数值分析报告上机第四次作业
西南交通大学数值分析上机实验报告
数值分析上机实习报告学号:姓名:专业:联系电话:任课教师:序 (3)一、必做题 (4)1、问题一 (4)1.1 问题重述 (4)1.2 实验方法介绍 (4)1.3 实验结果 (5)2、问题二 (7)2.1 问题重述 (7)2.2 实验原理 (7)雅各比算法:将系数矩阵A分解为:A=L+U+D,则推到的最后迭代公式为: (8)2.3 实验结果 (8)二、选做题 (10)3、问题三 (10)3.1 问题重述 (10)3.2 实验原理 (10)3.3 实验结果 (11)总结 (11)序伴随着计算机技术的飞速发展,所有的学科都走向定量化和准确化,从而产生了一系列的计算性的学科分支,而数值计算方法就是解决计算问题的桥梁和工具。
数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。
为了提高计算能力,需要结合计算能力与计算效率,因此,用来解决数值计算的软件因为高效率的计算凸显的十分重要。
数值方法是用来解决数值问题的计算公式,而数值方法的有效性需要根据其方法本身的好坏以及数值本身的好坏来综合判断。
数值计算方法计算的结果大多数都是近似值,但是理论的严密性又要求我们不仅要掌握将基本的算法,还要了解必要的误差分析,以验证计算结果的可靠性。
数值计算一般涉及的计算对象是微积分,线性代数,常微分方程中的数学问题,从而对应解决实际中的工程技术问题。
在借助MA TLAB、JA V A、C++ 和VB软件解决数学模型求解过程中,可以极大的提高计算效率。
本实验采用的是MATLAB软件来解决数值计算问题。
MA TLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其对解决矩阵运算、绘制函数/数据图像等有非常高的效率。
本文采用MATLAB对多项式拟合、雅雅格比法与高斯-赛德尔迭代法求解方程组迭代求解,对Runge-Kutta 4阶算法进行编程,并通过实例求解验证了其可行性,使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较各种方法的精确度和解的收敛速度。
数值分析上机作业(MATLAB)
将系数矩阵 A 分解为:A=L+U+D
Ax=b
⇔ (D + L +U)x = b ⇔ Dx = −(L + U )x + b ⇔ x = −D −1(L + U )x + D −1b x(k +1) = −D −1 (L + U ) x(k ) + D −1b
输入 A,b 和初始向量 x
迭代矩阵 BJ , BG
否
ρ(B) < 1?
按雅各比方法进行迭代
否
|| x (k+1) − x(k) ||< ε ?
按高斯-塞德尔法进行迭代
否
|| x(k+1) − x (k ) ||< ε ?
输出迭代结果
图 1 雅各布和高斯-赛德尔算法程序流程图
1.2 问题求解
按图 1 所示的程序流程,用 MATLAB 编写程序代码,具体见附录 1。解上述三个问题 如下
16
-0.72723528355328
0.80813484897616
0.25249261987171
17
-0.72729617968010
0.80805513082418
0.25253982509100
18
-0.72726173942623
0.80809395746552
0.25251408253388
0.80756312717373
8
-0.72715363032573
0.80789064377799
9
-0.72718652854079
东南大学数值分析上机作业汇总
东南大学数值分析上机作业汇总-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII数值分析上机报告院系:学号:姓名:目录作业1、舍入误差与有效数 (1)1、函数文件cxdd.m (1)2、函数文件cddx.m (1)3、两种方法有效位数对比 (1)4、心得 (2)作业2、Newton迭代法 (2)1、通用程序函数文件 (3)2、局部收敛性 (4)(1)最大δ值文件 (4)(2)验证局部收敛性 (4)3、心得 (6)作业3、列主元素Gauss消去法 (7)1、列主元Gauss消去法的通用程序 (7)2、解题中线性方程组 (7)3、心得 (9)作业4、三次样条插值函数 (10)1、第一型三次样条插值函数通用程序: (10)2、数据输入及计算结果 (12)作业1、舍入误差与有效数设∑=-=Nj N j S 2211,其精确值为⎪⎭⎫ ⎝⎛---1112321N N . (1)编制按从小到大的顺序11131121222-⋅⋅⋅+-+-=N S N ,计算N S 的通用程序;(2)编制按从大到小的顺序()12111111222-⋅⋅⋅+--+-=N N S N ,计算N S 的通用程序;(3)按两种顺序分别计算642101010,,S S S ,并指出有效位数; (4)通过本上机你明白了什么? 程序:1、函数文件cxdd.mfunction S=cxdd(N) S=0; i=2.0;while (i<=N) S=S+1.0/(i*i-1); i=i+1;endscript 运行结果(省略>>):S=cxdd(80) S=0.7375772、函数文件cddx.mfunction S=cddx (N) S=0; for i=N:-1:2 S=S+1/(i*i-1); endscript 运行结果(省略>>): S=cddx(80) S=0.7375773、两种方法有效位数对比精确值函数:function S=jqz(N)S=0.5*(1.5-1.0/N-1.0/(N+1));script运行结果(省略>>)4、心得本题重点体现了数值计算中“大数吃小数”的问题,由于计算机计算的截断特点,从大到小的计算会导致小数的有效数被忽略掉。
数值分析上机报告
数值分析上机实习报告专业:土木工程班级:学号:姓名:指导老师:联系电话:2015.12.12序言随着本学期逐渐接近尾声,我也逐渐掌握了数值分析的一些基本理论•本次上机作业是理论与实践的结合•本次作业使用了matlab与C++两种语言•其中matlab具有编程效率高,用户使用方便,方便的绘图功能的优点。
而C++是一种基本的编程语言,在实际的工程中也有广泛的应用。
本次作业根据题目的特点,结合两种语言各自的优势,采用了不同的方法。
其中牛顿法,Steffensen加速法采用了c语言。
插值与多项式拟合使用了两种语言。
Ru n ge-Kutt a 4阶算法仅使用了matlab编程。
本次作业注重问题的计算过程,分析总结,及编程。
由于所涉及原理课本均有详细陈述,在此不再赘述。
第一题 (3)1.1题目 (3)1.2计算过程和结果 (3)1.3结果分析 (3)第二题 (4)2.1题目 (4)2.2计算过程和结果 (4)2.3结果分析 (8)第三题 (8)3.1题目 (8)3.2问题求解及过程 (8)3.3结果分析 (9)总结 (10)附件 (11)第一题 (11)1.1.1第一问牛顿法 (11)1.1.2 第一问牛顿-Steffensen法 (11)1.2.1第二问牛顿法 (12)1.2.2 第二问牛顿-Steffensen法 (13)第二题 (14)2.1.1最小二乘法求解 (14)2.2.1拉格朗日差值多项式拟合 (15)2.2.2牛顿插值 (15)第三题 (17)3.1.1Runge-Kutta 4 阶算法 (17)1.1题目分别用牛顿法,及基于牛顿算法下的Steffe nsen加速法⑴求ln(x+sin x)=0的根。
初值x0分别取0.1, 1,1.5, 2, 4进行计算。
(2)求sin x=0的根。
初值x0分别取1,1.4,1.6, 1.8,3进行计算。
分析其中遇到的现象与问题。
1・2计算过程和结果1.对方程In(x+sinx)=O,可求解x+sinx=1的解。
优质文档精选——数值分析上机实验报告
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机第四次作业
数值分析上机第四次作业实验项目:共轭梯度法求解对称正定的线性方程组实验内容:用共轭梯度法求解下面方程组(1) 123421003131020141100155x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 迭代20次或满足()(1)1110k k x x --∞-<时停止计算。
(2) Ax b =,A 是1000阶的Hilbert 矩阵或如下的三对角矩阵,A[i,i]=4,A[i,i-1]=A[i-1,i]=-1,i=2,3,..,nb[1]=3, b[n]=3, b[i]=2,i=2,3,…,n-1迭代10000次或满足()()710k k r b Ax -=-≤时停止计算。
(3)*考虑模型问题,方程为222222(),(,)(0,1)(0,1)(0,)1,(1,),01(,0)1,(,1),01xy y x u u x y e x y D x yu y u y e y u x u x e x ∂∂+=+∈=⨯∂∂==≤≤==≤≤用正方形网格离散化,若取1/,10h N N ==,得到100n =的线性方程组,并用共轭梯度法(CG 法)求解,并对解作图。
实验要求:迭代初值可以取01(,1,...,)ij u i j N ==,计算到32||||10k r -≤停止.本题有精确解(,)xy u x y e =,这里k u 表示以k ij u 为分量的向量,u 表示在相应点(,)i j 上取值作为分量的向量.实验一:(1)编制函数子程序CGmethod 。
function [x,k]=CGmethod(A,b)n=length(A);x=zeros(n,1);r=b-A*x;rho=r'*r;k=0;while rho>10^(-12) & k<20k=k+1;if k==1p=r;elsebeta=rho/rho1;p=r+beta*p;endw=A*p;alpha=rho/(p'*w);x=x+alpha*p;r=r-alpha*w;rho1=rho;rho=r'*r;end编制主程序shiyan1_1:clear,clcA=[2,-1,0,0;-1,3,-1,0;0,-1,4,1;0,0,-1,5]; b=[3,-2,1,5]';[x,k]=CGmethod(A,b)运行结果为:x =1.3882-0.2855-0.02220.9367k =20(2)编制函数子程序CGmethod_1function [x,k]=CGmethod_1(A,b)n=length(A);x(1:n,1)=0;r=b-A*x;r1=r;k=0;while norm(r1,1)>=10^(-7)&k<10^4k=k+1;if k==1p=r;elsebeta=(r1'*r1)/(r'*r);p=r1+beta*p;endr=r1;w=A*p;alpha=(r'*r)/(p'*w);x=x+alpha*p;r1=r-alpha*w;end编制主程序shiyan1_2:clear,clcn=1000;A=hilb(n);b=sum(A')';[x,k]=CGmethod_1(A,b)运行结果为:x 的值,均接近1,迭代次数k=32实验二实验目的:用复化Simpson 方法、自适应复化梯形方法和Romberg 方法求数值积分。
数值分析上机作业
数值分析上机作业(1、2、3、4、6章)第一章17. 舍入误差与有效数设2211NN j S j ==-∑,其精确值为1311221N N ⎛⎫-- ⎪+⎝⎭。
(1)编制按从大到小的顺序22211121311N S N =+++---,计算N S 的通用程序; (2)编制按从小到大的顺序2221111(1)121N S N N =+++----,计算N S 的通用程序;(3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时使用单精度);(4)通过本上机题你明白了什么?运行结果:按从大到小的顺序计算得:N N S误差e有效位数2⨯8 100.7400495 94.95049501392230710-4⨯ 4 100.7498521 54.79049995000258010-6⨯ 3 100.7498521 41.46900000499994310-按从小到大的顺序计算得:N N S误差e有效位数2⨯84.95049501392230710-100.7400495 944.99950003618465610-⨯8 100.7499000 965.00044450291170510-⨯11 100.7499990 13(4)通过本题可以看出,不同算法造成的误差是不同的,好的算法可以让计算结果精度更高。
对于本题,当采用从大到小的顺序累加计算时,计算误差随着N的增大而增大;当采用从小到大的顺序累加计算时,计算误差随着N的增大而减小。
因此在N比较大时宜采用从小到达的顺序累加计算。
第二章20.Newton 迭代法(1)给定初值0x 及容许误差ε,编制Newton 法解方程()0f x =根的通用程序;(2)给定方程3()03x f x x =-=,易知其有三个根*1x =,*20x =,*3x =①由Newton 方法的局部收敛性可知存在0δ>,当0(,)x δδ∈-时Newton 迭代序列收敛于根*2x ,试确定尽可能大的δ;②试取若干初始值,观察当0(,1)x ∈-∞-,(1,)δ--,(,)δδ-,(,1)δ,(1,)+∞时Newton 序列是否收敛以及收敛于哪一个根;(3)通过本上机题,你明白了什么?本实验取610ε-=,找到的最大的0.774597δ=②当0(,1)x ∈-∞-时,计算结果如下:x0 xend -1000 -1.732051 -500 -1.732051 -100 -1.732051 -10 -1.732051 -1.5-1.732051Newton 序列收敛于-1.732051当0(1,)xδ∈--时,计算结果如下:x0 xend-0.95 1.732051-0.90 1.732051-0.85 1.732051-0.80 -1.732051-0.78 -1.732051 Newton序列收敛于1.732051或-1.732051当0(,)xδδ∈-时,计算结果如下:x0 xend-0.77 0.000000-0.5 0.000000-0.1 0.0000000.3 0.0000000.77 0.000000 Newton序列收敛于0当0(,1)xδ∈时,计算结果如下:x0 xend0.78 1.7320510.80 1.7320510.85 -1.7320510.90 -1.7320510.95 -1.732051 Newton序列收敛于1.732051或-1.732051当0(1,)x∈+∞时,计算结果如下:x0 xend1.5 1.73205110 1.732051100 1.732051500 1.7320511000 1.732051Newton序列收敛于1.732051(3)通过本题发现,Newton迭代法解方程初始值的选取非常重要,不同的初始值会收敛于方程不同的根,且有些区间是全局收敛,有些区间是局部收敛。
数值分析上机作业
数值分析上机实验报告选题:曲线拟合的最小二乘法指导老师:专业:学号:姓名:课题八 曲线拟合的最小二乘法一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y 与时间t 的拟合曲线。
二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为()33221t a t a t a t ++=ϕ;3、打印出拟合函数()t ϕ,并打印出()j t ϕ与()j t y 的误差,12,,2,1Λ=j ;4、另外选取一个近似表达式,尝试拟合效果的比较;5、*绘制出曲线拟合图*。
三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系。
四、计算公式对于给定的测量数据(x i ,f i )(i=1,2,…,n ),设函数分布为 特别的,取)(x j ϕ为多项式j j x x =)(ϕ (j=0, 1,…,m )则根据最小二乘法原理,可以构造泛函令0=∂∂ka H (k=0, 1,…,m ) 则可以得到法方程求该解方程组,则可以得到解m a a a ,,,10Λ,因此可得到数据的最小二乘解曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。
曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
五、结构程序设计在程序结构方面主要是按照顺序结构进行设计,在进行曲线的拟合时,为了进行比较,在程序设计中,直接调用了最小二乘法的拟合函数polyfit ,并且依次调用了plot 、figure 、hold on 函数进行图象的绘制,最后调用了一个绝对值函数abs 用于计算拟合函数与原有数据的误差,进行拟合效果的比较。
数值分析大作业四
《数值分析》大作业四一、算法设计方案:复化梯形积分法,选取步长为1/500=0.002,迭代误差控制在E ≤1.0e-10①复化梯形积分法:11()[()()2()]2n b ak h f x dx f a f b f a kh -=⎰≈+++∑,截断误差为:322()''()''(),[,]1212Tb a b a R f h f a b nηηη--=-=-∈其中。
复化Simpson 积分法,选取步长为1/50=0.02,迭代误差控制在E ≤1.0e-10②Simpson 积分法:121211()[()()4()2()]3m m bi i ai i h f x dx f a f b f x f x --==≈+++∑∑⎰,截断误差为:4(4)(),[,]180sb a R h fa b ηη-=-∈。
③Guass 积分法选用Gauss-Legendre 求积公式:111()()ni i i f x dx A f x -=≈∑⎰截断误差为:R=()()n 2n 422n !2×(2[2!]2n 1fn n ⨯(2)η())+ η∈(1,1)。
选择9个节点:-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,0.3242534234,0.6133714327,0.8360311073,0.9681602395, 对应的求积系数依次为:0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,0.3123470770,0.2606106964,0.1806481607,0.0812743884。
二、程序源代码:#include<stdio.h>#include<math.h>#include<stdlib.h>#define E 1.0e-10/****定义函数g和K*****/double g(double a){double b;b=exp(4*a)+(exp(a+4)-exp(-a-4))/(a+4);return b;}double K(double a,double b){double c;c=exp(a*b);return c;}/******复化梯形法******/void Tixing( ){double u[1001],x[1001],h,c[1001],e;int i,j,k;FILE *fp;fp=fopen("f:/result0. xls ","w");h=1.0/1500;for(i=0;i<3001;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<100;k++){e=0;for(i=0;i<1001;i++){for(j=1,c[i]=0;j<N-1;j++)c[i]+=K(x[i],x[j])*u[j];u[i]=g(x[i])-h*c[i]-h/2*(K(x[i],x[0])*u[0]+K(x[i],x[N-1])*u[N-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<1001;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******复化Simpson法******/void simpson( ){double u[101],x[101],h,c[101],d[101],e;int i,j,k;FILE *fp;fp=fopen("f:/result1.xls","w");h=1.0/50;for(i=0;i<101;i++){x[i]=i*h-1;u[i]=g(x[i]);}for(k=0;k<50;k++){e=0;for(i=0;i<101;i++){for(j=1,c[i]=0,d[i]=0;j<51;j++){c[i]+=K(x[i],x[2*j-1])*u[2*j-1];if(j<50)d[i]+=K(x[i],x[2*j])*u[2*j];}u[i]=g(x[i])-4*h/3*c[i]-2*h/3*d[i]-h/3*(K(x[i],x[0])*u[0]+K(x[i],x[M-1])*u[M-1]);e+=h*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<101;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******Gauss积分法******/void gauss( ){double x[9]={-0.9681602395,-0.8360311073,-0.6133714327,-0.3242534234,0,\0.3242534234,0.6133714327,0.8360311073,0.9681602395},A[9]={0.0812743884,0.1806481607,0.2606106964,0.3123470770,0.3302393550,\0.3123470770,0.2606106964,0.1806481607,0.0812743884},u[9],c[9],e;int i,j,k;FILE *fp;fp=fopen("f:/result2. xls ","w");for(i=0;i<9;i++)u[i]=g(x[i]);for(k=0;k<50;k++){e=0;for(i=0;i<9;i++){for(j=0,c[i]=0;j<9;j++)c[i]+=A[j]*K(x[i],x[j])*u[j];u[i]=g(x[i])-c[i];e+=A[i]*(exp(4*x[i])-u[i])*(exp(4*x[i])-u[i]);}if(e<=E) break;}for(i=0;i<9;i++)fprintf(fp,"%.12lf,%.12lf\n",x[i],u[i]);fclose(fp);}/******主函数******/main(){Tixing ( );Simpson( );Gauss( );return 0;}三、运算结果复化梯形数据-10.018323-0.920.02523-0.9980.018471-0.9180.025433-0.9960.018619-0.9160.025637-0.9940.018768-0.9140.025843-0.9920.018919-0.9120.026051-0.990.019071-0.910.02626-0.9880.019224-0.9080.026471-0.9860.019378-0.9060.026683-0.9840.019534-0.9040.026897-0.9820.019691-0.9020.027113-0.980.019849-0.90.027331-0.9780.020008-0.8980.02755-0.9760.020169-0.8960.027772-0.9740.020331-0.8940.027995-0.9720.020494-0.8920.028219-0.970.020658-0.890.028446-0.9680.020824-0.8880.028674-0.9660.020992-0.8860.028905-0.9640.02116-0.8840.029137-0.9620.02133-0.8820.029371-0.960.021501-0.880.029607-0.9580.021674-0.8780.029844-0.9560.021848-0.8760.030084-0.9540.022023-0.8740.030326-0.9520.0222-0.8720.030569-0.950.022378-0.870.030815-0.9480.022558-0.8680.031062-0.9460.022739-0.8660.031311-0.9440.022922-0.8640.031563-0.9420.023106-0.8620.031816-0.940.023291-0.860.032072-0.9380.023478-0.8580.032329-0.9360.023667-0.8560.032589-0.9340.023857-0.8540.032851-0.9320.024048-0.8520.033114-0.930.024241-0.850.03338-0.9280.024436-0.8480.033648-0.9260.024632-0.8460.033918-0.9240.02483-0.8440.034191-0.9220.025029-0.8420.034465-0.840.034742-0.760.047841-0.8380.035021-0.7580.048225-0.8360.035302-0.7560.048613 -0.8340.035586-0.7540.049003 -0.8320.035872-0.7520.049396 -0.830.03616-0.750.049793 -0.8280.03645-0.7480.050193 -0.8260.036743-0.7460.050596 -0.8240.037038-0.7440.051002 -0.8220.037335-0.7420.051412 -0.820.037635-0.740.051825 -0.8180.037937-0.7380.052241 -0.8160.038242-0.7360.052661 -0.8140.038549-0.7340.053084 -0.8120.038858-0.7320.05351 -0.810.039171-0.730.05394 -0.8080.039485-0.7280.054373 -0.8060.039802-0.7260.054809 -0.8040.040122-0.7240.05525 -0.8020.040444-0.7220.055693 -0.80.040769-0.720.056141 -0.7980.041096-0.7180.056591 -0.7960.041426-0.7160.057046 -0.7940.041759-0.7140.057504 -0.7920.042094-0.7120.057966 -0.790.042432-0.710.058431 -0.7880.042773-0.7080.058901 -0.7860.043116-0.7060.059374 -0.7840.043463-0.7040.05985 -0.7820.043812-0.7020.060331 -0.780.044164-0.70.060816 -0.7780.044518-0.6980.061304 -0.7760.044876-0.6960.061796 -0.7740.045236-0.6940.062293 -0.7720.045599-0.6920.062793 -0.770.045966-0.690.063297 -0.7680.046335-0.6880.063805 -0.7660.046707-0.6860.064318 -0.7640.047082-0.6840.064834 -0.7620.04746-0.6820.065355-0.680.06588-0.60.090722 -0.6780.066409-0.5980.091451-0.6760.066942-0.5960.092185 -0.6740.06748-0.5940.092926 -0.6720.068022-0.5920.093672 -0.670.068568-0.590.094424 -0.6680.069119-0.5880.095183 -0.6660.069674-0.5860.095947 -0.6640.070234-0.5840.096718 -0.6620.070798-0.5820.097494 -0.660.071366-0.580.098277 -0.6580.071939-0.5780.099067 -0.6560.072517-0.5760.099862 -0.6540.0731-0.5740.100664 -0.6520.073687-0.5720.101473 -0.650.074278-0.570.102288 -0.6480.074875-0.5680.103109 -0.6460.075476-0.5660.103937 -0.6440.076082-0.5640.104772 -0.6420.076694-0.5620.105614 -0.640.077309-0.560.106462 -0.6380.07793-0.5580.107317 -0.6360.078556-0.5560.108179 -0.6340.079187-0.5540.109048 -0.6320.079823-0.5520.109924 -0.630.080464-0.550.110806 -0.6280.08111-0.5480.111696 -0.6260.081762-0.5460.112593 -0.6240.082418-0.5440.113498 -0.6220.08308-0.5420.114409 -0.620.083748-0.540.115328 -0.6180.08442-0.5380.116254 -0.6160.085098-0.5360.117188 -0.6140.085782-0.5340.118129 -0.6120.086471-0.5320.119078 -0.610.087165-0.530.120035 -0.6080.087865-0.5280.120999 -0.6060.088571-0.5260.12197 -0.6040.089282-0.5240.12295 -0.6020.089999-0.5220.123938-0.550.110806-0.470.152592 -0.5480.111696-0.4680.153817-0.5460.112593-0.4660.155053-0.5440.113498-0.4640.156298-0.5420.114409-0.4620.157553-0.540.115328-0.460.158819-0.5380.116254-0.4580.160095-0.5360.117188-0.4560.16138-0.5340.118129-0.4540.162677-0.5320.119078-0.4520.163983-0.530.120035-0.450.1653-0.5280.120999-0.4480.166628-0.5260.12197-0.4460.167966-0.5240.12295-0.4440.169315-0.5220.123938-0.4420.170675-0.520.124933-0.440.172046-0.5180.125936-0.4380.173428-0.5160.126948-0.4360.174821-0.5140.127967-0.4340.176225-0.5120.128995-0.4320.17764-0.510.130031-0.430.179067-0.5080.131076-0.4280.180505-0.5060.132128-0.4260.181955-0.5040.13319-0.4240.183416-0.5020.134259-0.4220.18489-0.50.135338-0.420.186375-0.4980.136425-0.4180.187871-0.4960.13752-0.4160.18938-0.4940.138625-0.4140.190901-0.4920.139738-0.4120.192435-0.490.140861-0.410.19398-0.4880.141992-0.4080.195538-0.4860.143132-0.4060.197109-0.4840.144282-0.4040.198692-0.4820.145441-0.4020.200288-0.480.146609-0.40.201897-0.4780.147786-0.3980.203518-0.4760.148973-0.3960.205153-0.4740.15017-0.3940.206801-0.4720.151376-0.3920.208462-0.390.210136-0.310.289382 -0.3880.211824-0.3080.291706-0.3860.213525-0.3060.294049 -0.3840.21524-0.3040.296411 -0.3820.216969-0.3020.298792 -0.380.218711-0.30.301192 -0.3780.220468-0.2980.303611 -0.3760.222239-0.2960.306049 -0.3740.224024-0.2940.308508 -0.3720.225823-0.2920.310985 -0.370.227637-0.290.313483 -0.3680.229465-0.2880.316001 -0.3660.231308-0.2860.318539 -0.3640.233166-0.2840.321098 -0.3620.235039-0.2820.323677 -0.360.236927-0.280.326277 -0.3580.23883-0.2780.328897 -0.3560.240748-0.2760.331539 -0.3540.242682-0.2740.334202 -0.3520.244631-0.2720.336886 -0.350.246596-0.270.339592 -0.3480.248576-0.2680.34232 -0.3460.250573-0.2660.345069 -0.3440.252586-0.2640.347841 -0.3420.254614-0.2620.350635 -0.340.256659-0.260.353451 -0.3380.258721-0.2580.35629 -0.3360.260799-0.2560.359151 -0.3340.262894-0.2540.362036 -0.3320.265005-0.2520.364944 -0.330.267134-0.250.367875 -0.3280.269279-0.2480.37083 -0.3260.271442-0.2460.373809 -0.3240.273622-0.2440.376811 -0.3220.27582-0.2420.379838 -0.320.278035-0.240.382888 -0.3180.280268-0.2380.385964 -0.3160.28252-0.2360.389064 -0.3140.284789-0.2340.392189 -0.3120.287076-0.2320.395339-0.230.398514-0.150.548804-0.2280.401715-0.1480.553212-0.2260.404942-0.1460.557655 -0.2240.408194-0.1440.562134 -0.2220.411473-0.1420.56665 -0.220.414778-0.140.571201 -0.2180.418109-0.1380.575789 -0.2160.421467-0.1360.580414 -0.2140.424853-0.1340.585076 -0.2120.428265-0.1320.589775 -0.210.431705-0.130.594512 -0.2080.435172-0.1280.599287 -0.2060.438668-0.1260.604101 -0.2040.442191-0.1240.608953 -0.2020.445743-0.1220.613844 -0.20.449323-0.120.618774 -0.1980.452932-0.1180.623744 -0.1960.45657-0.1160.628754 -0.1940.460237-0.1140.633805 -0.1920.463934-0.1120.638895 -0.190.46766-0.110.644027 -0.1880.471416-0.1080.6492 -0.1860.475203-0.1060.654414 -0.1840.47902-0.1040.659671 -0.1820.482867-0.1020.664969 -0.180.486746-0.10.67031 -0.1780.490655-0.0980.675694 -0.1760.494596-0.0960.681121 -0.1740.498569-0.0940.686592 -0.1720.502573-0.0920.692107 -0.170.50661-0.090.697666 -0.1680.510679-0.0880.70327 -0.1660.514781-0.0860.708919 -0.1640.518916-0.0840.714613 -0.1620.523084-0.0820.720352 -0.160.527285-0.080.726138 -0.1580.53152-0.0780.731971 -0.1560.535789-0.0760.73785 -0.1540.540093-0.0740.743776 -0.1520.544431-0.0720.749751-0.070.7557730.01 1.040796 -0.0680.7618430.012 1.049156-0.0660.7679620.014 1.057583 -0.0640.7741310.016 1.066077 -0.0620.7803480.018 1.07464 -0.060.7866160.02 1.083272 -0.0580.7929340.022 1.091973 -0.0560.7993030.024 1.100743 -0.0540.8057230.026 1.109585 -0.0520.8121950.028 1.118497 -0.050.8187190.03 1.127481 -0.0480.8252950.032 1.136537 -0.0460.8319240.034 1.145666 -0.0440.8386060.036 1.154868 -0.0420.8453410.038 1.164144 -0.040.8521310.04 1.173494 -0.0380.8589760.042 1.18292 -0.0360.8658750.044 1.192421 -0.0340.872830.046 1.201999 -0.0320.879840.048 1.211654 -0.030.8869070.05 1.221386 -0.0280.8940310.052 1.231196 -0.0260.9012120.054 1.241085 -0.0240.9084510.056 1.251054 -0.0220.9157480.058 1.261102 -0.020.9231030.06 1.271232 -0.0180.9305170.062 1.281442 -0.0160.9379910.064 1.291735 -0.0140.9455250.066 1.30211 -0.0120.953120.068 1.312569 -0.010.9607750.07 1.323112 -0.0080.9684930.072 1.333739 -0.0060.9762720.074 1.344452 -0.0040.9841130.076 1.355251 -0.0020.9920180.078 1.366136 00.9999860.08 1.377109 0.002 1.0080180.082 1.38817 0.004 1.0161140.084 1.39932 0.006 1.0242760.086 1.41056 0.008 1.0325030.088 1.4218890.09 1.433310.17 1.973853 0.092 1.4448230.172 1.9897080.094 1.4564280.174 2.005689 0.096 1.4681260.176 2.021799 0.098 1.4799180.178 2.038039 0.1 1.4918050.18 2.054408 0.102 1.5037870.182 2.07091 0.104 1.5158660.184 2.087543 0.106 1.5280410.186 2.104311 0.108 1.5403150.188 2.121213 0.11 1.5526870.19 2.138251 0.112 1.5651580.192 2.155425 0.114 1.577730.194 2.172738 0.116 1.5904020.196 2.19019 0.118 1.6031760.198 2.207781 0.12 1.6160530.2 2.225515 0.122 1.6290340.202 2.24339 0.124 1.6421180.204 2.261409 0.126 1.6553080.206 2.279573 0.128 1.6686040.208 2.297883 0.13 1.6820060.21 2.31634 0.132 1.6955160.212 2.334945 0.134 1.7091350.214 2.3537 0.136 1.7228630.216 2.372605 0.138 1.7367010.218 2.391662 0.14 1.750650.22 2.410872 0.142 1.7647120.222 2.430236 0.144 1.7788860.224 2.449756 0.146 1.7931740.226 2.469433 0.148 1.8075770.228 2.489268 0.15 1.8220960.23 2.509262 0.152 1.8367310.232 2.529417 0.154 1.8514840.234 2.549733 0.156 1.8663550.236 2.570213 0.158 1.8813460.238 2.590857 0.16 1.8964570.24 2.611667 0.162 1.911690.242 2.632645 0.164 1.9270450.244 2.65379 0.166 1.9425230.246 2.675106 0.168 1.9581260.248 2.6965930.25 2.7182520.33 3.743385 0.252 2.7400850.332 3.7734530.254 2.7620940.334 3.803761 0.256 2.7842790.336 3.834314 0.258 2.8066430.338 3.865111 0.26 2.8291860.34 3.896156 0.262 2.8519110.342 3.927451 0.264 2.8748180.344 3.958996 0.266 2.8979090.346 3.990796 0.268 2.9211850.348 4.02285 0.27 2.9446480.35 4.055162 0.272 2.96830.352 4.087734 0.274 2.9921420.354 4.120567 0.276 3.0161750.356 4.153664 0.278 3.0404010.358 4.187026 0.28 3.0648220.36 4.220657 0.282 3.0894390.362 4.254558 0.284 3.1142540.364 4.288731 0.286 3.1392680.366 4.323179 0.288 3.1644830.368 4.357903 0.29 3.18990.37 4.392906 0.292 3.2155220.372 4.42819 0.294 3.2413490.374 4.463758 0.296 3.2673840.376 4.499612 0.298 3.2936280.378 4.535753 0.3 3.3200830.38 4.572185 0.302 3.346750.382 4.608909 0.304 3.3736320.384 4.645928 0.306 3.4007290.386 4.683245 0.308 3.4280440.388 4.720861 0.31 3.4555790.39 4.75878 0.312 3.4833350.392 4.797003 0.314 3.5113130.394 4.835533 0.316 3.5395160.396 4.874373 0.318 3.5679460.398 4.913524 0.32 3.5966040.4 4.95299 0.322 3.6254930.402 4.992773 0.324 3.6546130.404 5.032876 0.326 3.6839670.406 5.0733 0.328 3.7135570.408 5.114050.41 5.1551260.497.099276 0.412 5.1965330.4927.1562980.414 5.2382720.4947.213778 0.416 5.2803460.4967.27172 0.418 5.3227590.4987.330127 0.42 5.3655120.57.389004 0.422 5.4086080.5027.448353 0.424 5.4520510.5047.508179 0.426 5.4958420.5067.568486 0.428 5.5399850.5087.629277 0.43 5.5844830.517.690556 0.432 5.6293380.5127.752327 0.434 5.6745540.5147.814595 0.436 5.7201330.5167.877362 0.438 5.7660770.5187.940634 0.44 5.8123910.528.004414 0.442 5.8590770.5228.068707 0.444 5.9061380.5248.133516 0.446 5.9535770.5268.198845 0.448 6.0013960.5288.264699 0.45 6.04960.538.331082 0.452 6.0981910.5328.397998 0.454 6.1471730.5348.465452 0.456 6.1965480.5368.533447 0.458 6.2463190.5388.601989 0.46 6.296490.548.671081 0.462 6.3470640.5428.740728 0.464 6.3980450.5448.810935 0.466 6.4494340.5468.881705 0.468 6.5012370.5488.953044 0.47 6.5534560.559.024956 0.472 6.6060940.5529.097445 0.474 6.6591550.5549.170517 0.476 6.7126420.5569.244175 0.478 6.7665580.5589.318426 0.48 6.8209080.569.393272 0.482 6.8756950.5629.46872 0.484 6.9309210.5649.544774 0.486 6.9865910.5669.621439 0.4887.0427080.5689.6987190.579.776620.6513.46367 0.5729.8551470.65213.571810.5749.9343050.65413.68082 0.57610.01410.65613.79071 0.57810.094530.65813.90147 0.5810.175610.6614.01313 0.58210.257340.66214.12569 0.58410.339730.66414.23915 0.58610.422780.66614.35352 0.58810.50650.66814.46881 0.5910.590890.6714.58502 0.59210.675960.67214.70217 0.59410.761710.67414.82026 0.59610.848150.67614.9393 0.59810.935280.67815.05929 0.611.023110.6815.18025 0.60211.111650.68215.30218 0.60411.20090.68415.42509 0.60611.290870.68615.54898 0.60811.381560.68815.67387 0.6111.472980.6915.79977 0.61211.565130.69215.92667 0.61411.658020.69416.0546 0.61611.751660.69616.18355 0.61811.846050.69816.31354 0.6211.94120.716.44457 0.62212.037110.70216.57665 0.62412.133790.70416.7098 0.62612.231250.70616.84401 0.62812.32950.70816.97931 0.6312.428530.7117.11569 0.63212.528360.71217.25316 0.63412.628990.71417.39174 0.63612.730420.71617.53143 0.63812.832680.71817.67225 0.6412.935750.7217.81419 0.64213.039650.72217.95728 0.64413.144390.72418.10151 0.64613.249960.72618.24691 0.64813.356390.72818.393470.7318.541210.8125.53363 0.73218.690130.81225.738720.73418.840250.81425.94545 0.73618.991580.81626.15385 0.73819.144120.81826.36392 0.7419.297890.8226.57568 0.74219.452890.82226.78914 0.74419.609140.82427.00431 0.74619.766640.82627.22121 0.74819.925410.82827.43985 0.7520.085450.8327.66025 0.75220.246780.83227.88242 0.75420.409410.83428.10638 0.75620.573340.83628.33213 0.75820.738580.83828.5597 0.7620.905160.8428.78909 0.76221.073070.84229.02033 0.76421.242330.84429.25342 0.76621.412950.84629.48839 0.76821.584940.84829.72524 0.7721.758310.8529.964 0.77221.933080.85230.20467 0.77422.109250.85430.44728 0.77622.286830.85630.69184 0.77822.465840.85830.93836 0.7822.646290.8631.18686 0.78222.828190.86231.43735 0.78423.011550.86431.68986 0.78623.196380.86631.9444 0.78823.382690.86832.20098 0.7923.570510.8732.45962 0.79223.759830.87232.72034 0.79423.950670.87432.98315 0.79624.143040.87633.24807 0.79824.336960.87833.51513 0.824.532440.8833.78432 0.80224.729490.88234.05568 0.80424.928110.88434.32922 0.80625.128340.88634.60496 0.80825.330170.88834.882910.8935.163090.94643.99154 0.89235.445520.94844.344880.89435.730220.9544.701070.89636.017210.95245.060110.89836.306510.95445.422040.936.598120.95645.786870.90236.892080.95846.154630.90437.188410.9646.525350.90637.487110.96246.899050.90837.788210.96447.275750.9138.091730.96647.655470.91238.397680.96848.038240.91438.70610.9748.424090.91639.016990.97248.813040.91839.330380.97449.205110.9239.646280.97649.600330.92239.964720.97849.998720.92440.285720.9850.400320.92640.60930.98250.805140.92840.935480.98451.213210.9341.264280.98651.624560.93241.595720.98852.039210.93441.929820.9952.45720.93642.26660.99252.878540.93842.606090.99453.303270.9442.948310.99653.73140.94243.293270.99854.162980.94443.64101154.59802复化Simpson数据:-1 0.018319929 -0.34 0.256658088 0.32 3.596641805 -0.98 0.0198445 -0.32 0.278035042 0.34 3.896195298-0.96 0.021494322 -0.3 0.301192133 0.36 4.220697765-0.94 0.023283225 -0.28 0.326278124 0.38 4.572227037-0.92 0.025220379 -0.26 0.353453177 0.4 4.95303418-0.9 0.027320224 -0.24 0.382891765 0.42 5.365557596-0.88 0.029594431 -0.22 0.41478194 0.44 5.812438891-0.86 0.032059069 -0.16 0.527292277 0.54 8.671138204-0.84 0.034728638 -0.14 0.571209036 0.56 9.39333156-0.82 0.037621263 -0.12 0.61878367 0.58 10.17567433-0.8 0.040754615 -0.1 0.670320427 0.6 11.02317608-0.78 0.044149394 -0.08 0.726149698 0.62 11.94126383-0.76 0.047826844 -0.06 0.78662861 0.64 12.93581634-0.74 0.051810827 -0.04 0.85214479 0.66 14.01320231-0.72 0.056126648 -0.02 0.92311742 0.68 15.1803205-0.7 0.060802006 0 1.0000013 0.7 16.44464467 -0.68 0.065866854 0.02 1.083288424 0.72 17.81427057 -0.66 0.071353499 0.04 1.173512427 0.74 19.29796874 -0.64 0.077297255 0.06 1.271250748 0.76 20.90523965 -0.62 0.083735917 0.08 1.377129533 0.78 22.64637562 -0.6 0.090711017 0.1 1.491826493 0.8 24.53252554 -0.58 0.098266855 0.12 1.616076341 0.82 26.57576756 -0.56 0.106452202 0.14 1.750674449 0.84 28.78918506 -0.54 0.11531904 0.16 1.896482943 0.86 31.18695183 -0.52 0.12492459 0.18 2.054435268 0.88 33.78442141 -0.5 0.135329888 0.2 2.225543071 0.9 36.59822683 -0.48 0.14660204 0.22 2.410901825 0.92 39.64638571 -0.46 0.158812728 0.24 2.611698647 0.94 42.94841704 -0.44 0.17204064 0.26 2.829219145 0.96 46.52546475 -0.42 0.18636997 0.28 3.064856356 0.98 50.40043451 -0.4 0.201892977 0.3 3.320119013 1 54.59813904 -0.38 0.218708553 0.46 6.296539601-0.36 0.236924875 0.48 6.820959636-0.2 0.449328351 0.5 7.389057081-0.18 0.486751777 0.52 8.004469675Gauss积分数据:0102030405060四、讨论①在满足相同精度要求的情况下复化梯形积分法比复化Simpson 积分法计算所需节点数多,计算量大。
《数值分析》上机实验报告
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
第四章数值分析上机作业
1.用两种方法解sin 5cos 20.31x x +=-,如何一次求出此方程的四个根。
解:方法一:在Matlab 命令窗口输入命令x=solve('sin(5*x)+cos(2*x)=-0.31')运行后输出结果:x =- 0.36685340479904406504913603551901 - 0.089925518994485866153169602644131*i 方法二:在Matlab 命令窗口输入命令E1=sym('sin(5*x)+cos(2*x)=-0.31');[x1]=solve(E1)运行后输出结果:x1 =- 0.36685340479904406504913603551901 - 0.089925518994485866153169602644131*i 2.用三种方法解方程11852912312x x x x -+-=。
解:方法一:在Matlab 命令窗口输入命令x=solve('9*x^11-12*x^8+x^5-3*x^2=12')运行后输出结果:x =1.1945355092112803561808169303487 - 0.25878939596021341127295614138703 + 0.98996423045277565907337492165509*i - 0.91081125361412082546165956220494 + 0.34557668006489020731472236114125*i - 0.6567748898900820562684890790666 - 0.94093805304063227438930031737768*i - 0.6567748898900820562684890790666 + 0.94093805304063227438930031737768*i 0.34695114229720670305614226506505 + 0.85428006847946699100354057810685*i - 0.25878939596021341127295614138703 - 0.98996423045277565907337492165509*i 0.88215664256156941185655405241917 + 0.47468310614563172153151897912015*i 0.34695114229720670305614226506505 - 0.85428006847946699100354057810685*i 0.88215664256156941185655405241917 - 0.47468310614563172153151897912015*i - 0.91081125361412082546165956220494 - 0.34557668006489020731472236114125*i 方法二:在Matlab 命令窗口输入命令fa=[9,0,0,-12,0,0,1,0,0,-3,0,-12];xk=roots(fa)运行后输出结果:xk =-0.9108 + 0.3456i-0.9108 - 0.3456i-0.6568 + 0.9409i-0.6568 - 0.9409i-0.2588 + 0.9900i-0.2588 - 0.9900i1.1945 + 0.0000i0.8822 + 0.4747i0.8822 - 0.4747i0.3470 + 0.8543i0.3470 - 0.8543i方法三:在Matlab命令窗口输入命令E1=sym('9*x^11-12*x^8+x^5-3*x^2-12=0'); [x1]=solve(E1)运行后输出结果:x1 =1.1945355092112803561808169303487 - 0.25878939596021341127295614138703 + 0.98996423045277565907337492165509*i - 0.91081125361412082546165956220494 + 0.34557668006489020731472236114125*i - 0.6567748898900820562684890790666 - 0.94093805304063227438930031737768*i - 0.6567748898900820562684890790666 + 0.94093805304063227438930031737768*i 0.34695114229720670305614226506505 + 0.85428006847946699100354057810685*i - 0.25878939596021341127295614138703 - 0.98996423045277565907337492165509*i 0.88215664256156941185655405241917 + 0.47468310614563172153151897912015*i 0.34695114229720670305614226506505 - 0.85428006847946699100354057810685*i 0.88215664256156941185655405241917 - 0.47468310614563172153151897912015*i - 0.91081125361412082546165956220494 - 0.34557668006489020731472236114125*3 用MATLAB 方法求函数11852()912312f x x x x x =-+--的导数'()f x 。
数值分析报告上机题课后作业全部-东南大学
实用标准文案文档大全上机作业题报告2015.1.9 USER1.Chapter 11.1题目设S N =∑1j 2−1N j=2,其精确值为)11123(21+--N N 。
(1)编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。
(2)编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。
(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。
(编制程序时用单精度) (4)通过本次上机题,你明白了什么?1.2程序1.3运行结果1.4结果分析按从大到小的顺序,有效位数分别为:6,4,3。
按从小到大的顺序,有效位数分别为:5,6,6。
可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。
当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。
因此,采取从小到大的顺序累加得到的结果更加精确。
2.Chapter 22.1题目(1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。
(2)给定方程03)(3=-=x xx f ,易知其有三个根3,0,3321=*=*-=*x x x○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。
试确定尽可能大的δ。
○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。
(3)通过本上机题,你明白了什么?2.2程序2.3运行结果(1)寻找最大的δ值。
算法为:将初值x0在从0开始不断累加搜索精度eps,带入Newton迭代公式,直到求得的根不再收敛于0为止,此时的x0值即为最大的sigma值。
运行Find.m,得到在不同的(2)运行Newton.m可见,在(−1,−δ)内取初值,Newton序列收敛,且收敛于根√3。
哈工大-数值分析上机实验报告
Emax= 0.70770085900503,0 此时由 Emax 可以看出,不选主元的结果应该可以说是不正确了,这是由机器误差引 起的。 当 10 20 时,不选主元和选主元的计算结果如下 NaN NaN NaN Emax=NaN, 0 不选主元时,程序报错: Warning: Divide by zero. 。这是因为机器计算的最小精度为 10-15,所以此时的 10 20 就认为是 0,故出现了错误现象。而选主元时则没有这种现象, 而且由 Emax 可以看出选主元时的结果应该是精确解。
x3 x 1 0
x0=1; x0=0.45, x0=0.65;
( x 1) 2 (2 x 1) 0
当 x0=0.45 时,计算结果为 x= 0.49999999999983; f(x)= -8.362754932994584e-014; k=4; 由 f(x)知结果满足要求,而且又迭代次数只有 4 次看出收敛速度很快,实际上该方程确实 有真解 x=0.5。 当 x0=0.65 时,计算结果为 x= 0.50000000000000; f(x)=0; k=9; 由 f(x)知结果满足要求,实际上该方程确实有真解 x=0.5,但迭代次数增多,实际上当取 x0〉0.68 时,x≈1,就变成了方程的另一个解,这说明 Newton 法收敛与初值很有关系, 有的时候甚至可能不收敛。
实验报告
结果分析和讨论: 例 用最小二乘法处理下面的实验数据 . xi fi 3 2.01 4 2.98 5 3.50 6 5.02 7 5.47 8 6.02 9 7.05
Hale Waihona Puke 并作出 f ( x) 的近似分布图。 分别采用一次,二次和五次多项式来拟合数据得到相应的拟合多项式为: y1=-0.38643+0.82750x ; y2=-1.03024+1.06893x-0.02012x2; y5=-50.75309+51.53527x-19.65947x2+3.66585x3-0.32886x4+0.01137x5; 分别作出它们的曲线图,图中点划线为 y1 曲线,实线为 y2 曲线,虚线为 y5 曲线。’x’为 给定的数据点。从图中可以看出并不是多项式次数越高越好,次数高了,曲线越能给定点 处和实际吻合,但别的地方就很差了。因此,本例选用一次和两次的多项式拟合应该就可 以了。
数值分析上机报告
数值分析上机报告姓名:学号:专业:联系电话:本次数值分析上机实习采用Matlab数学软件。
Matlab是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
在数值分析应用中可以直接调用Matlab软件中已有的函数,同时用户也可以将自己编写的实用导入到Matlab函数库中方便自己调用。
基于Matlab数学软件的各种实用性功能与优点,本次数值分析实习决定采用其作为分析计算工具。
1.语言简洁,编程效率高因为MATLAB定义了专门用于矩阵运算的运算符,使得矩阵运算就像列出算式执行标量运算一样简单,而且这些运算符本身就能执行向量和标量的多种运算。
利用这些运算符可使一般高级语言中的循环结构变成一个简单的MATLAB语句,再结合MATLAB丰富的库函数可使变得相当简短,几条语句即可代替数十行C语言或Fortran语言语句的功能。
2. 交互性好,使用方便在MATLAB的命令窗口中,输入一条命令,立即就能看到该命令的执行结果,体现了良好的交互性。
交互方式减少了编程和调试的工作量,给使用者带来了极大的方便。
因为不用像使用C语言和Fortran语言那样,首先编写源,然后对其进行编译、连接,待形成可执行文件后,方可运行得出结果。
3. 强大的绘图能力,便于数据可视化MATLAB不仅能绘制多种不同坐标系中的二维曲线,还能绘制三维曲面,体现了强大的绘图能力。
正是这种能力为数据的图形化表示(即数据可视化)提供了有力工具,使数据的展示更加形象生动,有利于揭示数据间的内在关系在新版本中也加入了对C、FORTRAN、c++、JA V A的支持,使用时可以直接调用,也可将编写的实用程序导入到matlab函数库中方便以后使用时调用。
本次编程所用的软件为MATLAB,通过这次作业,对它有了初步的认识,以及对数值分析的体会更为深刻,希望为以后的学习和工作奠定一定的基。
目录1 必做题一插值法 (4)1.1题目 (4)1.2 分析过程 (4)1.3 计算结果 (5)1.4 结果分析 (6)2 必做题二雅格比法迭代与高斯-赛德尔迭代 (6)2.1题目 (6)2.2分析过程 (6)2.3计算结果 (7)2.4 结果分析 (8)3 选做题一 (8)3.1题目三次样条插值 (8)3.2分析过程 (8)3.3计算结果 (9)3.4 结果分析 (9)附录 (10)附录一:必做题一插值法代码 (11)附录二:必做题二雅格比法迭代与高斯-赛德尔迭代代码 (12)附录三:选做题一三次样条插值代码 (14)1 必做题一 插值法1.1题目某过程涉及两变量x 和y, 拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi 与yi 之间的对应数据如下,xi=1,2,…,10yi = 34.6588 40.3719 14.6448 -14.2721 -13.3570 24.8234 75.2795 103.5743 97.4847 78.2392(1)请用次数分别为3,4,5,6的多项式拟合并给出最好近似结果f(x)。
东南大学 数值分析上机题作业 MATLAB版
东南大学数值分析上机题作业MATLAB版上机作业题报告1.Chapter 11.1题目设S N= Nj=2j2−1,其精确值为11311(-- 。
22N N +1(1)编制按从大到小的顺序S N =(2)编制按从小到大的顺序S N =111,计算S N 的通用程序。
++⋯⋯+22-132-1N 2-1111,计算S N 的通用程++⋯⋯+N 2-1(N -1 2-122-1序。
(3)按两种顺序分别计算S 102, S 104, S 106, 并指出有效位数。
(编制程序时用单精度)(4)通过本次上机题,你明白了什么?1.2程序 1.3运行结果1.4结果分析按从大到小的顺序,有效位数分别为:6,4,3。
按从小到大的顺序,有效位数分别为:5,6,6。
可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。
当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。
因此,采取从小到大的顺序累加得到的结果更加精确。
2.Chapter 22.1题目(1)给定初值x 0及容许误差ε,编制牛顿法解方程f(x=0的通用程序。
3(2)给定方程f (x =x-x =0, 易知其有三个根x 1*=-3, x 2*=0, x 3*=○1由牛顿方法的局部收敛性可知存在δ>0, 当x 0∈(-δ, Newton 迭代序列收敛+δ 时,于根x2*。
试确定尽可能大的δ。
○2试取若干初始值,观察当x 0∈(-∞, -1, (-1, -δ, (-δ, +δ, (δ, 1, (1, +∞ 时Newton 序列的收敛性以及收敛于哪一个根。
(3)通过本上机题,你明白了什么?2.2程序2.3运行结果(1)寻找最大的δ值。
算法为:将初值x0在从0开始不断累加搜索精度eps ,带入Newton 迭代公式,直到求得的根不再收敛于0为止,此时的x0值即为最大的sigma 值。
(完整版)哈工大-数值分析上机实验报告
(完整版)哈⼯⼤-数值分析上机实验报告实验报告⼀题⽬:⾮线性⽅程求解摘要:⾮线性⽅程的解析解通常很难给出,因此线性⽅程的数值解法就尤为重要。
本实验采⽤两种常见的求解⽅法⼆分法和Newton法及改进的Newton法。
前⾔:(⽬的和意义)掌握⼆分法与Newton法的基本原理和应⽤。
数学原理:对于⼀个⾮线性⽅程的数值解法很多。
在此介绍两种最常见的⽅法:⼆分法和Newton法。
对于⼆分法,其数学实质就是说对于给定的待求解的⽅程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有⼀个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成⽴判断根在区间[a,c]和[c,b]中的哪⼀个,从⽽得出新区间,仍称为[a,b]。
重复运⾏计算,直⾄满⾜精度为⽌。
这就是⼆分法的计算思想。
Newton法通常预先要给出⼀个猜测初值x0,然后根据其迭代公式产⽣逼近解x*的迭代数列{x k},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为其中r为要求的⽅程的根的重数,这就是改进的Newton法,当求解已知重数的⽅程的根时,在同种条件下其收敛速度要⽐Newton法快的多。
程序设计:本实验采⽤Matlab的M⽂件编写。
其中待求解的⽅程写成function的⽅式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下⾯给出主程序。
⼆分法源程序:clear%%%给定求解区间b=1.5;a=0;%%%误差R=1;k=0;%迭代次数初值while (R>5e-6) ;c=(a+b)/2;if f12(a)*f12(c)>0;a=c;elseb=c;endR=b-a;%求出误差k=k+1;endx=c%给出解Newton法及改进的Newton法源程序:clear%%%% 输⼊函数f=input('请输⼊需要求解函数>>','s')%%%求解f(x)的导数df=diff(f);%%%改进常数或重根数miu=2;%%%初始值x0x0=input('input initial value x0>>');k=0;%迭代次数max=100;%最⼤迭代次数R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解while (abs(R)>1e-8)x1=x0-miu*eval(subs(f,'x0','x'))/eval(subs(df,'x0','x'));R=x1-x0;x0=x1;k=k+1;if (eval(subs(f,'x0','x'))<1e-10);breakendif k>max;%如果迭代次数⼤于给定值,认为迭代不收敛,重新输⼊初值ss=input('maybe result is error,choose a new x0,y/n?>>','s');if strcmp(ss,'y')x0=input('input initial value x0>>');k=0;elsebreakendendendk;%给出迭代次数x=x0;%给出解结果分析和讨论:1.⽤⼆分法计算⽅程在[1,2]内的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机第四次作业实验项目:共轭梯度法求解对称正定的线性方程组实验容:用共轭梯度法求解下面方程组(1) 123421003131020141100155x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 迭代20次或满足()(1)1110k k x x --∞-<时停止计算。
(2) Ax b =,A 是1000阶的Hilbert 矩阵或如下的三对角矩阵,A[i,i]=4,A[i,i-1]=A[i-1,i]=-1,i=2,3,..,nb[1]=3, b[n]=3, b[i]=2,i=2,3,…,n-1迭代10000次或满足()()710k k r b Ax -=-≤时停止计算。
(3)*考虑模型问题,方程为 222222(),(,)(0,1)(0,1)(0,)1,(1,),01(,0)1,(,1),01xy y x u u x y e x y D x yu y u y e y u x u x e x ∂∂+=+∈=⨯∂∂==≤≤==≤≤用正方形网格离散化,若取1/,10h N N ==,得到100n =的线性方程组,并用共轭梯度法(CG 法)求解,并对解作图。
实验要求:迭代初值可以取01(,1,...,)ij u i j N ==,计算到32||||10k r -≤停止.本题有精确解(,)xy u x y e =,这里k u 表示以k ij u 为分量的向量,u 表示在相应点(,)i j 上取值作为分量的向量.实验一:(1)编制函数子程序CGmethod 。
function [x,k]=CGmethod(A,b)n=length(A);x=zeros(n,1);r=b-A*x;rho=r'*r;k=0;while rho>10^(-12) & k<20k=k+1;if k==1p=r;elsebeta=rho/rho1;p=r+beta*p;endw=A*p;alpha=rho/(p'*w);x=x+alpha*p;r=r-alpha*w;rho1=rho;rho=r'*r;end编制主程序shiyan1_1:clear,clcA=[2,-1,0,0;-1,3,-1,0;0,-1,4,1;0,0,-1,5]; b=[3,-2,1,5]';[x,k]=CGmethod(A,b)运行结果为:x =1.3882-0.2855-0.02220.9367k =20(2)编制函数子程序CGmethod_1function [x,k]=CGmethod_1(A,b)n=length(A);x(1:n,1)=0;r=b-A*x;r1=r;k=0;while norm(r1,1)>=10^(-7)&k<10^4k=k+1;if k==1p=r;elsebeta=(r1'*r1)/(r'*r);p=r1+beta*p;endr=r1;w=A*p;alpha=(r'*r)/(p'*w);x=x+alpha*p;r1=r-alpha*w;end编制主程序shiyan1_2:clear,clcn=1000;A=hilb(n);b=sum(A')';[x,k]=CGmethod_1(A,b)运行结果为:x 的值,均接近1,迭代次数k=32实验二实验目的:用复化Simpson 方法、自适应复化梯形方法和Romberg 方法求数值积分。
实验容:计算下列定积分 (1) dx x x x ⎰⎪⎪⎭⎫ ⎝⎛+-202610 (2)⎰10dx x x (3) ⎰20051dx x 实验要求:(1)分别用复化Simpson 公式、自适应复化梯形公式计算要求绝对误差限为71021-⨯=ε,输出每种方法所需的节点数和积分近似值,对于自适应方法,显示实际计算节点上离散函数值的分布图;(2)分析比较计算结果。
2、实验目的:高斯数值积分方法用于积分方程求解。
实验容:线性的积分方程的数值求解,可以被转化为线性代数方程组的求解问题。
而线性代数方程组所含未知数的个数,与用来离散积分的数值方法的节点个数相同。
在节点数相同的前提下,高斯数值积分方法有较高的代数精度,用它通常会得到较好的结果。
对第二类Fredholm 积分方程b t a t f ds s y s t k t y ba ≤≤+=⎰),()(),()( 首先将积分区间[a,b]等分成n 份,在每个子区间上离散方程中的积分就得到线性代数方程组。
实验要求:分别使用如下方法,离散积分方程中的积分1.复化梯形方法;2.复化辛甫森方法;3.复化高斯方法。
求解如下的积分方程t t e ds s y e e t y --=⎰10)(12)(,方程的准确解为t e , 并比较各算法的优劣。
实验二1、复化Simpson 方法)输入积分区间下限0输入积分区间上限2输入等分份数20输入被积函数(以x 为自变量)x^6/10-x^2+xS =1.1619输入积分区间下限0输入积分区间上限1输入等分份数20输入被积函数(以x为自变量)x*sqrt(x)S =0.4000输入积分区间下限5输入积分区间上限200输入等分份数20输入被积函数(以x为自变量)1/sqrt(x)S =23.82182、自动变步长Simpson方法函数1:输入积分区间下限0输入积分区间上限2输入为课本的第几个函数(第一个这输入1):1S =1.619(过程省略)i =19函数2:输入积分区间下限0输入积分区间上限1输入为课本的第几个函数(第一个这输入1):2 S =0.4(过程省略)i =17函数3:输入积分区间下限5输入积分区间上限200输入为课本的第几个函数(第一个这输入1):3S=23.8121(过程省略)i =111编制程序如下:Clear,clcsyms xa=input('输入积分区间下限');b=input('输入积分区间上限');n=input('输入等分份数');ff=input('输入被积函数(以x为自变量)');h=(b-a)/n;f=inline(ff,'x');sum1=0;for i=0:n-1sum1=sum1+f(a+i*h+0.5*h);endfor i=1:n-1sum2=sum2+f(a+i*h);endfor i=0:2*nX(i+1,1)=f((b-a)*i/(n*2)+a); endS=h/6*(f(a)+4*sum1+2*sum2+f(b))function S = zdsps( n )a=0;b=1;h=(b-a)/4;f=inline('x^(3/2)','x');sum1=0;sum2=0;for i=0:n-1sum1=sum1+f(a+i*h+0.5*h);endfor i=1:n-1sum2=sum2+f(a+i*h);endfor i=0:2*nx(i+1,1)=f((b-a)*i/(n*2)+a); endS=h/6*(f(a)+4*sum1+2*sum2+f(b)); endfunction S = zpsgs(a,b,n,ff )h=(b-a)/n;sum1=0;sum2=0;sum3=0;sum4=0;if ff==1f=inline('x^6/10-x^2+x','x'); endif ff==2f=inline('x^(3/2)','x');endif ff==3f=inline('1/sqrt(x)','x');for i=0:n-1sum1=sum1+f(a+i*h+0.25*h);sum2=sum2+f(a+i*h+0.75*h);sum4=sum4+f(a+i*h+0.5*h);endfor i=1:n-1sum3=sum3+f(a+i*h);endfor i=0:4*nx(i+1,1)=f((b-a)*i/(n*4)+a);endS=h/(6*2)*(f(a)+4*sum1+4*sum2+2*(sum3+sum4)+f(b));endclear , clca=input('输入积分区间下限');b=input('输入积分区间上限');ff=input('输入为课本的第几个函数(第一个这输入1):');for i=2:300S(i)=zpsgs(a,b,(i),ff);S(i+1)=zpsgs(a,b,(i+1),ff);if abs(S(i+1)-S(i))<0.5*10^(-7)breakendendS %所求积分值i %所分份数实验三1、对常微分方程初值问题2cos (0)1y y x y '=-+⎧⎨=⎩(0)x π<< 分别使用Euler 显示方法、改进的Euler 方法和经典RK 法和四阶Adams 预测-校正算法,求解常微分方程数值解,并与其精确解cos sin y x x =+进行作图比较。
其中多步法需要的初值由经典RK 法提供。
2、实验目的:Lorenz 问题与混沌实验容:考虑著名的Lorenz 方程⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=-=)1.8()(bz xy dtdz xz y rx dtdy x y s dt dx其中s, r, b 为变化区域有一定限制的实参数。
该方程形式简单,表面上看并无惊人之处,但由该方程揭示出的许多现象,促使“混沌”成为数学研究的崭新领域,在实际应用中也产生了巨大的影响。
实验方法:先取定初值Y0=(x, y, z)=(0, 0, 0),参数s=10, r=28, b=8/3,用MATLAB 编程数值求解,并与MATLAB 函数ods45的计算结果进行对比。
实验要求:(1)对目前取定的参数值s, r 和b ,选取不同的初值Y0进行运算,观察计算的结果有什么特点?解的曲线是否有界?解的曲线是不是周期的或趋于某个固定点?(2)在问题允许的围适当改变其中的参数值s, r, b ,再选取不同的初始值Y0进行试算,观察并记录计算的结果有什么特点?是否发现什么不同的现象?3、定义函数子程序为:function z=f(x,y)z=-y+2*cos(x);return主程序为:clear,clcb=pi;a=0;n=100;y(1)=1;h=(b-a)/n;x=a:h:b;for i=1:ny(i+1)=y(i)+h*f(x(i),y(i));endt1=plot(x,y,'r-')hold onfor i=1:nK1=f(x(i),y(i));K2=f(x(i+1),y(i)+h*K1);y(i+1)=y(i)+h*(K1+K2)/2;endt2=plot(x,y,'b+')for i=1:nK1=f(x(i),y(i));K2=f(x(i)+0.5*h,y(i)+0.5*h*K1);K3=f(x(i)+0.5*h,y(i)+0.5*h*K2);K4=f(x(i),y(i)+h*K3);y(i+1)=y(i)+h*(K1+2*K2+2*K3+K4)/6;endt3=plot(x,y,'ko')for i=1:3K1=f(x(i),y(i));K2=f(x(i)+0.5*h,y(i)+0.5*h*K1);K3=f(x(i)+0.5*h,y(i)+0.5*h*K2);K4=f(x(i),y(i)+h*K3);y(i+1)=y(i)+h*(K1+2*K2+2*K3+K4)/6;endfor i=4:nz=y(i)+h/24*(55*f(x(i),y(i))-59*f(x(i-1),y(i-1))...+37*f(x(i-2),y(i-2))-9*f(x(i-3),y(i-3)));y(i+1)=y(i)+h/24*(9*f(x(i+1),z)+19*f(x(i),y(i))...-5*f(x(i-1),y(i-1))+f(x(i-2),y(i-2)));endt4=plot(x,y,'g*')t5=ezplot('sin(x)+cos(x)',[0,pi])xlabel('x轴','FontWeight','bold')ylabel('y轴', 'FontWeight','bold')legend([t1,t2,t3,t4,t5],'向前Euler法','¸改进的Euler法','经典四阶Runge-Kutta法','四阶Adams公式','精确解')原图为:局部放大图为:由图可得:四阶Adams公式及改进的欧拉法将为精确。