊥平面OAH ; (2)求二面角111O A B C --的大小.21.(本小题满分12分)设点()00,P x y 在直线(),01x m y m m =≠±<<上,过点P 作双曲线221x y -=的两条切线PA PB 、,切点为A B 、,定点M (m1,0). (1)过点A 作直线0x y -=的垂线,垂足为N ,试求△AMN 的重心G 所在的曲线方程;(2)求证:A M B 、、三点共线. 22.(本小题满分14分) 已知函数()f x =x+11+a+11+8+ax ax,x ∈(0,+∞).(1)当8a =时,求()f x 的单调区间; (2)对任意正数a ,证明:()12f x <<.2008年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一.选择题:本大题共12小题,每小题5分,共60分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n+++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0)B. (21-,0]C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini iiy y x x yyx x r 12121 第一组变量正相关,第二组变量负相关。
(7) 观察下列各式:,...,781255,156255,31255765===则20115的末四位数字为 ( )A.3125B. 5625C.0625D.8125 答案:D 解析:()()()()()()()8125***2011,12008420113906258,781257,156256,31255,6254,5=∴-=-======f f f f f f x f x(8) 已知321,,ααα是三个相互平行的平面,平面21,αα之间的距离为1d ,平面32,αα之间的距离为2d .直线l 与321,,ααα分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P = 如果3221P P P P =,同样是根据两个三角形全等可知21d d =(9) 若曲线02221=-+x y x C :与曲线0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( ) A. )33,33(-B. )33,0()0,33(⋃-C. ]33,33[-D. ),33()33,(+∞⋃--∞答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是⎪⎪⎭⎫⎝⎛⋃⎪⎪⎭⎫ ⎝⎛-33,00,3310.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方 向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这 样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )答案:A解析:根据小圆 与大圆半径1:2的关系,找上下左右四个点,根据这四个点的位置,小圆转半圈,刚好是大圆的四分之一,因此M 点的轨迹是个大圆,而N 点的轨迹是四条线,刚好是M 产生的大圆的半径。
第II 卷二.填空题:本大题共4小题,每小题5分,共20分.11. 已知2==b a ,()()22-=-•+b a b a ,则a 与b 的夹角为 .答案:。
60(3π) 解析:根据已知条件2)()2(-=-•+→→→→b a b a ,去括号得:242cos 224222-=⨯-⨯⨯+=-•+→→→→θb b a a , 。
60,21cos ==⇒θ(PS :这道题其实2010年湖南文科卷的第6题翻版过来的,在我们寒假班的时候也讲过一道类似的,在文科讲义72页的第2题。
此题纯属送分题!)12. 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于21,则周末去看电影;若此点到圆心的距离小于41,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为 .答案:1613 解析:方法一:不在家看书的概率=161321-4122=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=+ππππ所有情况打篮球看电影 方法二:不在家看书的概率=1—在家看书的概率=1—161341-2122=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯πππ(PS: 通过生活实例与数学联系起来,是高考青睐的方向,但在我们春季班讲义二第一页的第五题已经做过类似题型,那么作为理科生,并且是上过新东方春季班课程的理科生,是不是应该作对,不解释。
)13.下图是某算法程序框图,则程序运行后输出的结果是__________.10. 解析:s=0,n=1;带入到解析式当中,s=0+(-1)+1=0,n=2;s=0+1+2=3, n=3; S=3+(-1)+3=5, n=4;S=5+1+4=10,此时s>9,输出。
(PS:此题实质是2010江苏理科卷第7题得翻版,同时在我们寒假题海班,理科讲义的第200页的第6题也讲过相似的。
所以童鞋们再次遇到,应该也是灰常熟悉的。
并且框图本来就是你们的拿手菜,所以最对也不觉奇怪。
)14.若椭圆12222=+b y a x 的焦点在x 轴上,过点)21,1(作圆122=+y x 的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .答案:14522=+y x 解析:设过点(1,21)的直线方程为:当斜率存在时,21)1(+-=x k y ,根据直线与圆相切,圆心(0,0)到直线的距离等于半径1可以得到k=43-,直线与圆方程的联立可以得到切点的坐标(54,53),当斜率不存在时,直线方程为:x=1,根据两点A :(1,0),B :(54,53)可以得到直线:2x+y-2=0,则与y 轴的交点即为上顶点坐标(2,0)2=⇒b ,与x 轴的交点即为焦点1=⇒c ,根据公式5,5222=⇒=+=a c b a ,即椭圆方程为:14522=+y x (PS:此题可能算是填空题,比较纠结的一道,因为要理清思路,计算有些繁琐。
但是,是不是就做不出来呢,不是的,在我们寒假题海班的时候讲过一道与此相似的题型,也就在理科教材第147页第23题。
所以最纠结的一道高考题也不过如此,你们还怕什么?)三.选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.15(1).(坐标系与参数方程选做题)若曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则改曲线的直角坐标方程为 .答案:02422=--+y x y x 。
解析:做坐标系与参数方程的题,大家只需记住两点:1、θρθρsin ,cos •=•=y x ,2、222y x +=ρ即可。
根据已知θθρcos 4sin 2+==,4y 2,42222y x x xy+=+=+•ρρρ化简可得:所以解析式为:02422=--+y x y x15 (2).(不等式选择题)对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .(2)此题,看似很难,但其实不难,首先解出x 的范围,20≤≤x ,再解出y 的范围,31≤≤y ,最后综合解出x-2y+1的范围[]1,5-,那么绝对值最大,就去5(PS: 此题作为最后一题,有失最后一题的分量,大家从解题步骤就可看出。
所以高考注重的还是基础+基础!)四.本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设次人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望. 解答:(1)选对A 饮料的杯数分别为0=X ,1=X ,2=X ,3=X ,4=X ,其概率分布分别为: ()7010484404==C C C P ,()70161483414==C C C P ,()70362482424==C C C P ,()70163481434==C C C P ,()7014484404==C C C P 。