生物陶瓷英文文献
生物陶瓷材料的研究报告及应用
生物瓷材料的研究及应用波化工07-3班9摘要介绍了生物瓷的定义,对羟基磷灰石生物瓷材料、磷酸钙生物瓷材料、复合生物瓷材料、涂层生物瓷材料和氧化铝生物瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。
关键词生物瓷,磷酸钙,复合生物瓷材料,涂层生物瓷材料,氧化铝瓷,生物瓷应用。
Bioceramic Materials Research and ApplicationZhangbo Chemical Engineering and Technology 073 class 9AbstractThis paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, posite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects.Key wordsbio-ceramics, calcium phosphate, posite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications.1 引言生物瓷是指用作特定的生物或生理功能的一类瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的瓷材料。
SBN陶瓷英文文献
Ferroelectric and piezoelectric properties of tungsten substituted SrBi 2Ta 2O 9ferroelectric ceramicsIndrani Coondoo *,S.K.Agarwal a ,A.K.Jha ba Superconductivity and Cryogenics Division,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India bDepartment of Applied Physics,Delhi College of Engineering,Bawana Road,Delhi 110042,India1.IntroductionDefects in crystals significantly influence physical and various other properties of materials [1].For instance,as it is well known,doping by other elements leads to significant changes in the electrical properties of silicon.Historically,‘‘defect engineering’’has been developed in the field of semiconducting materials such as compound semiconductors as well as in diamond,Si and Ge [2–4].Subsequently,the concept of defect engineering has been applied to other functional materials,and the significant improve-ment in material properties have been achieved in high transition-temperature superconductors [5],amorphous SiO 2[6],photonic crystals [7]and also in the field of ferroelectrics,such as BaTiO 3,Pb(Ti,Zr)O 3(PZT),etc.[8,9].Various structural and electrical properties of bismuth layer-structured ferroelectrics (BLSF)are also strongly affected on deviation from stoichiometric composi-tions and defects have been recognized as a crucially important factor [10–13].It has been found that in BLSF small changes in chemical composition result in significantly altered dielectric and ferroelectric properties including dielectric constant and remanent polarization.In SrBi 2Ta 2O 9(SBT)and SrBi 2Nb 2O 9(SBN),orthor-hombic structural distortions with non-centrosymmetric spacegroup A 21am cause spontaneous ferroelectric polarization (P s )along a axis [14,15].SBT,a member of the BLSF family,has occupied an important position among the Pb-free ferroelectric memory materials [16–18].Tungsten (W 6+)has recently been investigated as a dopant for bismuth titanates and lanthanum doped bismuth titanates,in which the remanent polarization was observed to enhance when a small amount of Ti 4+was substituted by W 6+[19,20].With the objective to improve structural,dielectric and ferroelectric proper-ties,the hexavalent tungsten (W 6+)was chosen as a donor cation for partial replacement of the pentavalent tantalum (Ta 5+)SBT.In this report,the effect of tungsten substitution in SBT (SBTW),on the microstructural,ferroelectric and piezoelectric properties is reported.The results including the improvement in polarization properties have been discussed.2.ExperimentalSamples of compositions SrBi 2(W x Ta 1Àx )2O 9(SBWT),with x =0.0,0.025,0.050,0.075,0.10and 0.20were synthesized by solid-state reaction method taking SrCO 3,Bi 2O 3,Ta 2O 5and WO 3(all from Aldrich)in their stoichiometric proportions.The powder mixtures were thoroughly ground and passed through sieve of appropriate size and then calcined at 9008C in air for 2h.The calcined mixtures were ground and admixed with about 1–1.5wt%polyvinyl alcohol (Aldrich)as a binder and then pressed at $300MPa into disk shaped pellets.The pellets were sintered at 12008C for 2h in air.Materials Research Bulletin 44(2009)1288–1292A R T I C L E I N F O Article history:Received 3October 2008Received in revised form 5December 2008Accepted 6January 2009Available online 15January 2009Keywords:A.CeramicsC.X-ray diffractionD.FerroelectricityA B S T R A C TTungsten substituted samples of compositions SrBi 2(W x Ta 1Àx )2O 9(x =0.0,0.025,0.050,0.075,0.10and 0.20)were synthesized by solid-state reaction method and studied for their microstructural,electrical conductivity,ferroelectric and piezoelectric properties.The X-ray diffractograms confirm the formation of single phase layered perovskite structure in the samples with x up to 0.05.The temperaturedependence of dc conductivity vis-a`-vis tungsten content shows a decrease in conductivity,which is attributed to the suppression of oxygen vacancies.The ferroelectric and piezoelectric studies of the W-substituted SBT ceramics show that the remanent polarization and d 33values increases with increasing concentration of tungsten up to x 0.05.Such compositions with low conductivity and high P r values should be excellent materials for highly stable ferroelectric memory devices.ß2009Elsevier Ltd.All rights reserved.*Corresponding author.Present address:Liquid Crystal Group,National Physical Laboratory,Dr K.S.Krishnan Road,New Delhi 110012,India.Tel.:+919810361727;fax:+911125170387.E-mail address:indrani_coondoo@ (I.Coondoo).Contents lists available at ScienceDirectMaterials Research Bulletinj o ur n a l h o m e p a g e :w w w.e l se v i e r.c om /l oc a t e /m a t r e sb u0025-5408/$–see front matter ß2009Elsevier Ltd.All rights reserved.doi:10.1016/j.materresbull.2009.01.001X-ray diffractograms of the sintered samples were recorded using a Bruker diffractometer in the range 108 2u 708with CuK a radiation.The sintered pellets were polished to a thickness of 1mm and coated with silver paste on both sides for use as electrodes and cured at 5508C for half an hour.Electrical conductivity was performed using Keithley’s 6517A Electrometer.The polarization–electric field (P –E )hysteresis measurements were done at room temperature using an automatic P –E loop tracer based on Sawyer–Tower circuit.Piezoelectric charge co-efficient d 33was measured using a Berlincourt d 33meter after poling the samples in silicone–oil bath at 2008C for half an hour under a dc electric field of 60–70kV/cm.3.Results and discussion3.1.Structural and micro-structural studiesThe phase formation and crystal structure of the ceramics were examined by X-ray diffraction (XRD),which is shown in Fig.1.The XRD patterns of the samples show the characteristic peaks of SBT.The peaks have been indexed with the help of a computer program–POWDIN [21]and the refined lattice parameters are given in Table 1.It is observed that a single phase layered perovskite structure is maintained in the range 0.0 x 0.05.Owing to the same co-ordination number i.e.6and the smallerionic radius of W (0.60A˚)in comparison to Ta (0.64A ˚),there is a high possibility of tungsten occupying the tantalum site.The observance of unidentified peak of very low intensity in the compositions with x >0.05indicates the solubility limit of W concentration in SBT.The unidentified peak is possibly due to tungsten not occupying the Ta sites in the structure as the intensity of this peak is observed to increase with tungsten content.Composition and sintering temperature influences the micro-structure such as grain growth and densification of the specimen,which in turn control other properties of the material [11,13].The effects of W substitution on the microstructure have been examined by SEM and the obtained micrographs are shown in Fig.2.It shows the microstructure of the fractured surface of the studied samples.It is clearly observed that W substitution has pronounced effect on the average grain size and homogeneity of the grains.Randomly oriented and anisotropic plate-like grains are observed in all the samples.It is also observed that the average grain size increases gradually with increasing W content.The average grain size in the sample with x =0.0is $2–3m m while that in the sample with x =0.20the size increases to $5–7m m.3.2.Electrical studiesThe electrical conductivity of ceramic materials encompasses a wide range of values.In insulators,the defects w.r.t.the perfect crystalline structure act as charge carriers and the consideration of charge transport leads necessarily to the consideration of point defects and their migration [22].Many mechanisms were put forward to explain the conductivity mechanism in ceramics.Most of them are approximately divided into three groups:electronic conduction,oxygen vacancies ionic conduction,and ionic and p-type mixed conduction [22].Intrinsic conductivity results from the movement of the component ions,whereas conduction resulting from the impurity ions present in the lattice is known as extrinsic conductivity.At low temperature region (ferroelectric phase),the conduction is dominated by the extrinsic conduction,whereas the conduction at the high-temperature paraelectric phase ($300–7008C)is dominated by the intrinsic ionic conduction [23,25].Fig.3shows the temperature dependence of dc conductivity (s dc )for the undoped and doped SBT samples.The curves show that the conductivity increases with temperature.This is indicative of negative temperature coefficient of resistance (NTCR)behavior,a characteristic of dielectrics [22].It is observed in Fig.3that throughout the temperature range,the dc conductivity of the doped samples are nearly two to three orders lower than that of the undoped sample.Two predominant conduction mechanisms indicated by slope changes in the two different temperature regions are observed in Fig.3.Such changes in the slope in the vicinity of the ferro-paraelectric transition region have been observed in other ferroelectric materials as well [23,24].In addition,it is also observed (Table 2)that the activation energy calculated using the Arrhenius equation [22]in the paraelectric phase increase from $0.80eV for the undoped sample to $2eV for the doped samples.The X-ray photoemission spectroscopic study has confirmed that when Bi 2O 3evaporates during high-temperature processing,vacancy complexes are formed in the (Bi 2O 2)2+layers [26].As a result,defective (Bi 2O 2)2+layers are inherently present in SBT.The undoped SBT shows n-type conductivity,since when oxygen vacancies are created,it leaves behind two trapped electrons [27]:O o !12O 2"þV o þ2e 0(1)where O o is an oxygen ion on an oxygen site,V o is a oxygen vacant site and e 0represents electron.The conductivity in the perovskites can be described as an ordered diffusion of oxygen vacancies [28].Their motion is manifested by enhanced ionic conductivity associated with an activation energy value of $1eV [26].These oxygen vacancies can be suppressed by addition of donors,since the donor oxide contains more oxygen per cation than the host oxide it replaces [29].It has been reported that conductivity in Bi 4Ti 3O 12(BIT)can be significantly decreased,up to three orders of magnitude with the addition of donors,such as Nb 5+and Ta 5+at the Ti 4+sites [23,30].A few other studies on layered perovskites have also reported a decrease inconductivityFig.1.XRD patterns of SrBi 2(W x Ta 1Àx )2O 9samples sintered at 12008C.Table 1Lattice parameters of SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W a (A ˚)b (A ˚)c (A ˚)0.0 5.5212 5.513924.92230.025 5.5214 5.520225.10790.05 5.5217 5.519925.05850.075 5.5191 5.504525.05670.10 5.5142 5.506125.0850.205.51335.493925.0861I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921289with addition of donors [23,24,31].In the present study,the Ta 5+-site substitution by W 6+in SBT can be formulated using a defect chemistry expression as WO 3þV o!Ta 2O 512W Ta þ3O o (2)It shows that the oxygen vacancies are reduced upon the substitution of donor W 6+ions for Ta 5+ions.Hence,it is reasonable to believe that the conductivity in SBT is suppressed by donor addition.As per the above discussion,the high s dc observed in the undoped SBT (Fig.3)can be attributed to the motion of oxygen vacancies.As already discussed,the doped samples show reduced conductivity because the transport phenomena involving oxygen vacancies are greatly reduced.The high E a value of $1.75–2eVcorresponding to the high-temperature region in the doped ceramics is consistent with the fact that in the donor-doped materials,the ionic conduction reduces [32].The activation energy E a in the low temperature ferroelectric region (Table 2)corre-sponds to extrinsic conduction.At lower temperatures the extrinsic conductivity results from the migration of impurity ions in the lattice.Some of these impurities may also be associated with lattice defects.Pure SBT has large number of Schottky defects (oxygen vacancies)in addition to impurity ions whereas in the doped samples,due to charge neutrality,there is relatively less content of oxygen vacancies.Thus,in the doped samples the conductivity in the low temperature region is largely due to the impurity ions only.This explains the high activation energy in pure SBT in the low temperature region compared to doped samples (Table 2).In the high-temperature region,the value of E a in the doped samples is observed to increase with W concentration up to x =0.05but beyond that,it decreases (Table 2).The decrease in the activation energy for samples with x >0.05suggests an increase in the concentration of mobile charge carriers [33].This observation can be ascribed to the existence of multiple valence states of tungsten.Since tungsten is a transitional metal element,the valence state of W ions in a solid solution most likely varies from W 6+to W 4+depending on the surrounding chemical environment [34].When W 4+are substituted for the Ta 5+sites,oxygen vacancies would be created,i.e.one oxygen vacancy would be created for every two tetravalent W ions entering the crystal structure,whichFig.3.Variation of dc conductivity with temperature in SrBi 2(W x Ta 1Àx )2O 9samples.Fig.2.SEM micrographs of fractured surfaces of SrBi 2(W x Ta 1Àx )2O 9samples with (a)x =0.0,(b)x =0.025,(c)x =0.050,(d)x =0.075,(e)x =0.10and (f)x =0.20Table 2Activation energy (E a )in the high-temperature paraelectric region and low temperature ferroelectric region;Curie temperature (T c )in SrBi 2(W x Ta 1Àx )2O 9samples.Concentration of W E a (high temp.)(eV)E a (low temp.)(eV)T c (8C)0.00.790.893110.025 1.920.593080.05 1.960.543250.075 1.940.543380.10 1.860.573680.201.740.54390I.Coondoo et al./Materials Research Bulletin 44(2009)1288–12921290explains the increase in the concentration of mobile charge carriers which ultimately results in an decrease in the E a beyond x>0.05. Hence it is reasonable to conclude that W ions in the SBWT exists as a varying valency state,i.e.at lower doping concentration they exist in hexavalent state(W6+)and at a higher doping concentra-tion,they tend to exist in lower valency states[8].The P–E loops of SrBi2(Ta1Àx W x)2O9are shown in Fig.4.It is observed that W-doping results in formation of well-defined hysteresis loops.Fig.5shows the compositional dependence of remanent polarization(2P r)and the coercivefield(2E c)of SrBi2(Ta1Àx W x)2O9samples.Both the parameters depend on W content of the samples.It is observed that2P rfirst increases with x and then decreases while2E cfirst decreases with x and then increases(Fig.5).The optimum tungsten content for maximum2P r ($25m C/cm2)is observed to be x=0.075.It is known that ferroelectric properties are affected by compositional modification,microstructural variation and lattice defects like oxygen vacancies[10,35,36].In hard ferroelectrics, with lower valent substituents,the associated oxide vacancies are likely to assemble in the vicinity of domain walls[37,38].These domains are locked by the defects and their polarization switching is difficult,leading to an increase in E c and decrease in P r[38]. On the other hand,in soft ferroelectrics,with higher valent substituents,the defects are cation vacancies whose generation in the structure generally increases P r.Similar observations have been made in many reports[38–41].Watanabe et al.[42]reported a remarkable improvement in ferroelectric properties in the Bi4Ti3O12ceramic by adding higher valent cation,V5+at the Ti4+ site.It has also been reported that cation vacancies generated by donor doping make domain motion easier and enhance the ferroelectric properties[43].Further,it is known that domain walls are relatively free in large grains and are inhibited in their movement as the grain size decreases[44].In the larger grains, domain motion is easier which results in larger P r.Also for the SBT-based system,it is known that with increase in the grain size the remanent polarization also increases[45,46].Based on the obtained results and above discussion,it can be understood that in the undoped SBT,the oxygen vacancies assemble at sites near domain boundaries leading to a strong domain pinning.Hence,as observed,well-saturated P–E loop for pure SBT is not obtained.But in the doped samples,the suppression of the oxygen vacancies reduces the pinning effect on the domain walls,leading to enhanced remanent polarization and lower coercivefield.Also,the increase in grain size in tungsten added SBT,as observed in SEM micrographs(Fig.2)contribute to the increase in polarization values.In the present study,the grain size is observed to increase with increasing W concentration.However, the2P r values do not monotonously increase and neither the E c decreases continuously with increasing W concentration(Fig.5). The variation of P r and E c beyond x>0.05,seems possibly affected by the presence of secondary phases(observed in XRD diffracto-grams),which hampers the switching process of polarization [47–50].Also,beyond x>0.05the increase in the number of charge carriers in the form of oxygen vacancies leads to pinning of domain walls and thus a reduction in the values of P r and increase in E c is observed.Fig.6shows the variation of piezoelectric charge coefficient d33 with x in the SrBi2(Ta1Àx W x)2O9.The d33values increases with increase in W content up to x=0.05.A decrease in d33values is observed in the samples with x!0.075.The piezoelectric coefficient,d33,increases from13pC/N in the sample with x=0.0to23pC/N in the sample with x=0.05.It is known that the major drawback of SBT is its relatively higher conductivity,which hinders proper poling[51].High resistivity is therefore important for maintenance of poling efficiency at high-temperature[52,53].The W-doped SBT samples show an electrical conductivity value up to three orders of magnitude lower than that of undoped sample(Fig.3).The positional variation of2P r and2E c in SrBi2(W x Ta1Àx)2O9samples.Fig.6.Variation of d33in SrBi2(W x Ta1Àx)2O9samples.Fig. 4.P–E hysteresis loops in SrBi2(W x Ta1Àx)2O9samples recorded at roomtemperature.I.Coondoo et al./Materials Research Bulletin44(2009)1288–12921291decrease in conductivity upon donor doping improve the poling efficiency resulting in the observed higher d33values.Moreover, since the grain size increases with W content in SBT,it is reasonable to believe that the increase in grain size will also contribute to the increase in d33values[54].The decrease in the value of d33for samples with x!0.075is possibly due to the presence of secondary phases as observed in diffractograms[1,51,55]and the increase in oxygen vacancies for samples with x>0.05.4.ConclusionsX-ray diffractograms of the samples reveal that the single phase layered perovskite structure is maintained in the samples with tungsten content x0.05.SEM micrographs reveal that the average grain size increases with increase in W concentration. The temperature dependence of the electrical conductivity shows that tungsten doping results in the decrease of conductivity by up to three order of magnitude compared to W free SBT.All the tungsten-doped ceramics have higher2P r than that of the undoped sample.The maximum2P r($25m C/cm2)is obtained in the composition with x=0.075.The reduced conductivity allows high-temperature poling of the doped samples.Such compositions with low loss and high P r values should be excellent materials for highly stable ferroelectric memory devices.The d33value is observed to increase with increasing W content up to x0.05.The value of d33 in the composition with x=0.05is$23pC/N as compared to$13 pC/N in the undoped sample.AcknowledgmentsThe authors sincerely thank Prof.P.B.Sharma,Dean,Delhi College of Engineering,India for his generous support and providing ample research infrastructure to carry out the research work.The authors are thankful to Dr.S.K.Singhal,Scientist, National Physical Laboratory,India for his fruitful discussion and suggestions.References[1]Y.Noguchi,M.Miyayama,K.Oikawa,T.Kamiyama,M.Osada,M.Kakihana,Jpn.J.Appl.Phys.41(2002)7062.[2]A.Bonaparta,P.Giannozzi,Phys.Rev.Lett.84(2000)3923.[3]S.Connell,E.Siderashaddad,K.Bharuthram,C.Smallman,J.Sellschop,M.Bos-senger,Nucl.Instrum.Methods B85(1994)508.[4]T.Derry,R.Spits,J.Sellschop,Mater.Sci.Bull.11(1992)249.[5]K.Salama,D.F.Lee,Supercond.Sci.Technol.7(1994)177.[6]H.Hosono,Y.Ikuta,T.Kinoshita,M.Hirano,Phys.Rev.Lett.87(2001)175501.[7]S.Noda,A.Chutinan,M.Imada,Nature407(1999)608.[8]S.Shannigrahi,K.Yao,Appl.Phys.Lett.86(2005)092901.[9]G.H.Heartling,nd,J.Am.Ceram.Soc.54(1971)1.[10]H.Watanabe,T.Mihara,H.Yoshimori,C.A.Paz De Araujo,Jpn.J.Appl.Phys.34(1995)5240.[11]T.Atsuki,N.Soyama,T.Yonezawa,K.Ogi,Jpn.J.Appl.Phys.34(1995)5096.[12]T.Noguchi,T.Hase,Y.Miyasaka,Jpn.J.Appl.Phys.35(1996)4900.[13]M.Noda,Y.Matsumuro,H.Sugiyama,M.Okuyama,Jpn.J.Appl.Phys.38(1999)2275.[14]R.E.Newnham,R.W.Wolfe,R.S.Horsey,F.A.D.Colon,M.I.Kay,Mater.Res.Bull.8(1973)1183.[15]A.D.Rae,J.G.Thompson,R.L.Withers,Acta Crystallogr.Sect.B:Struct.Sci.48(1992)418.[16]H.M.Tsai,P.Lin,T.Y.Tseng,J.Appl.Phys.85(1999)1095.[17]Y.Shimakawa,Y.Kubo,Y.Nakagawa,T.Kamiyama,H.Asano,F.Izumi,Appl.Phys.Lett.74(1999)1904.[18]Y.Noguchi,M.Miyayama,T.Kudo,Phys.Rev.B63(2001)214102.[19]J.K.Kim,T.K.Song,S.S.Kim,J.Kim,Mater.Lett.57(2002)964.[20]W.T.Lin,T.W.Chiu,H.H.Yu,J.L.Lin,S.Lin,J.Vac.Sci.Technol.A21(2003)787.[21]Wu E.,POWD,An interactive powder diffraction data interpretation and indexingprogram Ver2.1,School of Physical Science,Flinders University of South Australia, Bedford Park,S.A.JO42AU.[22]R.C.Buchanan,Ceramic Materials for Electronics:Processing,Properties andApplications,Marcel Dekker Inc.,New York,1998.[23]H.S.Shulman,M.Testorf,D.Damjanovic,N.Setter,J.Am.Ceram.Soc.79(1996)3124.[24]M.M.Kumar,Z.G.Ye,J.Appl.Phys.90(2001)934.[25]Y.Wu,G.Z.Cao,J.Mater.Res.15(2000)1583.[26]B.H.Park,S.J.Hyun,S.D.Bu,T.W.Noh,J.Lee,H.D.Kim,T.H.Kim,W.Jo,Appl.Phys.Lett.74(1999)1907.[27]C.A.Palanduz,D.M.Smyth,J.Eur.Ceram.Soc.19(1999)731.[28]C.R.A.Catlow,Superionic Solids&Solid Electrolytes,Academic Press,New York,1989.[29]M.V.Raymond,D.M.Symth,J.Phys.Chem.Solids57(1996)1507.[30]S.S.Lopatin,T.G.Lupriko,T.L.Vasiltsova,N.I.Basenko,J.M.Berlizev,Inorg.Mater.24(1988)1328.[31]M.Villegas,A.C.Caballero,C.Moure,P.Duran,J.F.Fernandez,J.Eur.Ceram.Soc.19(1999)1183.[32]Y.Wu,G.Z.Cao,J.Mater.Sci.Lett.19(2000)267.[33]B.H.Venkataraman,K.B.R.Varma,J.Phys.Chem.Solids66(2005)1640.[34]C.D.Wagner,W.M.Riggs,L.E.Davis,F.J.Moulder,Handbook of X-ray Photoelec-tron Spectroscopy,Perkin Elmer Corp.,Chapman&Hall,1990.[35]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)1259.[36]M.Yamaguchi,T.Nagamoto,O.Omoto,Thin Solid Films300(1997)299.[37]W.Wang,J.Zhu,X.Y.Mao,X.B.Chen,Mater.Res.Bull.42(2007)274.[38]T.Friessnegg,S.Aggarwal,R.Ramesh,B.Nielsen,E.H.Poindexter,D.J.Keeble,Appl.Phys.Lett.77(2000)127.[39]Y.Noguchi,M.Miyayama,Appl.Phys.Lett.78(2001)1903.[40]Y.Noguchi,I.Miwa,Y.Goshima,M.Miyayama,Jpn.J.Appl.Phys.39(2000)L1259.[41]B.H.Park,B.S.Kang,S.D.Bu,T.W.Noh,L.Lee,W.Joe,Nature(London)401(1999)682.[42]T.Watanabe,H.Funakubo,M.Osada,Y.Noguchi,M.Miyayama,Appl.Phys.Lett.80(2002)100.[43]S.Takahashi,M.Takahashi,Jpn.J.Appl.Phys.11(1972)31.[44]R.R.Das,P.Bhattacharya,W.Perez,R.S.Katiyar,Ceram.Int.30(2004)1175.[45]S.B.Desu,P.C.Joshi,X.Zhang,S.O.Ryu,Appl.Phys.Lett.71(1997)1041.[46]M.Nagata,D.P.Vijay,X.Zhang,S.B.Desu,Phys.Stat.Sol.(a)157(1996)75.[47]J.J.Shyu,C.C.Lee,J.Eur.Ceram.Soc.23(2003)1167.[48]I.Coondoo,A.K.Jha,S.K.Agarwal,Ferroelectrics326(2007)35.[49]T.Sakai,T.Watanabe,M.Osada,M.Kakihana,Y.Noguchi,M.Miyayama,H.Funakubo,Jpn.J.Appl.Phys.42(2003)2850.[50]C.H.Lu,C.Y.Wen,Mater.Lett.38(1999)278.[51]R.Jain,V.Gupta,A.Mansingh,K.Sreenivas,Mater.Sci.Eng.B112(2004)54.[52]I.S.Yi,M.Miyayama,Jpn.J.Appl.Phys.36(1997)L1321.[53]A.J.Moulson,J.M.Herbert,Electroceramics:Materials,Properties,Applications,Chapman&Hall,London,1990.[54]H.T.Martirena,J.C.Burfoot,J.Phys.C:Solid State Phys.7(1974)3162.[55]R.Jain,A.K.S.Chauhan,V.Gupta,K.Sreenivas,J.Appl.Phys.97(2005)124101.I.Coondoo et al./Materials Research Bulletin44(2009)1288–1292 1292。
生物陶瓷材料2
图1
几种常见的基于磷酸钙的生物陶瓷材料
www.themegallห้องสมุดไป่ตู้
LOGO
磷酸钙生物陶瓷研究背景
表1 现存的几种磷酸钙和它们的主要性质
(3) 磷酸一钙(MCPA)和磷酸二钙(DCPA)在温度高于100°C稳定。 (1) α-TCP、β-TCP和TTCP不能从水溶液中沉淀; (4) pH在5~12时,ACP相对稳定。(5)缺钙羟基磷灰石(CDHA)被称为沉淀的HA。 (2) 无定型磷酸钙(ACP)不能精确测量。在酸性缓冲液中的溶解程度: (6) 对CDHA,当x=1时,边界条件钙磷比为1.5,CDHA的分子式为 ACP>> a-TCP>> b-TCP> CDHA >>HA > FA。 Ca9(HPO4)(PO4)5(OH)。
LOGO
磷酸钙生物陶瓷的几种理化性质
粉末或压坯在 低于主要组分 烧结 机械性能 熔点温度下加 热,使颗粒间 磷酸钙生 产生连接, 产生连接,以 物陶瓷 提高制品性能 的方法。 的方法。能提 机械强度, 高机械强度, 电学性质 多孔性 增加韧性。 增加韧性。
强度和杨氏 模量较高, 模量较高, 脆性低。 脆性低。
图6 降解前后聚磷酸钙多孔支架 材料的表面形貌图( 材料的表面形貌图(x5000) )
LOGO
生物活性
新形成的骨通过在骨/材料交界处形成碳化 新形成的骨通过在骨 材料交界处形成碳化CDHA层直接连接到生物 材料交界处形成碳化 层直接连接到生物 材料上。 材料上。 几种生物陶瓷的体内体外实验 在体内,酸性环境下的细胞( 巨噬细胞,破骨细胞) ① 在体内,酸性环境下的细胞(如巨噬细胞,破骨细胞)活动会引起磷 实验对象:体外是模仿体液;体内是兔子肌肉系统。 实验对象:体外是模仿体液;体内是兔子肌肉系统。 酸钙的部分溶解。 酸钙的部分溶解。
陶瓷的英语作文
六、Challenges and Innovations
Despite its long history and widespread usage, the ceramics industry faces several challenges in the modern era. Issues such as environmental impact, energy consumption, and waste management have spurred the development of innovative techniques and materials. Advanced ceramics, such as engineered ceramics and ceramic composites, have emerged to meet the demands of diverse industries.
五、Cultural Significance
The significance of ceramics in various cultures cannot be overlooked. In China, the art of porcelain making has been highly revered and has become an integral part of its cultural heritage. Japanese tea ceremonies, which involve the use of ceramic tea sets, reflect the deep appreciation for ceramics in Japanese culture. In the Western world, ceramics have been valued for their aesthetic appeal and functional utility.
介绍陶瓷高中英语作文范文
介绍陶瓷高中英语作文范文Ceramics: A Blend of Art and Science。
Introduction:Ceramics, a versatile art form that has been practiced for centuries, is the art of creating objects from clay and other inorganic materials through the process of heating.It is not only a creative outlet but also a scientific endeavor that involves understanding the properties of materials and the chemical reactions that occur during firing. In this essay, we will explore the world of ceramics, its history, techniques, and significance in both art and science.History of Ceramics:The history of ceramics dates back to ancient civilizations. From the Neolithic period to the present day, ceramics have played a vital role in human culture. Theearliest known ceramic objects were found in China and date back to around 18,000 BCE. These objects were simple, functional vessels made from clay and fired at low temperatures.Over time, ceramic techniques evolved, andcivilizations around the world began experimenting with different materials and firing methods. In ancient Egypt, ceramics were used for both practical and decorative purposes. The Greeks and Romans developed sophisticated pottery techniques, producing intricate designs andutilizing glazes to enhance the aesthetic appeal of their creations.During the Middle Ages, Islamic ceramics reached new heights of excellence, with intricate patterns and vibrant colors. In East Asia, particularly in China and Japan, ceramics became an integral part of their cultural heritage, with unique styles such as porcelain and raku pottery emerging.Ceramics in Art:Ceramics have long been recognized as a form ofartistic expression. Artists use various techniques to shape clay into functional or decorative objects. Handbuilding, wheel throwing, and slip casting are some of the traditional techniques employed in ceramic art.One of the most famous ceramic art forms is porcelain. Porcelain is a type of ceramic made from a specific type of clay called kaolin. It is known for its delicate, translucent appearance and its ability to hold intricate details. Chinese porcelain, in particular, is highly regarded for its craftsmanship and aesthetic beauty.In contemporary art, ceramics have gained recognition as a medium for sculptural expression. Artists push the boundaries of traditional techniques, experimenting with form, texture, and glazing to create unique and thought-provoking artworks. Ceramic sculptures can range from abstract forms to figurative representations, showcasing the versatility of the medium.Ceramics in Science:Beyond its artistic significance, ceramics play a crucial role in various scientific fields. The study of ceramics involves understanding the properties of materials and their behavior under different conditions. Ceramic materials possess unique characteristics such as high melting points, thermal insulation, and resistance to corrosion, making them valuable in numerous applications.In engineering, ceramics are used in the production of cutting tools, bearings, and insulating materials. Their high strength and resistance to wear make them ideal for applications where durability is essential. Ceramics also find applications in the aerospace industry, as they can withstand extreme temperatures and provide thermal protection.In the medical field, ceramics are used in the manufacturing of dental implants, prosthetics, and bone substitutes. Ceramic materials are biocompatible, meaning they can integrate with living tissues without causingadverse reactions. This property makes ceramics anexcellent choice for medical implants.Conclusion:Ceramics, with its rich history, diverse techniques, and dual significance in art and science, continues to captivate and inspire. From ancient pottery to contemporary sculptures, ceramics have evolved as a medium for creative expression. Simultaneously, its scientific applications have contributed to advancements in various industries. Whether it is the delicate beauty of porcelain or the strength of engineering ceramics, this art form continues to leave an indelible mark on our world.。
介绍陶瓷(英文版)
Ceramics and Culture
The pottery in the Neolithic e pottery in the Neolithic (8,000-2,000BC in China) period records the survival will of the ancient people. Pigs, dogs, and cows made of clay signified people's fierce struggle with the environment at the time。
Ming Plain Tri-colored Glazed Porcelain
During the Zhengde reign of the Ming Dynasty (1368-1644), a type of colored-glazed porcelain featuring three major colors -- yellow, green and purple -became very popular in Jingdezhen, Jiangxi Province.
Classic Work of Painted Pottery
The classic one is Human Face and Fish Body Design Colored Pottery Basin, which was made in the Neolithic age (5000 to 10000 years ago) and unearthed in the 1950s in Banpo Village in Xi'an of Shaanxi Province.
Noted Ceramics
基于二氧化硅的海洋海绵生物陶瓷表面改性羟基磷灰石诱导形成
学号:2011012008北京化工大学文献翻译译文及原稿题目:光聚合齿科修复材料学院:材料科学与工程学院专业:高分子材料与工程班级:高材1101 姓名:刘晓宇指导教师:聂俊专业负责人:闫寿科指导老师意见:指导老师签字:日期: 年月日日期:2015 年5月26 日基于二氧化硅的海洋海绵生物陶瓷表面改性羟基磷灰石诱导形成Alexandre A. Barros, Ivo M. Aroso, Tiago H. Silva, Joaõ F. Mano, Ana Rita C. Duarte,* and Rui L. Reis摘要:生物材料海洋是有显着应用研究的一个新兴领域。
最近,研究人员正在致力于相当重视海洋生物材料海绵用于各种应用。
我们专注于在新型生物医学/工业应用的潜力。
煅烧后,获得从该海绵生物陶瓷结构在750℃下6小时,从该海绵生物陶瓷结构。
三维结构的形态特征,通过扫描电子显微镜(SEM)和microcomputed断层,揭示一种高度多孔且互连的结构进行了评价。
P. ficidormis的骨架是硅质基质的SiO 2的组成,其不呈现固有的生物活性。
诱导生物活性的混合物达到由1和3小时使生物陶瓷结构以碱处理(2M KOH)和酸性处理(2M HCl中)。
在生物陶瓷结构的体外生物活性在模拟生理流体(SBF),后7和14天进行评价。
结构通过SEM,加上分光元素分析(EDS)的观察,表明表面形态提出了磷酸钙磷酸钙涂层,类似于羟基磷灰石(HA)。
的Ca / P比的测定,用的HA用红外光谱和X 射线衍射的特征峰的评估一起,已被证明的HA的存在。
体外结构的生物性能使用成骨细胞株进行评价,酸性治疗已被证明是最有效的治疗。
细胞接种在生物陶瓷结构和它们的形态;活力和生长通过SEM,MTS测定评估,和DNA量化阳离子,分别表明细胞能够生长和定殖的生物陶瓷结构1.引言海洋天然产物研究的不断扩大,在新化合物的数量每年稳步增长说明,并与注册专利的数量。
生物陶瓷材料HA
生物陶瓷的特点及运用
• 4)后加工方便。通常认为陶瓷很难加工,但随陶 瓷加工设备和技术的进步,现在陶瓷的切割、研 磨、抛光等已是成熟的工艺。近年来又发展了可 用普通金属加工机床进行车铣、刨、钻等的可切 割性生物陶瓷,利用玻璃陶瓷结晶化之前的高温 流动性,可制成精密铸造的玻璃陶瓷。
• 5)易于着色。如陶瓷牙冠与天然牙逼真,利于整 容、美容。
HAP涂层钛基牙种植体
是一种安全、方便的听小 骨缺损替代品,适用于因 炎症或外伤等病症造成听 小骨缺损、畸形的患者作 听小骨置换手术。
HAP生物陶瓷听小骨置换假体
生物活性陶瓷材料
——羟基磷灰石陶瓷材料
• 羟基磷灰石的主要缺点在于本身的力学性能较差、 强度低、脆性大,这一缺点影响了它在医学临床 的广泛应用,同时也促使人们研究HA系列的各种 复合材料,以期获得力学性能优良、生物活性好 的生物医学复合材料。
自20世纪70年代起, 生物陶瓷显露头角, 世界各国 相继开展了理论和应用研究, 并且不断取得突破性进 展。
生物材料的发展历程
生物材料学是一个崭新的领域,但生物材料本身 却有着古老的历史,只是它在当代才取得了快速的 发展。追溯生物材料的历史,不得不提到人工器 官.人工器官的研究实际上是个古老的命题。
• 2)陶瓷的组成范围比较宽,可以根据实际应用的 要求设计组成,控制性能的变化。
• 例:可降解生物陶瓷在体内不同部位的使用中, 希望能针对被置换骨的生长特点获得具有不同降 解速度的陶瓷。否则,当降解速度超过骨生长速 度时, 就会产生“死区”,影响修复。如果向此 类材料中添加适当比例的非降解性生物陶瓷,就 能调整降解速度,满足临床要求。
张大海
• 采用钙乙二醇化合物和具有一定活性、由 P2O5 和n-丁醇反应生成的PO(OH)x(OR)3-x 产物为前驱体,以Ca/P=1.67的比例混合, 加 人醋酸从而得稳定混合溶液, 制备羟基磷灰 石
新型生物陶瓷材料iRoot_SP_在微创根管治疗中的应用效果及其对患者牙周健康的影响
(5):202-209.[12]㊀杨瑞霞,何亚州,王龙龙,等.温阳贴贴敷涌泉穴治疗慢性心力衰竭阳虚证的临床疗效观察[J].湖南中医药大学学报,2022,42(10):1705-1710.[13]㊀Zhou H,Tang W,Yang J,et al.MicroRNA-related strate-gies to improve cardiac function in heart failure[J].Fron-tiers in cardiovascular medicine,2021,19(8):1613. [14]㊀Kura B,Szeiffova Bacova B,Kalocayova B,et al.Oxidativestress-responsive microRNAs in heart injury[J].Int MolSci,2020,21(1):358.ʌ文章编号ɔ1006-6233(2023)10-1704-06新型生物陶瓷材料iRoot SP在微创根管治疗中的应用效果及其对患者牙周健康的影响杨占宝,㊀岳㊀琳,㊀董㊀力,㊀任冰洁(河北省承德市口腔医院,㊀河北㊀承德㊀067000)ʌ摘㊀要ɔ目的:观察新型生物陶瓷材料iRoot SP在微创根管治疗中的近期应用效果和远期牙周疼痛与牙周健康状态㊂方法:选择2020年1月至2022年2月在承德市口腔医院收治的行微创根管治疗患者116例,采用随机数字表法分为AH-PLUS组和iRoot SP组,各58例㊂AH-PLUS组根管填充物采用AH-PLUS糊剂,iRoot SP组根管填充物采用新型生物陶瓷材料iRoot SP,两组术后均观察7d,并随访6个月㊂统计两组术后7d近期疗效㊁术后6个月治疗成功率,采用牙周探诊深度(PD)㊁龈沟出血指数(BI)㊁牙龈指数(GI)㊁菌斑指数(PLI)于术前及术后7d对患者牙周健康情况进行评估,采用视觉模拟评分于术后1㊁3㊁5㊁7d对患者术后疼痛情况进行评估,根据Mohd Sulong标准于术后观察期间对患者急症反应发生情况进行评估,采用口腔医学治疗满意度评价量表于术后7d评价患者治疗满意度㊂结果:与AH-PLUS组比较,iRoot SP组术后7d总有效率和术后6个月成功率显著升高,差异具有统计学意义(94.83%vs77.59%,χ2=6.202,P=0.013,94.83%vs75.86%,χ2=8.340,P=0.013);与组内术前比较,两组治疗后PD㊁BI㊁GI㊁PLI评分均显著降低,两组治疗后PD㊁BI㊁GI㊁PLI评分比较,差异具有统计学意义(P<0.05)㊂术后1㊁3㊁5㊁7d,两组疼痛评分呈逐渐降低趋势,且在不同时间点比较,iRoot SP组疼痛评分低于AH-PLUS组疼痛评分(P<0.05)㊂与H-PLUS组比较,iRoot SP组术后观察期间急症反应率显著降低,差异具有统计学意义(5.17%vs17.24%,χ2=4.245,P=0.013)㊂与H-PLUS组比较,iRoot SP 组术后7d总满意率显著升高,差异具有统计学意义(93.10%vs74.14%,χ2=74.14,P=0.013)㊂结论:与AH-PLUS糊剂相比,采用新型生物陶瓷材料iRoot SP对微创根管治疗患者进行根管填充的治疗效果更好,值得在临床推广㊂ʌ关键词ɔ㊀微创根管治疗;㊀新型生物陶瓷材料;㊀iRoot SP;㊀疼㊀痛;㊀牙周健康ʌ文献标识码ɔ㊀A㊀㊀㊀㊀㊀ʌdoiɔ10.3969/j.issn.1006-6233.2023.10.023Effectiveness of iRoot SP a Novel Bioceramic Material in Minimally Invasive Root Canal Therapy and Its Impact on Patients'Periodontal HealthYANG Zhanbao,YUE Lin,DONG Li,et al(Chengde Stomatological Hospital,Hebei Chengde067000,China)ʌAbstractɔObjective:To observe the recent application effect of a new bioceramics material iRoot SP in minimally invasive root canal therapy and the long-term periodontal pain and periodontal health status.Meth-ods:A total of116patients undergoing minimally invasive root canal treatment admitted to Chengde Stomato-logical Hospital from January2020to February2022were divided into AH-PLUS group and iRoot SP group by random number table method,with58patients in each group.The root canal filling in the AH-PLUS group was filled with AH-PLUS paste,while the root canal filling in the iRoot SP group was filled with a new bioce-ramical material iRoot SP.Both groups were observed7days after treatment and followed up for6months.㊃4071㊃ʌ基金项目ɔ河北省承德市科技计划自筹经费项目,(编号:202201A004)The short-term curative effect7days after surgery and the success rate of treatment6months after surgery were analyzed.Periodontal probing depth(PD),gingival crevicular bleeding index(BI),gingival index (GI),and plaque index(PLI)were used to evaluate the patients'periodontal health before and7days after surgery.Visual simulation scores were used to evaluate the patients'postoperative pain at1,3,5,and7days after surgery.According to the Mohd Sulong criteria,the patients'emergency response was evaluated during the postoperative observation period,and the oral medicine treatment satisfaction Evaluation scale was used to evaluate the patients'treatment satisfaction at7days after the operation.Results:Compared with the AH-PLUS group,the total effective rate at7days after surgery and the success rate at6months after surgery in the iRoot SP group were significantly increased,with statistical significance(94.83%vs77.59%,χ2=6.202,P= 0.013,94.83%vs75.86%,χ2=8.340,P=0.013).Compared with before operation,PD,scores of BI,GI and PLI of the two groups were significantly decreased after treatment,and the differences in PD,scores of BI,GI and PLI between the two groups were statistically significant(P<0.05).On1,3,5and7days after surgery,the score of pain of the two groups showed a gradually decreasing trend,and the score of pain of the iRoot SP group were lower than those of the AH-PLUS group at different time points(P<0.05).Compared with the H-PLUS group,the emergency response rate of the iRoot SP group was significantly decreased during postoperative observation,with statistical significance(5.17%vs17.24%,χ2=4.245,P=0.013).Com-pared with the H-PLUS group,the total satisfaction rate of the iRoot SP group was significantly increased at7 days after operation,with statistical significance(93.10%vs74.14%,χ2=74.14,P=0.013).Conclusion: Compared with AH-PLUS paste,iRoot SP,a novel bioceramical material,had a better effect on root canal filling in patients with minimally invasive root canal treatment,and was worthy of clinical promotion.ʌKey wordsɔ㊀Minimally invasive root canal therapy;㊀Novel bioceramic materials;㊀iRoot SP;㊀Per-iodontal health㊀㊀微创根管治疗是临床治疗牙髓炎㊁慢性牙髓感染㊁牙根尖周疾病等慢性根尖周病的主要方法之一,其可对患者感染牙髓组织进行清理与填充,预防病原菌的二次侵入,有效保护患者患牙㊂根管填充情况对于治疗成功与否有着至关重要的作用,临床研究发现,不严密的根管填充是导致微创根管治疗失败的主要原因[1]㊂AH-PLUS糊剂是临床常用的微创根管治疗填充糊剂,是一种环氧化物树脂类根充糊剂,封闭性较好,但其具有一定膨胀性,使得其临床应用受到限制[2]㊂新型生物陶瓷材料iRoot SP具有良好的密封性和生物相容性,且使用后不会膨胀,广泛应用于牙根部填充和密封[3]㊂基于此,本研究分别采用AH-PLUS 糊剂和新型生物陶瓷材料iRoot SP对微创根管治疗患者进行根管填充,分析两者应用效果及对对患者疼痛与牙周健康状态的影响,现将结果报道如下㊂1㊀资料与方法1.1㊀一般资料:选取2020年1月至2022年2月在承德市口腔医院收治的行微创根管治疗患者116例,采用随机数字表法分为AH-PLUS组和iRoot SP组,各58例㊂AH-PLUS组年龄31~68岁,平均(49.63ʃ3.42)岁;牙位:前磨牙33例,磨牙25例;男30例,女28例㊂iRoot SP组年龄29~68岁,平均(48.95ʃ3.61)岁;牙位:前磨牙31例,磨牙27例;男32例,女26例㊂两组年龄㊁牙位㊁性别等一般资料比较,差异无统计学意义(P>0.05),具有可比性㊂本研究获承德市口腔医院医学伦理委员会审核批准㊂1.2㊀纳入㊁排除㊁脱落与剔除标准:纳入标准:符合微创根管治疗相关手术指征者;对本研究知情同意者;对本研究所用药物无过敏者;无严重心血管疾病者;单牙患病者;根管通畅㊁形态无异常,无明显根管内外吸收,无明显根折者;单根管㊁根尖无明显阴影,无明显牙槽骨吸收者;患牙首次进行根管治疗者等㊂排除标准:合并全身系统性疾病者;患牙有瘘管㊁窦道者;合并根尖囊肿者;牙体缺损严重者等㊂脱落与剔除标准:中途退出本研究或失访者㊂1.3㊀治疗方法:所有患者均进行微创根管治疗,术前拍摄X线片检查患者牙周健康情况,行牙周基础治疗后进行开髓㊁拔髓㊁根管预备,冲洗根管封捻,直至根管内无渗出,炎症反应基本消失,后进行根管填充,AH-PLUS组根管填充物采用AH-PLUS糊剂(瑞士Dentsply Maillefer公司),恢复牙齿外形,后立即拍摄X 射线片,欠充根管重新填充,填充完成后照射根管使封㊃5071㊃闭剂固化㊂iRoot SP组根管填充物采用新型生物陶瓷材料iRoot SP(加拿大Innovative BioCreamix Inc公司),填充完成后操作与AH-PLUS组一致㊂两组术后均观察7d,并随访6个月㊂1.4㊀观察指标1.4.1㊀近期疗效及术后6个月治疗成功率:术后7d,根据‘临床口腔医学“中的相关标准将近期疗效分为显效(患牙根尖填充完整,咬合㊁咀嚼功能正常,根尖周围无暗影)㊁有效(患牙根尖填充完整,咬合㊁咀嚼功能部分正常,根尖周围伴有暗影)㊁无效(未达到上述标准)[4]㊂治疗成功相关标准为:患者患牙无松动,边缘密合,无自觉症状,牙周无继发炎症,咀嚼功能正常,根尖周无暗影区或暗影区消失,硬骨板恢复正常㊂1.4.2㊀牙周健康情况:术前及术后7d,采用探针测量患者牙周探诊深度(PD),采用龈沟出血指数(BI)对患者牙周出血情况进行检测,总分3分,得分越高患者牙周出血倾向越明显;采用牙龈指数(GI)对患者牙周炎症情况进行评估,总分3分,得分越高患者牙周炎症越严重;采用牙菌斑指数(PLI)对患者牙菌斑附着情况进行检测,总分3分,得分越高患者牙菌斑附着越严重㊂1.4.3㊀术后疼痛情况:术后1㊁3㊁5㊁7d,采用视觉模拟评分对患者术后疼痛情况进行评估[5]㊂1.4.4㊀术后急症反应情况:术后观察期间,根据Mohd Sulong标准对患者急症反应发生情况进行评估,包括0级(无任何不适)㊁I级(有轻度叩痛,可自行缓解)㊁Ⅱ级(无肿胀,但有咬合痛㊁自发痛㊁叩痛,需使用抗生素)㊁Ⅲ级(疼痛明显,有根尖肿胀,难以咬合,需手术引流),术后急症反应发生率=(Ⅱ级+Ⅲ级)例数/总例数ˑ100%[6]㊂1.4.5㊀治疗满意率:采用自制口腔医学治疗满意度评价量表于术后7d评价患者治疗满意度,量表Cronbach 'sα系数为0.889,重测信度为0.843,总分100分,得分越高患者满意度越高,得分60分以下为不满意,得分60~80分为满意,得分80分以上为完全满意㊂1.5㊀统计学方法:使用SPSS21.0统计软件进行数据分析㊂计量资料采用( xʃs)表示,行t检验;计数资料采用n(%)表示,行χ2检验;多组之间比较,采用单因素方差分析,两两比较采用χ2检验㊂以P<0.05,为差异有统计学意义㊂2㊀结㊀果2.1㊀不同治疗方法的临床疗效:术后7d,iRoot SP组总有效率高于AH-PLUS组(P<0.05);iRoot SP组术后6个月治疗成功率高于AH-PLUS组(P<0.05),见表1㊂表1㊀不同治疗方法的临床疗效比较n(%)组别n总有效率无效显效有效术后6个月治疗成功率AH-PLUS组5845(77.59)13(22.41)24(41.38)21(36.21)44(75.86) iRoot SP组5855(94.83)3(5.17)33(56.9)22(37.93)55(94.83)χ2 6.2028.340P0.0130.0042.2㊀两组患者术前㊁术后7d的牙周健康状态:术后7d与术前比较,两组PD㊁BI㊁GI㊁PLI评分均降低,iRootSP组低于AH-PLUS组(P<0.05),见表2㊂表2㊀两组患者术前术后7d的牙周健康状态( xʃs)时间组别n PD(cm)BI(分)GI(分)PLI(分)术前AH-PLUS组58 5.93ʃ0.62 2.67ʃ0.31 2.61ʃ0.32 2.27ʃ0.42 iRoot SP组58 5.77ʃ0.58 2.70ʃ0.28 2.58ʃ0.31 2.18ʃ0.46t 1.440.550.51 1.10P0.150.590.610.27㊃6071㊃术后7d AH-PLUS组58 4.31ʃ0.57∗ 1.93ʃ0.29∗ 2.01ʃ0.35∗ 1.63ʃ0.29∗iRoot SP组58 2.97ʃ0.41∗ 1.27ʃ0.22∗ 1.02ʃ0.25∗0.96ʃ0.18∗t14.5313.8117.5314.95P<0.001<0.001<0.001<0.001㊀㊀注:与术前相比具有统计学差异,∗P<0.052.3㊀两组患者术后1㊁3㊁5㊁7d的疼痛情况:术后1㊁3㊁5㊁7d,两组疼痛评分呈逐渐降低趋势,不同时间点比较,差异具有统计学意义(P<0.05);术后1㊁3㊁5㊁7d,iRoot SP组疼痛评分显著低于AH-PLUS组(P<0.05),见表3㊂表3㊀两组患者术后1d3d5d7d的疼痛情况( xʃs,分)组别n术后1d术后3d术后5d术后7d F P AH-PLUS组58 4.02ʃ0.53 2.11ʃ0.36# 1.07ʃ0.25#ә0.68ʃ0.22#ә%993.17<0.001 iRoot SP组58 3.17ʃ0.42 1.42ʃ0.31#0.57ʃ0.20#ә0.31ʃ0.11#ә%1192.66<0.001 t9.5711.0611.8911.46P<0.001<0.001<0.001<0.001㊀㊀注:与术后1d相比具有统计学差异,#P<0.05;与术后3d相比具有统计学差异,әP<0.05;与术后5d相比具有统计学差异,%P<0.052.4㊀两组患者术后观察期间急症反应发生情况:术后观察期间,iRoot SP组术后急症反应率低于AH-PLUS组(P<0.05),见表4㊂表4㊀两组患者术后观察期间急症反应情况n(%)组别n急症反应发生率Ⅱ级Ⅲ级0级Ⅰ级AH-PLUS组5810(17.24)7(12.07)3(5.17)29(50.00)19(32.76) iRoot SP组583(5.17)2(3.45)1(1.72)33(56.90)22(37.93)χ2 4.245P0.0392.5㊀两组患者术后7d满意率:术后7d,iRoot SP组总满意率高于AH-PLUS组(P<0.05),见表5㊂表5㊀两组患者术后7d满意率n(%)组别n总满意率不满意完全满意满意AH-PLUS组5843(74.14)15(25.86)26(44.83)17(29.31) iRoot SP组5854(93.10)4(6.90)31(53.45)23(39.66)χ27.616P0.006㊃7071㊃3㊀讨㊀论慢性根尖周炎主要是由于患者根管内长期存在病原刺激或感染引起根尖周围慢性炎症反应,可引起患者牙槽骨破坏㊁炎性肉芽组织形成,导致患者牙周持续性隐痛,对患者日常生活和工作产生严重影响㊂采用微创根管治疗彻底清除炎性牙髓㊁感染组织等可达到根治目的,缓解患者临床症状,但术中密封不严可引起根管再次感染,导致治疗失败㊂因此,选用良好的根管填充材料对于阻断根管㊁根尖周感染,提高治疗成功率具有重要意义[7]㊂AH-PLUS糊剂广泛应用于根管填充,虽然其短期密封性较好,但其吸收较快,随着时间的延长,其吸收较快,极易引起根管内空虚而影响密封效果,导致根管内感染的发生[8]㊂新型生物陶瓷材料iRoot SP不溶于水,其颗粒较为细小,因此具有较好的流动性,能够顺利进入根尖分支及侧㊁副枝根管,充分将根管内的间隙进行充填,遇到根管内的水则会凝固和硬化,其成分中的硅酸钙通过水化反应生成具有一定生物活性的凝胶,可与根管壁形成化学结合和机械结合,作为组织修复材料中的纤维增强成分,较好地显示出根尖分歧,固化后的体积有轻微膨胀可形成良好的封闭效果,且具有良好的亲水性,可阻断与根尖周组织的交通;此外,其在凝固过程中可生成羟基磷灰石,与牙胶和牙本质结合,与牙本质产生更高的粘接强度,达到更好的根尖封闭性能,因此可有效提高短期疗效和治疗成功率[9]㊂同时在对患者进行根管填充的过程中,可操作性较强且临床操作更加便捷,可有效缩短患者张口时间,提高患者治疗期间的舒适度,因此可有效进而提高患者的满意度[10]㊂本研究结果显示,iRoot SP组术后总有效率㊁治疗成功率及总满意率高于AH-PLUS组,进一步说明与AH-PLUS糊剂相比,采用新型生物陶瓷材料iRoot SP对微创根管治疗患者进行根管填充具有较好的近期效果,可有效提高治疗成功率和治疗满意度㊂微创根管治疗后疗效不佳的主要因素之一为病原菌引起的牙周感染,其不仅可影响患者牙周健康,还可对微创根管治疗效果产生影响,导致急症反应的发生,引起患者疼痛㊂本研究结果显示,iRoot SP组术后PD㊁BI㊁GI㊁PLI评分㊁疼痛评分㊁急症反应率低于AH-PLUS组㊂说明与AH-PLUS糊剂相比,采用新型生物陶瓷材料iRoot SP对微创根管治疗患者进行根管填充可有效减少术后急症反应的发生,改善患者牙周健康,降低术后疼痛㊂原因在于,一方面新型生物陶瓷材料iRoot SP用于根管填充具有良好的封闭性,可有效阻止病原菌入侵根管而引起根管内和牙周感染,同时其生物相容性较好,对细胞毒性更小,因此诱导产生的炎症反应程度较轻;另一方面,其酸碱度值较好,有良好的亲水性并可释放较多钙离子,可与牙齿矿物质间发生生物矿化过程,同时硅酸钙与水反应可形成氢氧化钙,促进牙根尖微环境酸碱度值升高,因此具有较好的抗菌作用,这也在前人的研究中得到了证实[11];此外,新型生物陶瓷材料iRoot SP可诱导牙源性干细胞分化成牙本质细胞,同时可促进硬组织沉积,诱导成骨形成,有利于根尖周病变的愈合和根尖周组织的再生,因此可有效改善患者术后牙周健康㊁降低急症反应的发生率,同时减轻患者术后疼痛㊂综上,与AH-PLUS糊剂相比,采用新型生物陶瓷材料iRoot SP对微创根管治疗患者进行根管填充的治疗效果更好,值得在临床推广㊂ʌ参考文献ɔ[1]㊀仇晓慧,张福裕,徐海.不同充填技术对iRoot SP充填根管的根尖封闭性能的影响[J].中国医师杂志,2020,22(5):723-726,723-730,730.[2]㊀颜莉,刘杨,古丽尼尕㊃扎克尔,等.生物陶瓷材料在慢性根尖周炎根管治疗中的应用效果[J].中国临床医生杂志,2021,49(12):1477-1480.[3]㊀程莉,宝立荣.热牙胶垂直加压法与iRoot SP冷侧法行C形根管充填治疗牙体牙髓病的效果对比观察[J].广西医学,2018,40(1):92-93.[4]㊀俞立英.临床口腔医学[M].上海:复旦大学出版社,2008.91-96.[5]㊀李志伟,李劼,刘艳,等.不同终末冲洗方案对根管封闭剂与根管壁牙本质润湿性能的影响[J].牙体牙髓牙周病学杂志,2018,28(5):270-275.[6]㊀舒怡,罗业姣.热牙胶充填技术联合不同封闭剂在根管充填治疗中的疗效评价[J].上海口腔医学,2018,27(6): 645-648.[7]㊀Meirinhos J,Martins J,Pereira B,et al.Prevalence of apicalperiodontitis and its association with previous root canaltreatment,root canal filling length and type of coronal resto-ration-a cross-sectional study[J].Int Endod,2020,53(4):573-584.[8]㊀马骏,叶茂昌,陈梅梅,等.iRoot SP根充糊剂在外伤性露髓前牙一次性根管治疗中的应用效果[J].安徽医学, 2018,39(11):1367-1370.[9]㊀杜田丰,吴来迪,唐学智,等.硅酸钙基根管封闭材料对牙本质小管内粪肠球菌生物膜的影响[J].中华口腔医学杂志,2019,54(10):656-661.[10]㊀尹秋蓉,张旭凤,吴芸菲.热牙胶垂直加压法与iRoot SP冷侧压法行C形根管充填治疗恒牙根尖周炎疗效及对疼痛和预后的影响[J].河北医学,2022,28(6):983-㊃8071㊃988.[11]㊀谢镇焕,蔡冬萍,杨雪超.iRoot SP和iRoot BP Plus的根尖封闭能力的体外比较[J].口腔医学研究,2022,38 (11):1076-1081.ʌ文章编号ɔ1006-6233(2023)10-1709-06牛肺表面活性剂联合咖啡因对新生儿肺透明膜病患儿血气炎症指标及肺循环功能的影响黄小伟1,㊀苏红苗1,㊀廖赵妹2(1.海南省琼海市人民医院儿科,㊀海南㊀琼海㊀5714002.海南医学院第二附属医院儿科,㊀海南㊀海口㊀570311)ʌ摘㊀要ɔ目的:探究牛肺表面活性剂联合咖啡因对新生儿肺透膜病患儿血气㊁炎症指标及肺循环功能的影响㊂方法:纳入2020年1月到2022年12月在我院接受治疗的新生儿肺透膜病患儿145例作为研究对象,采用电脑随机法对患儿进行简单随机分组,对照组患儿(n=72)给予枸橼酸咖啡因治疗,观察组患儿(n=73)给予牛肺表面活性剂联合咖啡因治疗,收集两组患儿的临床资料,比较患儿治疗前后的血气指标㊁炎症因子水平及肺循环功能情况,比较其组间治疗效果的差异㊂结果:观察组治疗有效率(86.30%)高于对照组(73.61%),P<0.05㊂经治疗,患儿的血气指标均有所改善,pO2㊁BE及pH值显著升高,但患儿的pCO2水平显著降低,观察组患儿血气指标改善幅度大于对照组(P<0.05)㊂治疗前两组患儿的IL-6及LDH处于相同水平(P>0.05);治疗后,患儿的IL-6水平为先升高后降低的趋势, LDH水平随时间推移不断降低,观察组的IL-6及LDH水平均低于对照组对应时间节点(P<0.05)㊂两组治疗前肺循环功能比较差异无统计学意义(P>0.05)㊂经治疗,患儿的血管外肺水含量㊁肺循环阻力㊁平均肺动脉压均有所降低,右室每搏功指数升高,且观察组患儿升高幅度及降低幅度均高于对照组,差异显著(P<0.05)㊂结论:在对新生儿肺透明膜病进行治疗时,采用牛肺表面活性物质联合咖啡因治疗,可以有效改善患儿的肺循环功能㊁血气及炎症指标,有效提高患儿的治疗效果㊂ʌ关键词ɔ㊀牛肺表面活性物质;㊀咖啡因;㊀新生儿肺透明膜病;㊀血气指标;㊀炎症指标;㊀肺循环功能ʌ文献标识码ɔ㊀A㊀㊀㊀㊀㊀ʌdoiɔ10.3969/j.issn.1006-6233.2023.10.024Effect of Bovine Pulmonary Surfactant Combined with Caffeine on Blood Gas Markers,Inflammatory Indexes and Pulmonary Circulation Function in Children with Neonatal Pulmonary Hyaline Membrane DiseaseHUANG Xiaowei,SU Hongmiao,et al(Qionghai People's Hospital,Hainan Qionghai571400,China)ʌAbstractɔObjective:To explore the effect of pulmonary surfactant combined with caffeine on blood gas markers,inflammatory indexes,and pulmonary circulation function in children with neonatal pulmonary mem-brane disease.Methods:A total of145newborns with pulmonary dialysis who received treatment in our hos-pital from January2020to December2022were included as the study subjects.The children were randomly divided into two groups using simple random grouping of children using computer randomization method.The control group(n=72)received caffeine citrate treatment,while the observation group(n=73)received bo-vine lung surfactant combined with caffeine treatment.The clinical data of the two groups of children were col-lected to compare the blood gas markers,inflammatory factor levels and pulmonary circulation function before and after treatment,and to compare the differences in treatment effects between the groups.Results:The re-sponse rate of the observation group was86.30%,higher than73.61%in the control group(P<0.05).After㊃9071㊃ʌ基金项目ɔ海南省卫生计生行业科研项目,(编号:19A200104)。
生物陶瓷
2.生物陶瓷Biblioteka 发展1963年在生物陶瓷发展史上是重要的一年,该年Smith 报告发展了一种陶瓷骨替代材料。由于技术方面的限制, 直到1971年才有羟基磷灰石被成功研制并扩大到临床应 用的报道。 1974年,Hench在设计玻璃成分时,曾有意识地寻求一 种容易降解的玻璃,当把这种玻璃材料植入生物体内作 为骨骼和牙齿的替代物时,发现有些材料中的组织可以 和生物体内的组分互相交换或者反应,最终形成与生物 体本身相容的性质,构成新生骨骼和牙齿的一部分。这 种将无机材料与生物医学相联系的开创性研究成果,很 快得到了各国学者的高度重视。
4.2、羟基磷灰石(HA)
2.羟基磷灰石陶瓷的制造工艺
a、固相反应法 这种方法与普通陶瓷的制造方法基本相同,根据配方将原料 磨细混合,在高温(1000-1300℃)下进行合成,其反应方程式: 6CaHPO4·2H2O+4CaCO3→Ca10(PO4)6(OH)2+4CO2+4H2O b、水热反应法 将CaHPO4与CaCO3按6:4摩尔比进行配料,然后进行24h湿法 球磨。将球磨好的浆料倒入容器中,加入足够的蒸馏水,在 80-100℃恒温情况下进行搅拌,反应完毕后,放置沉淀得到 白色的羟基磷灰石沉淀物,其反应式如下: 6CaHPO4+4CaCO3 → Ca10(PO4)6(OH)2+4CO2+2H2O
4.1、氧化锆(ZrO2)陶瓷
1.氧化锆陶瓷的特点与应用
氧化锆陶瓷属于生物惰性陶瓷,它是迄今为止强度最高的牙科 修复材料,也广泛用于骨科的人工髋关节。李立刚等将氧化锆材 料和成骨细胞在体外共同培养,证实其具有良好的生物相容性。
2.氧化锆陶瓷的改进
假体磨损微粒诱导炎症反应,使假体周围出现骨溶解导致假体 的松动,是影响人工髋关节寿命的主要原因,聚乙烯的磨损是 微粒的主要来源。研究者通过将氧化锆-聚乙烯组合来减少磨损; 将氧化铝、氧化锆、碳化硅组合制成的人工髋关节材料A1203一 SiC—ZrO2(FGM)具有很强的抗压应力[(20.8±0.3)GPa]和断 裂韧性[(8.O±0.1)GPa] 。Jangra等证实ZrO2还具有一定的 抗菌活性,其抗菌活性可能由晶体表面活性所决定。
功能材料相关文献翻译(中文+英文)
功能材料相关文献翻译(中文+英文)功能材料功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。
它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。
功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。
功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。
世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。
在全球新材料研究领域中,功能材料约占 85 % 。
我国高技术(863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。
当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。
超导材料以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。
但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。
高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦( 4.2K)提高到液氮(77K)温区。
同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。
另外,高温超导体都具有相当高的上临界场[H c2 (4K)>50T],能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。
生物陶瓷文献综述
生物陶瓷文献综述引言:公元18世纪生物陶瓷材料正式作为生物医学材料被应用于临床,1808 年初成功制成了用于镶牙的陶齿,1871 年,羟基磷灰石被人工合成,1971 年有羟基磷灰石被成功研制并作为陶瓷骨替代材料扩大到临床应用。
而如今生物陶瓷的发展仍在继续。
一、定义与性质世界上最早的生物陶瓷的临床应用是作为镶牙材料,陶齿的出现揭开了生物陶瓷发展的序幕,随着科技的发展,生物陶瓷的定义也发生了质的变化,最开始的生物陶瓷仅仅是用来替换坏掉的牙齿,而如今生物陶瓷是具有与生物体或生物化学有关区别于传统陶瓷的新型材料,具有着传统陶瓷不具有的特殊功能。
由于大部分生物陶瓷的应用是用于人体损伤组织的替换,作为取代人体组织的生物陶瓷被要求不能对人体产生毒害作用,因此生物陶瓷应具有以下性质:1、生物相容性,力学相容性,具有很好的物理、化学稳定性2、与生物组织有优异的亲和性,抗血栓,灭菌性具体性质要求:①与生物体的亲和性好,即植入的陶瓷被侵蚀、分解的产物无毒,不使生物细胞发生变异、坏死,不会引起炎症、生长肉芽等。
②在体内有长期功能且可靠性高,即在10~20年的长期使用中,不会降低强度,不发生表面变质,对生物体无致癌作用等。
③易于在短期内成形加工。
④容易灭菌,陶瓷不同于金属,它具有强共价键性质,即使在生物体内苛刻的化学条件下,也具有良好的化学稳定性,排异反应迟缓,具备长期使用的机械性质。
与有机高分子材料相比,生物体陶瓷耐热性好,便于进行高压灭菌。
二、具体分类由于应用到人体内不同位置要求生物陶瓷具有不同的性质,于是有了生物陶瓷的分类,根据物理化学性质可将生物陶瓷分为三类:活性生物陶瓷、惰性生物陶瓷、复合生物陶瓷。
(一)活性生物陶瓷:表面生物活性陶瓷:通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合具有骨传导性,它作为一个支架,成骨在其表面进行;生物吸收性陶瓷:特点是能被身体部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。
生物陶瓷
电泳沉积羟基磷灰石生物陶瓷摘要:羟基磷灰石(HAP)生物陶瓷涂层被认为是目前最好的用于替代人体硬组织的一种生物医用材料。
用异丙醇作为分散介质,对电泳沉积羟基磷灰石生物陶瓷涂层进行了系统研究。
经过制备稳定的悬浮液、电泳沉积、高温烧结等过程,在Ti6Al4V合金上得到表面均匀的羟基磷灰石生物陶瓷涂层。
研究了电泳时间与电泳沉积量和电流密度、电泳沉积量与电泳电压之间的相互关系,并讨论了这些实验参数对电泳沉积过程的影响。
介绍了羟基磷灰石制备方法的新进展,并对未来的发展前景进行了分析。
关键字:羟基磷灰石、生物陶瓷、电泳沉积一、引言羟基磷灰石(HA)能诱发新骨生长,具有良好的生物活性和生物相容性,因而成为广泛应用的植骨代用品。
在温和的条件下进行的电泳沉积(EPD)技术广泛应用于制备各种功能陶瓷、金属复合材料。
此种涂覆技术不但克服了等离子喷涂技术以上所述的缺点,并且还具有沉积层密度高、烧结活性好等优点。
电泳沉积(EPD)是悬浮液中荷电的固体微粒在电场作用下发生定向移动并在电极表面形成沉积层的过程。
在制备HAP金属基体生物陶瓷涂层方面引起了国内外学者的普遍关注,具有广阔的研究与开发应用前景。
二、电泳沉积HAP生物陶瓷涂层的工艺1、羟基磷灰石悬浮液的制备HAP生物陶瓷微粒在水溶液中难以形成稳定的胶体,因此一般选择非水体系作为电泳沉积HAP生物陶瓷涂层的分散介质。
在制备HAP 悬浮液时,为了得到稳定的悬浮液,所用溶剂要有足够的电离能力!并且在很高电压的条件下,溶液中没有在阴极上反应生成气体的离子;同时要求羟基磷灰石颗粒应具有比较大的比表面积!以便提供足够的吸附活性。
HAP悬浮液形成稳定的胶体的这个时间段称为临界陈化时间,只有在临界陈化时间之后才能采用电泳方法在基体材料表面上沉积HAP生物陶瓷涂层。
2、基体材料的预处理基体材料表面的预处理一般采用打磨抛光或化学浸蚀等方,然后除油自然风干或干燥箱干燥。
预处理后的基体材料在电泳沉积中可以明显改善基体材料与HAP电泳沉积层的结合强度。
医用高分子材料文献
医用高分子材料09工艺试点董鑫一.摘要。
医用高分子材料的简介:医用高分子材料是生物医用材料的一个重要组成部分,是一类用于诊断、治疗和器官再生的材料,具有延长病人生命、提高病人生存质量的作用,生物医用材料的发展历史、医用高分子材料的来源和已经取得的一些实际应用。
生物医用材料是人工器官和医疗器械的基础,迄今已有几千年的发展历史,而生物医用高分子作为生物医用材料中发展最早、应用最广泛、用量最大的材料,鉴于其具有原料来源广泛、可以通过分子设计改变结构、生物活性高、材料性能多样等优点,是目前发展最为迅速的领域,已经成为现代医疗材料中的主要部分。
二.关键词发展过程及应用领域; 组成材料;在医学上的用途;未来的发展2.1发展过程及应用领域:人类使用高分子材料的历史,可以追溯到7000年前。
我国浙江省余姚县出土的河姆渡文化遗址中(距今7000年),发现了涂有大漆的木碗,我国西汉时期(公元前200年至公元8年)已有麻布增强大漆树脂而成的脱胎漆器技术,这应是世界上最早的“树脂基复合材料”。
蚕丝的使用可以追溯到4-5千年前,在浙江吴兴出土了中国4-5千年前的蚕丝织物。
考古发现,我国于西汉时期已出现造纸技术,使用原料是蚕丝渣,麻布,公元105年(东汉)蔡伦发明“造纸”只是造纸术的进一步改进。
造纸术于公元8世纪左右才传入阿拉伯并进一步传入欧洲。
由天然高分子化学改性或由人工合成探索新高分子材料的近代高分子材料研究始于19世纪中页。
1844年Goodyear(美国)发明的天然橡胶硫化技术,开创了近代的高分子材料研究。
1868年出现了硝基纤维素酯用樟脑作增塑剂,制赛璐珞的技术,从而出现了塑料。
1890年出现了硝基纤维素酯用乙醇做溶剂湿法纺丝的成纤技术,从而出现了人造纤维。
1895年左右出现了用帆布增强硫化橡胶制轮胎的技术,这是首次出现的近代技术的复合材料。
1905年出现纤维素以碱性二硫化碳为溶剂制造粘胶丝技术。
1907年出现了酚醛树脂合成技术,并与1910年实现工业化生产,用于制造电工绝缘材料(俗称电木)。
生物瓷论
生物瓷论在中国,这是一门刚刚兴起的学问。
在世界,这是一门益寿延龄的学问。
在家庭,这是一门提高生活质量、保健、少生病的学问……水为百药之王,BIO(生物)功能陶瓷壶,改善了水质,也提高了您的生活品质,为您的幸福生活注入健康所需能量。
拥有“奇九〃生态壶”也就拥有了健康的生活和美好幸福的明天。
第一篇远红外篇太阳光线大致可分为可见光及不可见光。
可见光经三棱镜後会折射出紫、蓝、青、绿、黄、橙、红颜色来。
红光外侧的光线是不可见光,波长由0.76-1000微米,称为红外光。
当中4- 400微米的波长称为远红外光,其中90%的波长介乎8-14微米,科学家称为生命光线,因为这段波长的光线,能促进动物及植物的生长。
人体主要由水及蛋白质构成,还包括钙、铁、钠、钾等微量元素,能发出5-30微米的远红外线能量。
根据物理学理论,人体因而能大量吸收5-30微米的远红外光。
为什么用陶制品、瓷制品煮的饭特别香软,烹调肉类食品也有别样风味,以砂土烤熟栗子、花生等也特别香甜可口。
就是因为远红外光除了能由太阳发出外,也可以由烧热的砂土或矿石放射出来。
远红外线对身体有什麽好处?1、水分子活性化,提高身体的含氧量人体约70%是水分,血液的水分比率更高达80%。
若血气不足,血液中的水分子便集结成惰性水(即四个氢原子和一个氧原子结合),不能通过细胞膜。
远红外线能使水产生共振,鱼水氢键断裂变成小水分子团水,提高身体的含氧量,人体细胞因而能恢复活力,精神更舒畅、体力更充沛、头脑更灵活,进而能提高抗病能力,延缓衰老。
2、改善微循环系统小水分子团水可自由出入细胞之间,再透过共鸣共振,转化为热能,令皮下深层的温度微升,血流速度加快,微血管扩张;微血管开放愈多,心脏的压力便可减少,微血管的功能是向人体60兆个细胞供应氧气和营养,同时将新陈代谢产生的废物排出体外。
若微循环系统出现毛病,会导致多种毛病,包括高血压、心血管疾病、肿瘤、关节炎、四肢冰冷麻痹等。
3、促进新陈代谢微循环系统若得到改善,新陈代谢产生的废物便可迅速排出体外,减轻肝脏及肾脏的负担。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fabrication and Mechanical Properties of Dense/Porous β-TricalciumPhosphate BioceramicsFaming Zhang1, a , Jiang Chang 1, b*, Jianxi Lu 1, 2, c , Kaili Lin 1, d 1 Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, ChineseAcademy of Sciences, Shanghai 200050, China 2 Shanghai Bio-lu Biomaterials Company, Shanghai 200335, China a star.zhang@, b* jchang@,c ir2bberck@,d lklsic@Keywords: Bioceramics, calcium phosphate, bone regeneration, weight bearing sitesAbstract: Attempt t o increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites.IntroductionVarious methods for bone defect treatments have been developed using biological or synthetic grafts. The synthetic alternatives are promising grafts for their unlimited availability and without risk of disease transmission [1]. Calcium phosphate bioceramics, especially hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), have been extensively explored as bone grafts due to their compositions are similar to the inorganic components of nature bone [2]. The β-TCP bioceramics is well known as a biodegradable material demonstrated clinical efficacy. The porous β-TCP bioceramics is a structurally biomimetic of the cancellous bone, whose porous network could allow tissue to ingrowth exhibiting nicer osteoconductive properties. However, the porous β-TCP shows weak mechanical properties, which limit its application as bone grafts. The macrostructure feature of nature bone is porous cancellous bone inside with dense compact bone surrounding outside, which provides excellent biomechanical properties. Carotenuto et al [3] have prepared dense/porous layered HA bioceramic for orthopedic device coating by tape casting technique, whereas the bulk dense/porous bioceramics were rarely reported. Therefore in present study, a dense/porous structured β-TCP bioceramics that mimics the characteristics of nature bone were fabricated, and the microstructure and mechanical properties of such bioceramics were studied.ExperimentalThe β-TCP powders were synthesized by chemical precipitation reaction. The dense/porous structured β-TCP bioceramics were prepared by injected molding and subsequently pressureless sintering. The shrinkage rate of both porous and dense parts during sintering process was measured at different temperatures. X-ray diffraction (XRD) with Cu K α radiation was used to characterize the phase composition of the ceramics. The microstructures observation of the bioceramic samples was performed on a scanning electron microscopy (SEM).The compressive strength was conducted with a mechanical tester at 0.5 mm/min crosshead speed. The elastic modules were reanalyzed from the slope of the compressive strength-strain curve.All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, . (ID: 159.226.129.129-19/09/06,02:35:46)Results and DiscussionThe major problem in preparation of the dense/porous bioceramics is the interface adhesion between the dense and porous parts because of their different shrinkage rate during sintering process. The shrinkage rate of dense and porous bioceramics at different temperatures was measured and the results are shown in Fig.1. It can be noticed that the porous β-TCP bioceramics exhibit much higher shrinkage rate than the dense counterpart. The porous bioceramics shows about 23% shrinkage in radial direction; in contrast, the dense bioceramics presents about 17% shrinkage. It can be calculated that from 850 o C to 1100 o C, the porous β-TCP bioceramics shows about 17% shrinkage rate and almost the same with that of the dense counterpart from 600 o C to 1100 o C. So as to avoiding the shrinkage differences, the porous β-TCP bioceramics were pre-sintered at 850 o C, then the dense bioceramics were injected surrounding the porous ceramics, finally the composites were pressureless sintered at 1100 o C for 5 hours and the dense/porous structured β-TCP bioceramics were obtained.Fig.1 The radial shrinkage rate of the porous and dense β-TCP bioceramicsThe phase composition of the as prepared bioceramics was analyzed by X-ray diffraction. The XRD results show that the high temperature sintered β-TCP preserved their original β phase without transform into their α-TCP phase, as shown in Fig.2. Because the α-TCP though bioactive, have proven less useful as bone regeneration materials due to their excessively high resorption rate than the β-TCP phase. And none of the other impurity phases can be detected in the XRD patterns; resultantly, high purity β-TCP bioceramics were prepared.Fig.2 X-ray diffraction pattern of the prepared bioceramics.Fig.3 shows the optical and SEM micrographs of the prepared dense/porous β-TCP bioceramics samples. It is clear to see that the inner porous structure mimics the cancellous bone to some extent, and outer side dense structure mimics the compact bone, as shown in Fig.3(a) and indicated by theS h i n k a g e (%)Temperature (o C)1020304050607080100200300400500600 2theta (deg.)I n t e n s i t y (c p s )arrows. Fig.3 (b) shows the interface of the dense/porous β-TCP bioceramic, it can be found that the interface between the dense and porous bioceramics is connected compactly and tightly. In the porous part, the macropore size is about 500 μm in diameter; the diameter of the interconnected pores is about 100 μm. Additionally, the porosity of the porous parts is about 72%, and the interconnectivity is more than 95%. The microstructure of the macroporous wall was shown in Fig.3(c); it is obvious that there are some micropores with diameter of 1 μm distributed uniformly in the porous wall. As the results, the microstructure of porous part of the bioceramics is a combination of macroporous and microporous. Contrastively, the microstructure of the dense bioceramics shows refined particle size and few micropores, as exhibited in Fig.3(d). The dense compact part is much denser than the porous cancellous part.Fig.3 The dense/porous β-TCP bioceramic sample (a), the microstructure of dense/porous interface(b), the macroporous wall (c) and dense compact bone (d).The variation of the compressive strength and Elastic modulus of the bioceramics with different dense/porous cross-sectional area ratio (S dense /S porous ) was illustrated in Fig 4. It is exhibited that the compressive strength increases from 10 MPa to 74 MPa with the dense/porous ratio from 0.1 to 4.7 obeying rule of exponential growth. And the elastic modulus has been increased form 180 MPa to 960 MPa with the dense/porous ratio increment, also following exponential growth. Evidently, the value of the porous bioceramics is only about 2.0 MPa and the elastic modulus is about 20 MPa, indicated by the square in Fig.4. It has been achieved about 5 to 37 times increment in the mechanical properties by the dense/porous structure design. The mechanical properties of the dense/porous bioceramics could be tailored by the dense/porous cross-sectional area ratio.Porous materials always have poor mechanical properties. Applications of calcium phosphates in the body have been limited by their low strength and numerous techniques have been investigated in attempts to retain their useful bioactive properties whilst providing more suitable mechanical properties for particular applications. These include the reinforcement of β-TCP using HA fiber orbioglass additives [4, 5]; however these techniques are limited for the porous calcium phosphate Compact bone Cancellousbone (b)(c) (d)using in the load bearing sites’ bone regeneration. In this study, excellent mechanical properties of the porous β-TCP bioceramics have been achieved by the dense/porous structured design. The compressive strength of human femoral cancellous bone, weight bearing sites, is in the range of 25~90 MPa, so the dense/porous structured β-TCP is comparable to the strength of human femoral cancellous bone. The high interconnective porous structure of the dense/porous β-TCP bioceramics could allow the tissue ingrowths, and the dense structure could bear the load to some extent. The dense/porous structure of β-TCP bioceramics may provide a simple but effective way to increase the mechanical properties of porous bioceramics for the bone regeneration applications at weight bearing sites.Fig.4 The variation of the compressive strength and elastic modulus of the bioceramics withdifferent dense/porous cross-sectional area ratio. ConclusionsThe dense/porous structured β-TCP bioceramics were prepared and revealed excellent mechanical properties with compressive strength from 10 to 74 MPa and elastic modulus from 180 to 960 MPa, which is 5 to 37 times higher than that of the pure porous β-TCP and comparable to the strength of human femoral cancellous bone. The interface between the dense and porous bioceramics is connected compactly and tightly. The dense/porous structure of β-TCP bioceramics may provide a simple but effective way to increase the mechanical properties of porous bioceramics for weight bearing site’s bone regeneration.AcknowledgementFinancial supports from the Shanghai Postdoctoral Scientific Key Program and the Science & Technology Commission of Shanghai Municipality of China (No.04DZ52043) are greatly acknowledged.References:[1] Niedhart C, Maus U, Redmann E, Schmidt-Rohlfing B, Niethard FU, Siebert CH: J BiomedMater Res Vol. 65A (2003), p.17[2] Hench Larry L: Journal of the American Ceramic Society Vol. 81(1998), p.1705[3] Carotenuto G: Advanced Performance Materials Vol. 5(1998), p.171[4] Hassna R. R. Ramay, Zhang M.: Biomaterials Vol. 25(2004), p.5171[5] Ashizuka M, Nakatsu M, Ishida E: Journal of the Ceramic Society of Japan, v 98(1990), p.204. 01020304050607080012345020040060080010001200E l a st i c M o d u l u s (M P a ) C o m p r e s s i v e S t r e n g h (M P a )S dense /S porous。