固体物理复习_简述题
(完整word版)固体物理考试
)2(sin 422aq m βω=24aq m sin βω=m β42271()(cos cos 2)88E k ka ka ma =-+k a π=ma a E 22)( =π晶态, 非晶态, 准晶态在原子排列上各有什么特点? 答: 晶体是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序, 有固定的熔点 单晶体: 分子在整个固体中排列有序。
多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序, 整个晶体是由这些排列有序的晶粒堆砌而成的。
准晶体:有长程取向性, 而没有长程的平移对称性。
长程有序:至少在微米量级以上原子、分子排列具有周期性。
晶体结构周期性, 晶体: 基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。
原胞和晶胞的区别? 原胞是晶体的最小重复单元, 它反映的是晶格的周期性, 原胞的选取不是唯一的, 但是它们的体积都是相等的, 结点在原胞的顶角上, 原胞只包含1个格点;为了同时反映晶体的对称性, 结晶学上所取的重复单元, 体积不一定最小, 结点不仅可以在顶角上, 还可以在体心或者面心上, 这种重复单元称为晶胞。
掌握立方晶系3个布拉维格子的原胞、晶胞基失导法。
简单立方晶胞基失: 二者一样, 因为格点均在立方体顶角上。
原胞基失: a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外, 还有一个格点在位于立方体的中心。
晶胞基失a=a b=aj c=ak 原胞基失: a1=a/2(-i+j+k ) a 2=a/2(i-j+k ) a 3=a/2(i+j-k) 面心立方除顶角格点外: B 面的中心还有6个格点, (每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a 1=a/2(j+k )a 2=a/2(k+i) a 3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构: 由Na+和Cl-相间排列组成。
固体物理复习简答题
。
在固体物理中,晶体中常见的化学键有 离子键 , 共价键 , 金属键,范德瓦尔斯键, 氢键 。如果晶体中存在两种或两种以上的化学键,称为 混合 晶体。
根据三个基矢的大小和夹角的不同,十四种布喇菲格子可归属于
七
晶系,其中当
a b c, 90
时称为 立方 类晶系,该晶系的布喇菲格子有 sc fcc bcc 。
晶格振动色散关系中 3 支声学波, 3 支光学波,其总的格波数 6N 。
2 b1 i a
2 b2 i a 2 b3其倒格子元胞基矢为是
在倒格子空间中是 简立方 结构,第一布里渊区的形状为 立方体 ,体积为 (2π)3/a3
半导体材料Si具有金刚石型晶体结构,晶格常数为a,其配位数为 4 。一个惯用元 胞(结晶学元胞)内的原子数 8 。属于 fcc 布喇菲格子。写出其初基元胞(固体 物理学元胞)的基矢
a a a1 ( j k ) a2 (i k ) 2 2 a a3 (i j ) 2
固体物理复习题
.简要回答下列问题:1.氯化钠与金刚石是复式格子还是简单格子,各自的基元中包含多少原子?分别是什么原子?复式格子,氯化钠基元包含一个钠原子和一个氯原子;金刚石基元包含2个碳原子。
2.在固体物理中为什么要引入“倒空间”的概念?波的最主要指标是波矢K,波矢K的方向就是波传播方向,波矢的模值与波长成反比,波矢的量纲是m-1。
讨论晶体与波的相互作用是固体物理的基本问题之一。
一般情况下晶体的周期性、对称性等均在正空间描述,及在m的量纲中描述。
为了便于讨论晶体与波的相互作用,必须把二者放到同一空间,同一坐标系下。
我们的选择是把晶体变换到量纲是m-1空间即倒空间来,也就是说在倒空间找到正空间的“映射”。
3.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?52页在晶体衍射中,为什么不能用可见光?解答晶体中原子间距的数量级为10-10米,要使原子晶格成为光波的衍射光栅,光波的波长应小于10米但可见光的波长为米是晶体中原子间距的100倍因此,在晶体衍射中,不能用可见光。
.4.碳化硅是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?3声学支 3*8-3=21光学支5.共价键的定义和特点是什么?共价键包括配位键,是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键。
其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。
再加p169闫饱和性在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系是定比定律的内在原因之一。
方向性除s 轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。
固体物理简答
6.是否有与库仑力无关的晶体结合类型?
答:共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各 出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过 库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合 中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本 分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性 大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性 大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.
答:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中 的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成 3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模 式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是 这3N个简正振动模式的线形迭加.。简正振动数目、格波数目或格波振动模式数目是一回事, 这个数 目等于晶体中所有原子的自由度数之和, 即等于3N.
17.引入玻恩卡门条件的理由是什么?
答:①方便于求解原子运动方程。由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任 一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动 方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原 子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难. ②与实验结果吻合得较好。对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定μ1=0,μN=0的边界条件是不符合事实的.其实不论什么边界 条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动 理论的最有力验证。玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实 说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.
固体物理复习资料
简述题:1、对晶体做结构分析时,为仕么不使用可见光?2、温度升高时,衍射角如何变化?X 光波长变化时,衍射角如何变化?3、为什么金属具有延展性而原子晶体和离子晶体却没有延展性?4、试从金属键的结合特性说明,为何多数金属形成密积结构?5、长光学支格波与长声学支格波本质上有何差别?6、绝对零度时还有格波存在吗?若存在,格波间还有能量交换吗?7、何为费米面?金属电子气模型的费米面是何形状?8、为什么组成晶体的粒子(分子、原子或离子)的相互作用力除了吸引力还要有排斥力?排斥力的来源是什么?9、定性说明能带形成的原因。
10、什么是近自由近似?按照近自由近似,禁带是如何产生的?11、解理面往往是面指数低的晶面还是面指数高的晶面?为什么?12、同一温度下,一个光学波的声子数目与一个声学波的声子数目相同吗?为什么?13、什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?14、什么是逸出功?在热电子发射问题中,逸出功与那些因素有关?15、为什么形成一个空位所需要的能量低于形成一个弗兰克尔缺陷所需要的能量?计算题1、证明:在理想的一维离子晶体晶格中马德隆常数2ln 2=α。
2、证明:在正交、四方和立方晶系中晶面)(hkl 的晶面间距2/1222222)///(-++=c l b k a h d h k l 。
计算硅单晶的111d (晶格常数043.5A a =) 3、画出简单立方中的[213]晶向和(213)晶面。
4、画出面心立方、体心立方中(100)和(110)晶面上的格点排列。
5、分别计算体心立方和面心立方点阵的单胞与原胞的体积比。
6、分别计算SC 、BCC 、FCC 点阵的最大堆积密度。
7、钠(原子量23)具有体心立方结构,晶格常数023.4A a =,试计算钠的密度。
8、证明:BCC 与FCC 互为倒易点阵。
9、计算倒易原胞体积*Ω,并给出与正空间原胞体积Ω之间的关系。
10、设有一维单原子链,原子质量为m ,原子间距为a ,原子间的恢复力常数为β,试给出原子的运动方程及色散关系。
固体物理13年复习题考试重点1
固体复习题型:一.简答题(共30分,每小题6分)5道小题二.证明题(共25分)两道小题三.计算题(共45分)分布在第四章2道,第二章、第三章各一道。
一.简答题1简述晶体的定义,说明晶体的5条宏观性质。
晶体:原子按一定的周期排列规则的固体,在微米量级的范围是有序排列的①一定的熔点;②晶体的规则外形;③在不同的带轴方向上,晶体的物理性质不同——晶体的各向异性;④晶面角守恒——同一品种的晶体,两个相应的晶面间夹角恒定不变;⑤晶体的解理性-—晶体常具有沿某些确定方位的晶面劈裂的性质.2列举晶体结合的基本类型.离子性结合、共价结合、金属性结合、范德瓦尔斯结合和氢键结合。
3.说出简立方晶体、面心立方晶体和体心立方晶体的原胞和晶胞中所包含的原子数。
4。
说出氯化钠、氯化铯和金刚石结构晶体它们的原胞的晶格类型,每个原胞中包含的原子数.5.下面几种种典型的晶体由哪种布拉菲格子套构而成?6。
下面几种典型的晶体结构的配位数(最近邻原子数)是多少?体心立方8 金刚石型结构 4简立方 6 立方硫化锌结构 47。
画出体心立方结构的金属在)111(,)(面上原子排列.100(,)110体心立方8画出面心立方晶格结构的金属在)111(,)(面上原子排列.100(,)110面心立方9试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序.非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性.另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
10晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点.当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
固体物理总复习资料及答案
固体物理总复习题一、填空题1.原胞是 的晶格重复单元。
对于布拉伐格子,原胞只包含 个原子。
2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。
3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。
4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。
5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。
6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做 格子。
其原胞中有 以上的原子。
7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。
8.基本对称操作包括 , , 三种操作。
9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。
10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。
11.具有晶格周期性势场中的电子,其波动方程为 。
12.在自由电子近似的模型中, 随位置变化小,当作 来处理。
13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。
这是晶体中描述电子状态的模型。
14.固体可分为,,。
15.典型的晶格结构具有简立方结构,,,四种结构。
16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。
17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。
18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。
19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。
20.晶体的五种典型的结合形式是、、、、。
固体物理复习题答案完整版
一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理学考试题及答案
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
固体物理学考试试题及答案
固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。
答案:固体物理学是研究固态物质行为和性质的学科领域。
它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。
2. 简述晶体和非晶体的区别。
答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。
非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。
3. 解释晶体中“倒易格”和“布里渊区”的概念。
答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。
布里渊区是倒易格中包含所有倒格矢的最小单元。
4. 介绍固体中的声子。
答案:声子是固体中传递声波和热传导的一种元激发。
它可以看作是晶体振动的一种量子,具有能量和动量。
5. 解释“价带”和“能带”之间的关系。
答案:价带是材料中的电子可能占据的最高能量带。
能带是电子能量允许的范围,它由连续的价带和导带组成。
6. 说明禁带的概念及其在材料中的作用。
答案:禁带是能带中不允许电子存在的能量范围。
禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。
题目二:1. 论述X射线衍射测定晶体结构的原理。
答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。
当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。
2. 解释滑移运动及其对晶体的影响。
答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。
滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。
3. 简述离子的间隙、亚格子和空位的概念。
答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。
亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。
空位是晶体结构中存在的缺陷,即某个原子或离子缺失。
4. 解释拓扑绝缘体的特点和其应用前景。
答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。
固体物理复习_简述题
"固体物理"根本概念和知识点第一章根本概念和知识点1) 什么是晶体、非晶体和多晶?(H)*晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2) 什么是原胞和晶胞?(H)*原胞是一个晶格最小的周期性单元,在有些情况下不能反响晶格的对称性;为了反响晶格的对称性,选取的较大的周期单元,称为晶胞。
3) 晶体共有几种晶系和布拉伐格子?(H)*按构造划分,晶体可分为7大晶系, 共14布拉伐格子。
4) 立方晶系有几种布拉伐格子?画出相应的格子。
(H)*立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。
5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(H)*简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。
碱金属具有体心立方晶格构造;Au、Ag和Cu具有面心立方晶格构造,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成一样的简单晶格,复式格子由它们的子晶格相套而成。
一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是一样原子但几何位置不等价的原子构成的晶体,如:具有金刚石构造的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?(H)BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。
三组氧(OI,OII,*3OIII)周围的情况各不一样,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方构造子晶格(共5个)套构而成的。
7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(H)*金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
固体物理—简答题
1 试述位错反应及其能否进行的条件。
答:由几个位错合成为一个新位错或由一个位错分解为几个新位错的过程称为位错反应。
位错反应能否进行,取决于两个条件:⑴几何条件,即反应前各位错的柏氏矢量之和应等于反应后的柏氏矢量之和。
⑵能量条件,即反应后各位错的总能量应小于反应前的总能量。
由于位错的能量正比于柏氏矢量的平方,故此条件可写为22b b>∑∑后前2 解释在固熔强化效果上间隙机制优于置换机制的原因。
答:间隙式熔质原子的强化效果一般要比置换式熔质原子更显著。
这是因为间隙式熔质原子往往择优分布在位错线上,形成间隙原子“气团”,将位错牢牢钉扎住,从而造成强化。
相反,置换式熔质原子往往均匀分布,虽然由于熔质和熔剂原子尺寸不同,造成点阵畸变,从而增加位错运动的阻力,但这种阻力比间隙原子气团的钉扎力小得多,因而强化作用也小得多。
3 简述纯金属晶体长大的机制及其与固-液界面结构的关系。
答:晶体长大机制是指晶体微观长大方式,它与液-固界面结构有关。
具有粗糙界面得物质,因界面上约有50%的原子位置空着,这些空位都可接受原子,故液体原子可以单个进入空位与晶体相连接,界面沿其法线方向垂直推移,呈连续式长大。
具有光滑界面的晶体长大,不是单个原子的附着,而是以均匀形核的方式,在晶体学小平面上形成一个原子层厚的二维晶核与原界面形成台阶,单个原子可以在台阶上填充,使二维晶核侧向长大,当该层填满后,则在新的界面上形成新的二维晶核,继续填满,如此反复进行。
若晶体的光滑界面存在有螺型位错的露头,则该界面称为螺旋面,并形成永不消失的台阶,原子附着到台阶上使晶体长大。
4 脱熔分解与调幅分解在形成析出相时最主要的区别是什么?答:两者在形成析出相时最主要的区别在于形核驱动力和新相的成分变化。
脱熔分解时,形成新相要有较大的浓度起伏,新相与母相的成分相比较有突变,因而产生界面能,这也就需要较大的形核驱动力以克服界面能,亦即需要较大的过冷度。
而对调幅(Spinodal)分解,没有形核过程,没有成分的突变,任意小的浓度起伏都能形成新相而长大。
固体物理试题及答案
固体物理试题及答案一、选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是通过哪种方式描述的?A. 电子云B. 原子轨道C. 布洛赫定理D. 费米面答案:C2. 以下哪种材料不属于半导体材料?A. 硅B. 锗C. 铜D. 砷化镓答案:C3. 在固体物理中,能带理论描述的是:A. 电子在固体中的自由运动B. 电子在固体中的局域化C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C4. 固体中的声子是:A. 一种基本粒子B. 一种准粒子C. 一种实际存在的粒子D. 一种不存在的粒子答案:B5. 以下哪种效应与超导现象无关?A. 迈斯纳效应B. 约瑟夫森效应C. 霍尔效应D. 量子隧穿效应答案:C二、填空题(每题2分,共20分)1. 固体物理中,描述电子在周期性势场中的运动的定理是______。
答案:布洛赫定理2. 固体中的能带结构是由______决定的。
答案:电子波函数3. 在固体中,电子的费米能级是______。
答案:电子占据的最高能级4. 固体中的电子输运性质可以通过______来描述。
答案:电导率5. 固体中的晶格振动可以用______来描述。
答案:声子6. 固体中的电子-声子相互作用会导致______。
答案:电子散射7. 固体中的能隙是指______。
答案:价带顶部和导带底部之间的能量差8. 超导体的临界温度是指______。
答案:超导相变发生的温度9. 固体中的霍尔效应是由于______。
答案:电子在磁场中的偏转10. 固体中的磁阻效应是由于______。
答案:电子在磁场中的运动受到阻碍1. 简述固体物理中能带理论的基本思想。
答案:能带理论的基本思想是将固体中的电子视为在周期性势场中运动的量子粒子。
由于周期性势场的存在,电子的能级不再是离散的,而是形成了连续的能带。
这些能带决定了固体的电子结构和性质,如导电性、磁性和光学性质等。
2. 描述固体中的声子是如何产生的。
答案:固体中的声子是由于晶格振动的量子化而产生的准粒子。
固体物理试题库及答案
固体物理试题库及答案一、单项选择题1. 固体物理中,描述原子间相互作用势能的函数称为()。
A. 势能函数B. 势函数C. 势能势函数D. 相互作用势函数答案:D2. 固体中电子的能带结构是由()决定的。
A. 原子核B. 电子C. 原子D. 晶格答案:D3. 在固体中,声子是()的量子化。
A. 电子B. 光子C. 声波D. 晶格振动答案:D4. 金属中的自由电子近似描述了()。
A. 金属的导电性B. 金属的磁性C. 金属的热导性D. 金属的塑性答案:A5. 能带理论中,价带和导带之间的区域称为()。
A. 能隙B. 能带C. 能级D. 能区答案:A二、多项选择题1. 下列哪些因素会影响固体的电子能带结构?()A. 晶格类型B. 原子排列方式C. 原子核外电子排布D. 温度答案:ABCD2. 固体物理中,以下哪些现象可以通过声子来解释?()A. 热传导B. 电导C. 光导D. 热膨胀答案:AD3. 固体中的电子输运性质可以通过哪些参数描述?()A. 电子迁移率B. 电子密度C. 电子亲和力D. 电子浓度答案:ABD三、填空题1. 固体物理中,晶格的周期性势场可以用______函数来描述。
答案:周期性2. 固体中的电子能带是由______决定的。
答案:晶格周期性3. 在固体中,电子的波函数是______的。
答案:布洛赫4. 固体中的电子跃迁通常伴随着______的产生或湮灭。
答案:声子5. 金属的导电性是由______电子提供的。
答案:自由四、简答题1. 简述能带理论的基本原理。
答案:能带理论的基本原理是,固体中的电子在周期性晶格势场中运动,其波函数满足布洛赫定理,即波函数可以写成平面波与周期函数的乘积形式。
由于晶格的周期性,电子的能级形成连续的能带,不同能带之间存在能隙。
电子在能带中的分布决定了固体的导电性、磁性等物理性质。
2. 描述声子在固体物理中的作用。
答案:声子是晶格振动的量子化,它们在固体物理中扮演着重要角色。
固体物理复习题(已解答)
1 简述Drude 模型的基本思想把金属中的电子看做气体,金属由可以自由运动的电子和固定不动的离子实两部分组成,这些可以自由运动的电子使金属导电的成分。
将自由电子看做带电的小硬球,它们的运动遵循牛顿第二定律。
应用独立自由电子气假设:在忽略电子-电子和电子-离子间电磁相互作用(内场)的情况下,它们在金属中运动或并发生碰撞。
2 简述Drude 模型的三个基本假设并解释 独立电子近似:电子与电子无相互作用自由电子近似:除碰撞的瞬间外,电子与离子无相互作用弛豫时间近似:一给定的电子在单位时间内受一次碰撞的几率为1/τ 3在Drude 模型下,固体如何建立热平衡 碰撞前后速度无关联 碰撞后获得的速度方向随机 速率与碰撞后的温度相适应4 Drude 模型中对金属导电率的表达式为:mnq τσ2=5 在自由电子气模型中,由能量均分定理知在特定温度T 下电子的动能为: 1.5K B T6 在Drude 模型当中,按照理想气体理论,自由电子气的密度为n ·cm -3,比Cv= 1.5 nK B7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的 导热率 和 电导率 的比值为常数。
8 简述Drude 模型的不足之处?电子对比热的贡献与温度无关,被严重高估(210) 对电子速度 2v 低估(210)误认磁化率与温度成反比,而实际无关 什么决定传到电子的数目?价电子? 导体?绝缘体?半导体?他之所以解释 维德曼-弗兰兹 成功,是因为对比热的高估正好抵消对速度的低估 9 对于自由电子气体,系统的化学势随温度的增大而 降低 。
10 请给出Fermi-Dirac 统计分布中,温度T 下电子的能量分布函数,并进一步解释电子能量分布的特点。
11)(/)('+=-TK E E FD B F eE f在温度T 下,能量为E 的状态被占据的几率。
式中EF 是电子的化学势,是温度的函数。
当温度为零时,电子最高占据状态能量,称为费米能级。
(完整版)固体物理复习
非晶体——原子的排列没有明确的周期性(短程有序)晶体——原子按一定的周期排列规则的固体(长程有序)准晶体——介于晶体和非晶体之间的新的状态晶体结构最常见的三种立方格子简单立方晶格、面心立方晶格、体心立方晶格,其配位数分别为6、12、8;六角密堆的配位数为12,金钢石结构的配位数为4。
原胞是最小的晶格重复单元。
对于简单晶格,原胞包含1个原子。
若321,,aaa表示某布拉伐格子的基矢(又称正格子基矢),321,,bbb表示该布拉伐格子的倒格子基矢,那么正格子基矢与倒格子基矢之间满足的关系为:。
(教材:p17)画出体心立方、面心立方和六角密堆的原胞,如果各自晶胞的体积为v,则原胞的体积分别为v/2,v/4,v/3晶向晶面画出简单立方晶格的晶向,立方边共有6个不同的晶向由于立方晶格的对称性,以上6个晶向是等效的可以表示为<100>]100[],001[],10[]010[],001[],100[100110111<><><>按结构划分,晶体可以分为7 大晶系,共有 14 布拉伐格子。
若321,,a a a表示某布拉伐格子的基矢(又称正格子基矢),321,,b b b 表示该布拉伐格子的倒格子基矢,那么矢量332211a n a n a n R++=的全部端点的集合构成)100(面等效的晶面数分别为:3个 }100{表示)110(面等效的晶面数分别为:6个 }110{表示)111(面等效的晶面数分别为:4个 }111{表示231123312123123123222a a b a a a a a b a a a a a b a a a πππ⨯=⋅⨯⨯=⋅⨯⨯=⋅⨯2()20()i j ij i j a b i j ππδ==⎧⋅=⎨=≠⎩布拉伐格子,矢量332211b h b h b h G h++=的全部端点的集合构成 倒格子 。
对晶格常数为a 的SC 晶体,与正格矢k a j a i a R22++=正交的倒格子晶面族的面指数为 (122) , 其面间距为 a32π。
固体物理总复习资料及复习资料
固体物理总复习题一、填空题1.原胞是的晶格重复单元。
对于布拉伐格子,原胞只包含个原子。
2.在三维晶格中,对一定的波矢q ,有支声学波,支光学波。
3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。
4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为;能带的表示有、、三种图式。
5.按结构划分,晶体可分为大晶系,共布喇菲格子。
6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做格子。
其原胞中有以上的原子。
7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。
8.基本对称操作包括,,三种操作。
9.包含一个n重转轴和n个垂直的二重轴的点群叫。
10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为。
11.具有晶格周期性势场中的电子,其波动方程为。
12.在自由电子近似的模型中,随位置变化小,当作来处理。
13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作处理。
这是晶体中描述电子状态的模型。
14.固体可分为,,。
15.典型的晶格结构具有简立方结构,,,四种结构。
16.在自由电子模型中,由于周期势场的微扰,能量函数将在处断开,能量的突变为。
17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。
18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。
19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。
20.晶体的五种典型的结合形式是、、、、。
21.两种不同金属接触后,费米能级高的带电,对导电有贡献的是的电子。
(完整版)固体物理试题库
(完整版)固体物理试题库一、名词解释1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
4.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。
5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。
6.理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。
7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。
8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。
9.点阵常数(晶格常数)--惯用元胞棱边的长度。
10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。
11.配位数—晶体中和某一原子相邻的原子数。
12.致密度—晶胞内原子所占的体积和晶胞体积之比。
13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能)14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。
15.费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。
16.色心--晶体内能够吸收可见光的点缺陷。
17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。
18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。
19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。
20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。
21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。
22.德拜频率ωD── Debye模型中g(ω)的最高频率。
考研_固体物理重点复习试题及解答
固体物理重点复习题(2005)一、名词解释:1、布喇菲格子:当晶体是由完全相同的原子组成时,原子于结点重合,结点所形成的网络就是原子的网格。
对于这种格子,当每个格点周围的情况完全一样时,则称为布喇菲格子。
2、范德瓦尔斯相互作用力~6rA (能) ○1葛生互作用力:极性分子间固有电偶极矩间的互作用力。
○2德拜互作用力:极性分子间固有与感应电偶极矩之间的相互作用力。
○3伦敦互作用力:非极性分子间瞬时电偶极矩间的互作用力。
3、长程有序:晶态固体的内部,至少在微米量级的范围是有序排列的,这叫做长程有序。
4、完整晶体:内在结构完全规则的晶体是理想晶体,又叫做完整晶体。
5、近乎完整的晶体:在规则排列的背景中尚存在微量不规则性的晶体叫做近乎完整的晶体。
6、缺陷:近乎完整的晶体内部的微量不规则性叫做缺陷。
7、晶面角守恒定律:属于同一品种的晶体,两个对应晶面(或晶棱)间的夹角,恒定不变。
8、晶体的解理性:当晶体受到外力作用时,常能沿某一个或某些具有一定方向的晶面断裂,这种性质称为晶体的解理性。
这些裂开的晶面,称为解理面。
9、晶格:晶体中原子排列的具体形式一般称为晶体格子,简称晶格。
10、晶格的周期性:当沿着晶格中任一特定方向行进时,会周期性地遇到完全相同的原子或原子团;也就是说:晶体可以看作是由完全相同的原子或原子团(结构单元)在空间作周期性排列而形成的。
这就是晶格的周期性,或称平移不变性(平移对称性)。
11、空间点阵:晶体的内部结构,可看成是一些相同的点,在空间作有规则的、周期性的无限分布;而这些相同的点,可代表离子、原子、分子或其集团的重心。
这些点在空间排列所组成的总体,称为空间点阵。
12、原胞:以三个方向上的周期为边长的平行六面体,作为重复单元,来概括整个晶格的特性,这样选取的重复单元,成为原胞。
13、固体物理学原胞:如果只要求反映晶格的周期性,原胞可以选取最小的重复单元,结点就在顶点上,在内部和面上,不包含其它的结点,这种原胞称为固体物理学原胞。
固体物理经典复习题及答案
则此轴称为 3 度旋转-反演轴。
22.n 度螺旋轴
答:一个 n 度螺旋轴表示绕轴每转 2
角度后,在沿该轴的方向平移 T
n的
n
3 / 118
………………………………………………最新资料推荐………………………………………
点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空 间点阵(布喇菲点阵),即平移矢量 h1d、h2d、h3d 中 n1,n2,n3 取整数时 所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量, 以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原 胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体 物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,
答:若晶体绕某一固定轴转 2 角度后自身重合,则此轴称为 n 度旋转对称 n
轴。 18.4 度旋转对称轴 答:若晶体绕某一固定轴转 900 角度后自身重合,则此轴称为 4 度旋转对称
轴。
19.6 度旋转对称轴 答:若晶体绕某一固定轴转 600 角度后自身重合,则此轴称为 6 度旋转对称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理》基本概念和知识点第一章基本概念和知识点1) 什么是晶体、非晶体和多晶?( )晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2) 什么是原胞和晶胞?( )原胞是一个晶格最小的周期性单元,在有些情况下不能反应晶格的对称性;为了反应晶格的对称性,选取的较大的周期单元,称为晶胞。
3) 晶体共有几种晶系和布拉伐格子?( )按结构划分,晶体可分为7大晶系, 共14布拉伐格子。
4) 立方晶系有几种布拉伐格子?画出相应的格子。
( )立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。
5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
( )简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。
碱金属具有体心立方晶格结构;Au、Ag和Cu具有面心立方晶格结构,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格,复式格子由它们的子晶格相套而成。
一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是相同原子但几何位置不等价的原子构成的晶体,如:具有金刚石结构的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?( )BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。
三组氧(OI,OII,3OIII)周围的情况各不相同,整个晶格是由Ba、Ti和OI、OII、OIII各自组成的简立方结构子晶格(共5个)套构而成的。
7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?( )金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
金刚石结构由两套完全等价的面心立方格子穿套构成。
金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。
第二章基本概念和知识点1) 简述离子性和共价性晶体结合的特点。
( )离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;基本特点是以离子为结合的单位,且要求正负离子相间排列。
共价性结合:共价结合是靠两个原子各贡献一个电子,形成所谓的共价键;两个基本特征是饱和性和方向性。
2) 简述金属性和范德瓦耳斯结合的特点。
( )金属性结合:基本特点是电子的“共有化”,即在结合成晶体时,原来属于各原子的价电子不再被束缚在原子上,而转变为在整个晶体内运动;电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现了把原子聚合起来的作用。
范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时的电偶极矩的感应作用而结合的。
第三章基本概念和知识点1) 什么是声子?长光学波声子又可以分为极化声子和电磁声子,它们的意义是什么?( )声子是晶格振动的能量量子。
在晶体中存在不同频率振动的模式,称为晶格振动,晶格振动能量可以用声子来描述,声子可以被激发,也可以湮灭。
——1分晶体中的长光学波是极化波,长光学波声子称为极化声子(LO),只有长光学纵波才伴随有宏观的极化电场,极化声子主要是指纵光学声子。
—— 2分长光学横波并不伴随着宏观的、无旋的极化电场。
长光学横波可能伴随着有旋的宏观电场,会引起有旋的磁场,有旋的电场感生出有旋的磁场。
长光学横波声子称为电磁声子(TO),长光学横波具有电磁性,可以和光场发生耦合。
—— 2分2) 什么是固体比热的德拜模型?根据计算结果,说明为什么在低温下德拜近似越好?( )德拜提出以连续介质的弹性波来代表格波,将布喇菲晶格看作是各向同性的连续介质,有1个纵波和2个独立的横波。
—— 2分计算结果表明低温极限下:——与温度的3次方成正比——德拜模型是将弹性波代替固体中的格波,色散关系为,温度愈低,只有长声学格波被激发,因此德拜近似愈好,与实验结果更好的吻合。
—— 3分3) 简述固体比热的爱因斯坦模型?说明计算结果的意义。
( )假设有N 个原子构成的晶体,晶体中所有的原子以相同的频率0ω振动。
计算结果表明温度较高时:3V B C Nk ≅—— 与杜隆-珀替定律一致。
温度非常低时:0203()B k T V B B C Nk e k T ωω-= 热容量按温度的指数形式降低,与实验结果3V C AT =不符。
爱因斯坦模型忽略了各格波的频率差别。
4) 写出一维双原子链的声学波和光学波在布里渊区中心和边界的色散关系,并画出两种格波相应的色散关系谱图。
( ) 声学波:1212(),20,0q M a q βπω⎧=±⎪=⎨⎪→⎩ 光学波:122122()02()2q q ma βμωβπ⎧→⎪⎪=⎨⎪=±⎪⎩5) 如果原胞中有p 个原子,那么在晶体中有多少支声学波和光学波?在长波极限下,声学波和光学波描述的原子怎样的运动?( )第四章 基本概念和知识点1) 布洛赫函数的意义是什么?写出三维电子的布洛赫函数。
( )布洛赫定理:晶体中的势场具有晶格周期性时,电子的波函数满足:()()n ik R n r R e r ψψ⋅+= ——k 为一矢量其意义是当平移晶格矢量n R 时,电子的波函数只增加了相位因子n ik R e ⋅ 。
电子的波函数:()()ik r k r e u r ψ⋅= —— 布洛赫函数2) 根据能带理论简述金属、半导体和绝缘体的导电性。
( )金属:电子在能带中的填充可以形成不满带,即导带,因此它们一般是导体半导体:从能带结构来看与绝缘体的相似,但半导体禁带宽度较绝缘体的窄,依靠热激发即可以将满带中的电子激发到导带中,因而具有导电能力。
绝缘体:价电子刚好填满了许可的能带,形成满带。
导带和价带之间存在一个很宽的禁带,所以在电场的作用下没有电流产生。
3) 简述近自由电子近似模型、方法和所得到的主要结论。
( )(见 第一个老师给的习题答案)4) 通过分析X 射线发射谱,如何确定哪些是金属,哪些是非金属,说明谱图的意义。
( )5) 简述紧束缚近似模型的思想和主要结论。
( )紧束缚模型:电子在一个原子(格点)附近时,主要受到该原子势场的作用,而将其它原子(格点)势场的作用看作是微扰,将晶体中电子的波函数近似看成原子轨道波函数的线性组合,得到原子能级和晶体中能带之间的关系。
结论:一个原子能级i 对应一个能带,不同的原子能级对应不同的能带。
当原子形成固体后,形成了一系列的能带。
内层电子的轨道较小,原子之间内层电子的波函数相互重叠较少,对应的能带较窄。
能量较高的能级对应外层电子,其轨道较大,原子之间外层电子的波函数相互重叠较多,对应的能带较宽。
6) 说明如何从原子的价电子数目来分析元素晶体的导电性? ( )每个原胞中价电子数是奇数的物质,必定是导体。
是偶数的物质一般是绝缘体或半导体,但少数价带和导带存在交迭的情况下,也可能是导体或半金属材料。
第五章 基本概念和知识点1) 什么是空穴?为什么要引入空穴?( )一个空的1k 状态的近满带中所有电子运动形成的电流和一个带正电荷e ,以1k 状态电子速度1()e k v 运动的粒子所产生的电流相同。
这个空状态称为空穴。
引入空穴用来近满带的导电性质 (对于状态1k 空着的近满带,其总电流就如同一个具有正电荷e 的粒子,以空状态1k 的电子速度所产生的,这个空的状态称为空穴,空穴具有正有效质量,位于满带顶附近,空穴是准粒子)2) 将电子看作经典粒子,速度和运动方程是什么?什么情况下可将电子看作是准经典粒子?( ) 电子状态变化基本公式: 电子的速度:只有当自由程远远大于原胞线度的情况下,才可以把电子看作是一个准经典运动 的粒子。
3) 简述导带中的电子在外场作用下产生电流。
( )导带中只有部分状态被电子填充,外场的作用会使布里渊区的状态分布发生变化。
所有的电子状态以相同的速度沿着电场的反方向运动,但由于能带是不满带,逆电场方向上运动的电子较多,因此产生电流。
4) 说明满带中的电子在外场作用下不产生电流的原因。
( )有外场 E 时, 所有的电子状态以相同的速度沿着电场的反方向运动。
在满带的情形中, 电子的运动不改变布里渊区中电子的分布。
所以在有外场作用的情形时,满带中的电子不产生宏观的电流。
5) 说明在导带底和价带顶附近,电子的能量具有什么特点?( )6) 简述固体中电子的有效质量的意义。
( )有效质量的物理意义:把晶体周期性势场的作用概括到电子的有效质量中去,使得在引入有效质量之后,把晶体中电子准经典运动的加速度与外力联系起来,就可把运动复杂的晶体电子看作为简单的自由电子引入有效质量的用处:使讨论晶体电子运动时,问题变得很简单,否则几乎不可能。
第六章 基本概念和知识点1) 从电子热容量子理论简述金属中的电子对固体热容的贡献。
在量子理论中, 大多数电子的能量远远低于费密能量,由于受到泡利原理的限制不能参与热激发, 只有在 附近约范围内电子参与热激发, 对金属的热容量有贡献。
计算结果表明电子的热容量与温度一次方成正比。
为什么温度较高时可以不考虑电子对固体热容量的贡献?在量子理论中, 大多数电子的能量远远低于费密能量,由于受到泡利原理的限制不能参与热激发, 只有在 附近约范围内电子参与热激发, 对金属的热容量有贡献。
在一般温度下, 晶格振动的热容量要比电子的热容量大得多;在温度较高下,热容量基本是一个常数。
温度较低时必须考虑电子对热容量的贡献?( )在低温范围下, 晶格振动的热容量按温度的 3 次方趋于零, 而电子的热容量与温度 1 次方成正比,随温度下降变化比较缓慢,此时电子的热容量可以和晶格振动的热容量相比较,不能忽略。
2) 为什么绝对零度时,金属中的电子仍具有较高能量?( )温度0T =时:电子的平均能量(平均动能):035Kin F E E =,电子仍具有相当大的平均能量。
因为电子必须满足泡利不相容原理,每个能量状态上只能容许两个自旋相反的电子。
因此所有的电子不可能都填充在最低的能量状态。
3) 简述研究金属热容量的意义,并以过渡元素具有较高的热容量为例加以说明。
( ) 许多金属的基本性质取决于能量在 附近的电子,电子的热容量 与 成正比,由电子的热容量可以获得费米面附近能态密度的信息。
过渡元素 Mn 、 Fe 、 Co 和 Ni 具有较高的电子热容量, 反映了它们在费米面附近具有较大的能态密度。