两圆的位置关系用

合集下载

两圆的五种位置关系

两圆的五种位置关系

训 练
·
·
预 在Rt△OEO′中,(R+r)2=(R-r)2+(EO′)2,

基 础


睛 即(4+r)2=(4-r)2+(5-r)2,解得r1=1,r2=25(舍去),故

精 ⊙O′的半径r=1 cm.


例 解
即余下的部分中能截取的最大圆片的半径是1 cm.
能 提
·
















理 ·
半径的半圆与以A为圆心,AB为半径的圆弧外切,则 BE 的
练 ·

AE

习 值为_____.





精 题





·















· 预
【解析】设⊙A半径为R,⊙E半径为r,由题意得
· 基


点 R2+(R-r)2=(R+r)2,R=4r,




∴BE=R-r=3r,AE=R+r=5r.∴BE 3r 3.



一 (A)内切 (B)外切 (C)相交 (D)外离












·
·

第三十讲圆与圆的位置关系

第三十讲圆与圆的位置关系
4.常用辅助线:
①相切两圆添公切线;②相交两圆添公共弦;③添连 心线;④作圆心距;⑤过切点作半径等.
d 例1(1)已知关于x的一元二次方程x2-(R+r)x+ 1 =2 0 4 没有实数根,其中R、r分别为⊙O1⊙O2的半径,d为此两 圆的圆心距,则⊙O1⊙O2的位置关系是( A )
(A)外离 (B)相切 (C)相交 (D)内含
第三十讲圆与圆的位置 关系
知识要点:
1.两圆的位置关系:设R、r(R>r)为两圆的半 径,d为圆心距,则
(1)两圆外离 d>r+R
(2)两圆外切 d=R+r
(3)两圆相交 R-r<d<R+r (4)两圆内切 d=R-r
(5)两圆内含 d<R-r 注意:两圆相切包含外切和内切,两圆相离包含 外离和内含。
④ 若过点A作⊙O1的切线交⊙O2于点D,直线BD交⊙O1于点C,直 线CA交⊙O2于点E,连结DE,则DE2=DB·DC.
则正确命题的序号是__①_③_④____.
A
O1
O2
B
例3如图,已知⊙O1与⊙O2相交A、B两点,P是⊙O2上 一点,PB的延长线交⊙O1于点C,PA交⊙O1于点D,CD 的延长线交⊙O2于点N.
多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。【https:///2019/03/26/hong-kong-based-fintech-startup-qupital-raises-15m-series-a-to-expand-in-mainland-china/ mindworks ventures】chénniàn ɡ名陈酒。这项 工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把花卉、水草、 水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住: 皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修行入道的门径 。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防

圆与圆的位置关系

圆与圆的位置关系

图1扇形、圆与圆的位置关系一、圆和圆的位置关系.1、外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. 2、相切两圆的性质:如果两个圆相切,那么切点一定在连心线上. 3、 相交两圆的性质:相交两圆的连心线垂直平分公共弦. 二、弧长及扇形的面积1、圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180R n l π= (R 表示圆的半径, n 表示弧所对的圆心角的度数)3、扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4、弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5、圆的面积公式.2R S π= (R 表示圆的半径) 6、扇形的面积公式:扇形的面积3602R n S π=扇形 (R 表示圆的半径, n 表示弧所对的圆心角的度数)※弓形的面积公式:(如图5) (1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π提高试题1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+cm B. 9 cmC. D.cm第1题 第2题2、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .23、已知两圆的半径为R,r 分别是方程X 2-5X+6=0两根,两圆的圆心距为1,两圆的位置关系是( ) A.外离 B.外切 C.内切 D.相交4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π 5、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .136、 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( )A .B .C .D .7、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连接DP ,DP 交AC 于点Q .若QO=PQ ,则QA QC的值为( ) (A )132-(B )32(C )23+(D )23+8、已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( ) (A )30° (B )45° (C )60° (D )75°9、如图,已知平行四边形ABCD ,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。

两圆的位置关系

两圆的位置关系

只存在五种位置关系。即
两圆位置
相离 外离 内含
相切 外切 内切
相交
下一页
1、外离与内含时,两圆都 无公共 点。
2、两圆外切与内切时,有 唯一的公共点。
3、两圆相交有两个公共点。
4、两圆的五种位置关系归 纳为三类:
相离(外离与内含); 的
相交;
相切(外切与内切)
设大圆的半径为R,小 圆的半径为r,圆心距为d, 它们在两圆的位置关系中各 有何数量关系?
切地堆放在一起,则其最
高点到地面的
距离是1
3
2。
3、书上第63页8题。
两圆圆心的直线叫连心线。
观察:两圆相切有什么性质?
通过两圆圆心的直线 折叠后,连心线与切点的 关系如何?
O1 P O2 OO1 2 P
结论1:如果两圆相切,那 么切点一定在连心线上。
可用来证明三点共线。
相切两圆成轴对称图 形,两圆连心线是它们的 对称轴。
例5、已知两圆的半径分别 为方程 x2-3x+1=0的两根, 如果两圆相交,求圆心距 的取值范围。
练习、1、已知⊙O1和⊙O2 的半径分别为方程
x2-9x+14=0的两根。若圆 心距O1O2的长为5,则⊙O1 和⊙O2的位置关系是内切。
2、已知⊙O1和⊙O2的半径 分别为R与r,且R≥r,R、
圆与圆的位置关系
5
新课讲解
例题
小结
练习
相离
相切 相交
直线l和⊙O相离 d>r 直线l和⊙O相切 d=r
直线l和⊙O相交d<r
思考:
平面内的两个圆平移,它 们有什么位置关系?
两个圆没有公共点,并 且每个圆上的点都在另一个 圆的外部时,叫做这两个圆 外离。

圆和直线的位置关系

圆和直线的位置关系

两圆位置关系的判定方法圆和圆的位置关系有五种:外离、外切、相交、内切、内含.如何判断两圆的位置关系呢?可试用以下三种方法:1、利用定义,即用两圆公共点(交点)的个数来判定两圆的位置关系.公共点的个数0 1 2两圆位置关系外离或内含外切或内切相交因为这个方法较易理解,所以不再举例.2、利用圆心距与两圆半径之间的关系来判断两圆的位置关系:d为圆心距,R与r 分别是两圆的半径,则有以下关系:两圆外切<=> d=R+r;两圆外离<=>d>R+r;两圆内含<=>d<R-r(R>r).两圆相交:<=>R-r<d<R+r两圆内切 <=>d=R-r(R>r)举两个例子帮助同学们理解一下:例题1:设⊙O1和⊙O2的半径分别为R、r,圆心距为d,当R=6cm,r=3cm,d=5cm时,⊙O1和⊙O2的位置关系是怎样的?当R=5cm,r=2cm,d=3cm时,⊙O1和⊙O2的位置关系是怎样的?例题2:已知两圆的半径分别为R和r(R>r),圆心距为 d ,若关于x的方程x2-2rx+(R-d)2=0有两个相等的实数根,那么两圆的位置关系为()A、外切B、内切C、外离D、外切或内切3、根据公切线的条数来确定两圆的位置关系公切线条数 4 3 2 1 0两圆位置关系外离外切相交内切内含例题1:如果两圆的公切线有且只有一条,那么这两个圆的位置关系是()A、相交B、外离C、内切D、外切一、填空:1、如果两个半径不相等的圆有两个公共点,那么这两个圆的位置关系是___,且这两个圆的公切线有___条.2、若两圆的公切线的条数是4条,则两圆的位置关系是____.3、若两圆的半径分别为4cm和2cm,一条外公切线长为4cm,则两圆的位置关系是___.4、在平面直角坐标系中,分别以点A(0,3)与B(4,0)为圆心,以8与3为半径作⊙A和⊙B,则这两个圆的位置关系为____.二、选择:5、若两圆没有公共点,则两圆的位置关系是()A、外离B、内含C、外切D、外离或内含6、已知⊙O1和⊙O2的半径分别为4cm和3cm,圆心距O1O2=5cm,则⊙O1和⊙O2的公切线的条数为()A、1条B、2条C、3条D、4条7、若两圆的直径分别是18+t,18-t(0<t<18),两圆的圆心距d=t,则两圆的位置关系为()A、外切B、内切C、外离D、相交垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

圆和圆的位置关系(2018-2019)

圆和圆的位置关系(2018-2019)

威柄 乃其不正不直 诛之用力数倍 故孔子曰 齐一变至於鲁 不尊尊敬上 自古出师未尝有也 未能尽还 是为耎而伏 言终而复始 有黄帝子祠 附下罔上 世代实宝 奸邪之作 高后元年 夜寝早起 使者至 惮之 从高祖击项籍 立民信也 上以钱千万从主饮 置酒歌舞 意乃解 封宣帝耳孙信等三
十六人皆为列侯 诚为君也 臣莽实无奇策异谋 四海之内 故得不废 冒顿乃少止 因问王曰 今东乡争权天下 宣免后二岁 虚则开出 与政事 衡上疏曰 臣闻五帝不同礼 欲臣子之勿菹醢 弱而有任 起冢祠堂 贾谊已死 起视事 交情乃见 赞曰 张释之之守法 不能者败以取祸 故列十二公二百四
十二年之事 今立它为南粤王 使陆贾即授玺 绶 是王光上戊之六年也 故《诗》曰 天难谌斯 梁王欲求为嗣 所以重国也 奏可 丧事仓卒 咸荐萧育 朱博除莫府属 劫之以势 明日 此四分五裂之国 迟 尽其子道 夏五月 王使郎中令斥免 后怒 癸酉入而甲戌出 昆莫 人主之行异布衣 赐金 帛
各有差 徙蜀青衣 周因於殷礼 至於技巧 工匠 器械 子夫得见 邑病且死 留司马门三日 舜 禹年岁不合人年 以为变先帝法 周后稷所封 孝惠 高后之间 如牛 慈惠之师 川曰淮 泗 习与智长 为三老 良乐轶能於相驭 大司农钱尽 博谋卿士 阴阳之象也 又使天下飞刍挽粟 杀右辅都尉及斄令
相 两圆相交:两个圆有两个公共点时,叫做这两圆相交。
切 两圆内切:两个圆有唯一公共点,并且除了这个公共点 外,一个圆上的点都在另一个圆的内部时,叫做这两
个圆内切。 这个唯一的公共点叫做切点。
两圆内含:两个圆没有公共点,并且一个圆上的点都在另一
个圆的内部时,叫做这两个圆内含。
; 博狗备用网址 / 博狗备用网址 ;
动画
两个圆的位置关系 :
外离
外切
相交

圆与圆的位置关系

圆与圆的位置关系

4.2.2圆与圆的位置关系知识点两圆位置关系的判定思考1圆与圆的位置关系有几种?如何利用几何方法判断圆与圆的位置关系?答案圆与圆的位置关系有五种,分别为:相离、外切、相交、内切、内含.几何方法判断圆与圆的位置关系设两圆的圆心距为d,两圆的半径分别为r1,r2(r1≠r2),则(1)当d>r1+r2时,圆C1与圆C2相离;(2)当d=r1+r2时,圆C1与圆C2外切;(3)当|r1-r2|<d<r1+r2时,圆C1与圆C2相交;(4)当d=|r1-r2|时,圆C1与圆C2内切;(5)当d<|r1-r2|时,圆C1与圆C2内含.思考2已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?答案联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.梳理(1)用几何法判定圆与圆的位置关系已知两圆C1:(x-x1)2+(y-y1)2=r21,C2:(x-x2)2+(y-y2)2=r22,则圆心距d=|C1C2|=(x1-x2)2+(y1-y2)2.两圆C1,C2有以下位置关系:位置关系相离内含相交内切外切圆心距与半d>r1+r2d<|r1-r2||r1-r2|<d<r1+r2d=|r1-r2|d=r1+r2径的关系图示(2)用代数法判定圆与圆的位置关系已知两圆:C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,将方程联立⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,消去y (或x )得到关于x (或y )的一元二次方程, 则①判别式Δ>0时,C 1与C 2相交; ②判别式Δ=0时,C 1与C 2外切或内切; ③判别式Δ<0时,C 1与C 2相离或内含.类型一 两圆的位置关系命题角度1 两圆位置关系的判断例1 已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离答案 B解析 由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点分别为(0,0),(-a ,a ).∵圆M 截直线所得线段的长度为22, ∴a 2+(-a )2=22, 又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心为M (0,2),半径为r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心为N (1,1),半径为r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.反思与感悟 判断圆与圆的位置关系的一般步骤(1)将两圆的方程化为标准方程(若圆方程已是标准形式,此步骤不需要). (2)分别求出两圆的圆心坐标和半径长r 1,r 2. (3)求两圆的圆心距d .(4)比较d 与|r 1-r 2|,r 1+r 2的大小关系. (5)根据大小关系确定位置关系.跟踪训练1 已知圆C 1:x 2+y 2-2x +4y +4=0和圆C 2:4x 2+4y 2-16x +8y +19=0,则这两个圆的公切线的条数为( ) A .1或3 B .4 C .0 D .2 答案 D解析 由圆C 1:(x -1)2+(y +2)2=1,圆C 2:(x -2)2+(y +1)2=14,得C 1(1,-2),C 2(2,-1), ∴|C 1C 2|=(2-1)2+(-1+2)2= 2. 又r 1=1,r 2=12,则r 1-r 2<|C 1C 2|<r 1+r 2, ∴圆C 1与圆C 2相交. 故这两个圆的公切线共2条.命题角度2 已知两圆的位置关系求参数例2 当a 为何值时,两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0:(1)外切;(2)相交;(3)相离. 解 将两圆方程写成标准方程,则C 1:(x -a )2+(y +2)2=9,C 2:(x +1)2+(y -a )2=4.∴两圆的圆心和半径分别为C 1(a ,-2),r 1=3,C 2(-1,a ),r 2=2. 设两圆的圆心距为d ,则d 2=(a +1)2+(-2-a )2=2a 2+6a +5. (1)当d =5,即2a 2+6a +5=25时,两圆外切, 此时a =-5或a =2.(2)当1<d <5,即1<2a 2+6a +5<25时,两圆相交,此时-5<a <-2或-1<a <2. (3)当d >5,即2a 2+6a +5>25时,两圆相离, 此时a >2或a <-5.反思与感悟 (1)判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:①将圆的方程化成标准形式,写出圆心和半径. ②计算两圆圆心的距离d .③通过d ,r 1+r 2,|r 1-r 2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.(2)应用几何法判定两圆的位置关系或求参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.跟踪训练2 若圆C 1:x 2+y 2=16与圆C 2:(x -a )2+y 2=1相切,则a 的值为( )A .±3B .±5C .3或5D .±3或±5答案 D解析 圆C 1与圆C 2的圆心距为d =a 2+(0-0)2=|a |. 当两圆外切时,有|a |=4+1=5,∴a =±5; 当两圆内切时,有|a |=4-1=3,∴a =±3. 类型二 两圆的公共弦问题例3 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解 (1)将两圆方程配方化为标准方程,则 C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10. 又∵|C 1C 2|=25,r 1+r 2=52+10, |r 1-r 2|=|52-10|, ∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=35,∴公共弦长为l =2r 21-d 2=250-45=2 5.方法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=(-4-0)2+(0-2)2=2 5. 即公共弦长为2 5.反思与感悟 (1)当两圆相交时,公共弦所在的直线方程的求法若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练3 (1)两圆相交于两点A (1,3)和B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为________. 答案 3解析 由题意知直线AB 与直线x -y +c =0垂直, ∴k AB ×1=-1, 即3-(-1)1-m=-1,得m =5, ∴AB 的中点坐标为(3,1).又AB 的中点在直线x -y +c =0上, ∴3-1+c =0,∴c =-2, ∴m +c =5-2=3.(2)求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254截得的弦长.解 由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为 x +y -1=0.又圆C 3的圆心坐标为(1,1),其到直线l 的距离为d =|1+1-1|12+12=22,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23. 类型三 圆系方程及应用例4 求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程.解 方法一 设经过两圆交点的圆系方程为 x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0,所以圆心坐标为(21+λ,2λ1+λ).又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧ y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3. 所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1).由⎩⎪⎨⎪⎧ y -1=-(x -1),x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心为(3,-1), 半径为(3-3)2+[3-(-1)]2=4. 所以所求圆的方程为(x -3)2+(y +1)2=16.反思与感悟 当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.跟踪训练4 求过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点且过点(2,-2)的圆的方程.解 设过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点的圆系方程为x 2+y 2-4x +2y +1+λ(x 2+y 2-6x )=0, 即(1+λ)x 2+(1+λ)y 2-(4+6λ)x +2y +1=0.把(2,-2)代入,得4(1+λ)+4(1+λ)-2(4+6λ)-4+1=0,解得λ=-34.∴圆的方程为x 2+y 2+2x +8y +4=0.1.两圆x 2+y 2-1=0和x 2+y 2-4x +2y -4=0的位置关系是( ) A .内切 B .相交 C .外切 D .相离 答案 B解析 圆x 2+y 2-1=0的圆心为C 1(0,0),半径为r 1=1,圆x 2+y 2-4x +2y -4=0的圆心为C 2(2,-1),半径为r 2=3,两圆的圆心距为d =|C 1C 2|=(2-0)2+(-1-0)2=5,又r 2-r 1=2,r 1+r 2=4,所以r 2-r 1<d <r 1+r 2,故两圆相交.2.圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有( ) A .1条 B .2条 C .3条 D .4条 答案 B解析 因为两圆的圆心距为3,半径之和为2,故两圆相离,所以内公切线的条数为2. 3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案 C解析 AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A 、B 、D. 4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是________. 答案 (x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析 设圆C 的半径为r ,圆心距为d =(4-0)2+(-3-0)2=5, 当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)3=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 将两圆的方程相减,得相交弦所在的直线方程为y =1a ,圆心(0,0)到直线的距离为d =1a =22-(3)2=1,所以a =1.1.判断两圆的位置关系的方法(1)由两圆的方程组成的方程组有几个实数解确定,这种方法计算量比较大,一般不用. (2)依据圆心距与两圆半径的和或两半径的差的绝对值的大小关系.2.当两圆相交时,把两圆的方程作差消去x 2和y 2就得到两圆的公共弦所在的直线方程. 3.求弦长时,常利用圆心到弦所在的直线的距离求弦心距,再结合勾股定理求弦长.课时作业一、选择题1.圆(x-3)2+(y+2)2=1与圆x2+y2-14x-2y+14=0的位置关系是()A.外切B.内切C.相交D.相离答案 B解析圆x2+y2-14x-2y+14=0变形为(x-7)2+(y-1)2=36,圆心坐标为(7,1),半径为r1=6,圆(x-3)2+(y+2)2=1的圆心坐标为(3,-2),半径为r2=1,所以圆心距d=(7-3)2+[1-(-2)]2=5=6-1=r1-r2,所以两圆内切.2.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦所在直线的方程为()A.x+2y+1=0 B.x+2y-1=0C.x-2y+1=0 D.x-2y-1=0答案 B解析两个圆的方程相减,得x+2y-1=0.故选B.3.若圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为() A.2 B.-5C.2或-5 D.不确定答案 C解析两圆的圆心坐标分别为(-2,m),(m,-1),两圆的半径分别为3,2,由题意得(m+2)2+(-1-m)2=3+2,解得m=2或-5.4.设r>0,圆(x-1)2+(y+3)2=r2与圆x2+y2=16的位置关系不可能是()A.相切B.相交C.内切或内含D.外切或相离答案 D解析两圆的圆心距为d=(1-0)2+(-3-0)2=10,两圆的半径之和为r+4,因为10<r+4,所以两圆不可能外切或相离,故选D.5.若圆x2+y2=r2与圆x2+y2+2x-4y+4=0有公共点,则r满足的条件是()A.r<5+1 B.r>5+1C.|r-5|≤1 D.|r-5|<1答案 C解析由x2+y2+2x-4y+4=0,得(x+1)2+(y-2)2=1,两圆圆心之间的距离为(-1)2+22= 5.∵两圆有公共点,∴|r-1|≤5≤r+1,∴5-1≤r≤5+1,即-1≤r-5≤1,∴|r-5|≤1.6.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是()A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36答案 D解析由题意可设圆的方程为(x-a)2+(y-6)2=36,由题意,得a2+9=5,所以a2=16,所以a=±4.7.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于() A.4 B.4 2 C.8 D.8 2答案 C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=(a-b)2+(a-b)2=32×2=8.二、填空题8.若圆x2+y2-2ax+a2=2和x2+y2-2by+b2=1相离,则a,b满足的条件是_____.答案a2+b2>3+2 2解析 由题意可得两圆的圆心坐标和半径长分别为(a,0),2和(0,b ),1.因为两圆相离,所以a 2+b 2>2+1, 即a 2+b 2>3+2 2.9.圆C 1:x 2+y 2-2x -8=0与圆C 2:x 2+y 2+2x -4y -4=0的公共弦长为________. 答案 27解析 由圆C 1与圆C 2的公共弦所在的直线l 的方程为x -y +1=0,得点C 1(1,0)到直线l 的距离为d =|1-0+1|12+12=2,圆C 1的半径为r 1=3,所以圆C 1与圆C 2的公共弦长为2r 21-d 2=232-(2)2=27.10.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0 ,若A ∩B 中有且仅有一个元素,则r 的值是__________. 答案 3或7解析 ∵A ∩B 中有且仅有一个元素, ∴圆x 2+y 2=4与圆(x -3)2+(y -4)2=r 2相切. 当两圆内切时,由32+42=|2-r |,解得r =7; 当两圆外切时,由32+42=2+r ,解得r =3. ∴r =3或7.11.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________. 答案 x 2+y 2-34x -34y -114=0解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0.三、解答题12.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1). (1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解 (1)设圆O 2半径为r 2, 因为两圆外切,所以|O 1O 2|=r 2+2. 又|O 1O 2|=22+[1-(-1)2]=22, 所以r 2=|O 1O 2|-2=2(2-1),故圆O 2的方程为(x -2)2+(y -1)2=12-8 2. (2)设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0,作O 1H ⊥AB ,H 为垂足,则|AH |=12|AB |=2, 所以|O 1H |=r 21-|AH |2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为|r 22-12|42=2, 得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.四、探究与拓展13.已知圆C 1:x 2+y 2+4x +1=0和圆C 2:x 2+y 2+2x +2y +1=0,则以圆C 1与圆C 2的公共弦为直径的圆的方程为________.答案 (x +1)2+(y +1)2=1解析 由两圆的方程相减,得公共弦所在直线的方程为x -y =0.∵圆C 1:(x +2)2+y 2=3,圆C 2:(x +1)2+(y +1)2=1,圆心C 1(-2,0),C 2(-1,-1),∴两圆连心线所在直线的方程为y -0-1-0=x +2-1+2, 即x +y +2=0.由⎩⎪⎨⎪⎧x -y =0,x +y +2=0,得所求圆的圆心为(-1,-1). 又圆心C 1(-2,0)到公共弦所在直线x -y =0的距离d =|-2-0|2=2, ∴所求圆的半径r =(3)2-(2)2=1,∴所求圆的方程为(x +1)2+(y +1)2=1.14.求与圆C :x 2+y 2-2x =0外切且与直线l :x +3y =0相切于点M (3,-3)的圆的方程. 解 圆C 的方程可化为(x -1)2+y 2=1,圆心为C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题意可知⎩⎪⎨⎪⎧ (a -1)2+b 2=r +1,b +3a -3×(-33)=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧ a =4,b =0,r =2. 故所求圆的方程为(x -4)2+y 2=4.。

圆与圆的5种位置关系

圆与圆的5种位置关系

圆与圆的5种位置关系为了更好地理解圆与圆的位置关系,我们需要先大体了解一下圆的特性。

圆可以用一个点为圆心和一个长度为半径的线段描述。

圆的基本特性包括:1. 圆周是一个封闭的曲线,其上每一点到圆心的距离都相等。

2. 圆周的长度是由半径决定的,即圆周长L=2πr。

3. 圆与平面各部分的交线总是一条曲线,且圆与平面各部分的交线总在圆周内部。

有了这些基础,我们可以探讨圆与圆之间的5种主要位置关系:1. 相离两个圆不相交,也不相切,这种情况下两个圆被称为“相离”的。

这意味着两个圆之间存在一定的距离,以至于它们不会相互干涉、重叠或相交。

这种情况下两个圆的圆心距离大于两个圆的半径之和。

2. 外切两个圆在一个点相接触的情况下被称为“外切”。

这个接触的点称为外切点,与之对应的距离为两圆心距离减去两个圆的半径之和。

两个圆相切的情况下,它们的圆心连线与外切点形成一条正切线。

3. 相交两个圆交于两个点时被称为“相交”。

两个圆的圆心连线与相交的两点之间形成一条线段,这条线段称为过两圆圆心的公共弦,公共弦的长度由两个圆的圆心距离以及它们的半径决定。

4. 内切两个圆在一个圆内侧相接触被称为“内切”。

这个接触的点同样称为内切点,与之对应的距离为两圆心距离减去两个圆的半径之差。

如上所述,两个圆相切的情况下,它们的圆心连线与内切点形成一条正切线。

5. 包含一个圆完全包含另一个圆并与之内部不相交时被称为“包含”。

这种情况下,大圆的圆心距离小于两圆半径的差值,小圆的圆心则被大圆所包围。

这种情况下,两个圆没有任何公共弦。

总之,这五种情况描述了圆与圆之间的所有可能位置关系。

掌握它们的特点和性质可以帮助我们更好地理解和解决涉及到圆形的问题。

圆与圆的位置关系的判断方法

圆与圆的位置关系的判断方法

圆与圆的位置关系的判断方法李吉文一、圆与圆的位置关系的判断方法有两种,一种是~d r 法,另一种是判别式法D .以下详解这两种方法. 1、~d r 法根据两圆心距与两圆径的大小关系来判断: ①外离Ûd R r >+; ②外切Ûd R r =+;③相交ÛR r d R r -<<+; ④内切Ûd R r =-; ⑤内含Ûd R r <-.其中,R 是大圆的半径,r 是小圆的半径,如果是等圆,那么两圆就没有内含这种位置关系了.2、判别式法D已知22111:0C x y D x E y F ++++=1⊙,半径为r 和222222:0C x y D x E y F ++++=⊙,半径为R ,且R r >判断两圆的位置关系:两圆的方程相减,得 121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 将(1)式代入其中一个圆的方程中,消去x 或y ,可得一个关于y 或x 一元二次方程,记为20ay by c ++=或20ax bx c ++=,其中0a >①0D >?两圆有两个公共点(相交);②0D =?两圆有一个公共点(内切或外切); ③0D <?两圆无公共点(内含或外离);以上②③中,如何区分内切和外切,内含和外离呢?请看以下数学思想方法: 将问题转化为小圆的圆心与大圆的位置关系(亦即点圆位置关系)来判断!如果圆心1C 在圆2C 的外面,即d R >,那么两圆外切或外离;如果圆心1C 在圆2C 的内部,即d R <,那么两圆内切或内含.二、两圆方程作差的意义两圆作差后得到的方程:121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 其意义为①当两圆相交时,方程(1)是相交弦所在的直线方程; ②当两圆相切时,方程(1)是过切点的公切线的方程; ③当两圆没有公共点时,方程(1)没有特别的含义.三、应用举例例题1 已知22:2440C x y x y ++--=1⊙和222:1090C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程.【解析】方法一:~d r 法圆心1(1,2)C -,半径3r =,圆心2(5,0)C ,半径4R =,则1,7R r R r -=+= 两圆圆心距为(1,7)d =所以,两圆相交,将两圆的方程相减可得 124130x y --= 即为相交弦的方程. 方法二:判别式法D将两圆的方程相减,得 124130x y --= 即 1334y x =-(2) 将(2)式代入222:1090C x y x +-+=⊙得 21604723130x x -+=24724160313224640D =-创=>所以,两圆相交,相交弦所在直线的方程是124130x y --=.【变式训练】 已知22:650C x y y +-+=1⊙和222:870C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.例题2 已知22:4210C x y x y +--+=1⊙和222:142410C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 【解析】方法一:~d r 法圆心1(2,1)C ,半径2r =,圆心2(7,1)C ,半径3R =,则1,5R r R r -=+= 两圆圆心距为5d R r ===+所以,两圆外切,将两圆的方程相减可得 4x = 即为所求公切线的方程. 方法二:判别式法D将两圆的方程相减,得 4x = (3) 将(3)式代入222:142410C x y x y +--+=⊙得2210y y -+= 2(2)4110D =--创=所以,两圆相切.小圆圆心1(2,1)C ,坐标代入222:142410C x y x y +--+=⊙中,有222214241211422141170x y x y +--+=+-??=>所以,两圆是外切关系,所求公切线的方程4x =.【变式训练】1.已知22:1C x y +=1⊙和222:6890C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 2.已知22:46120C x y x y +--+=1⊙和222:680C x y x y +--=⊙,判断两圆的位置关系.。

两圆的五种位置关系

两圆的五种位置关系

知 能

升 作 业
基 础 梳 理 · 预 习 点 睛
课 时 训 练 · 基 础 达 标
精 题 例 解 · 举 一 反 三
知 能 提 升 作 业
基 础 梳 理 · 预 习 点 睛
一、选择题(每小题4分,共12分) 1.(2010·邵阳中考)如图在边长为1 的小正方形组成的网格中,半径为2的 ⊙O1的圆心O1在格点上,将一个与⊙O1
课 时 训 练 · 基 础 达 标
知 能

升 作 业
基 础 梳 理 · 预 习 点 睛 精 题 例 解 · 举 一 反 三
5.(2010·杭州中考)如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个 圆的周长的和为( )
课 时 训 练 · 基 础 达 标
知 能
知 能

升 作 业
基 础 梳 理 · 预 习 点 睛
2.半径为2 cm和1 cm的⊙O1和⊙O2相交于A、B两点,且
O1A⊥O2A,则公共弦AB的长为(
5 A cm 5 2 5 cm B 5
)
4 5 cm D 5
C
5 cm
【解析】选D.设O1O2与AB相交于点C,由相交两圆的对称性
判断两圆位置关系的方法有两个:一是根据 公共点的个数,二是根据圆心距与两圆半径的和或差的大小 关系.同时,根据位置关系,也能得到相对应的数量关系.解 题时要注意相切及相离都包含了两种位置关系.
课 时 训 练 · 基 础 达 标
知 能

升 作 业
基 础 梳 理 · 预 习 点 睛 精 题 例 解 · 举 一 反 三
【解析】设⊙A半径为R,⊙E半径为r,由题意得 R2+(R-r)2=(R+r)2,R=4r, ∴BE=R-r=3r,AE=R+r=5r.∴ BE 3r 3 .

两圆的五种位置关系

两圆的五种位置关系



弦被连心线垂直平分.辅助线的作法一般是:当两圆相切时,
精 题

例 连接两圆的圆心;当两圆相交时,连接公共弦,“沟通”两 能


· 举
个圆中的相关元素.










梳 理
4.(2010 ·咸宁中考)如图,两圆相交于A,B两点,小圆经
训 练
·
·
预 过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,


理 ·
半径的半圆与以A为圆心,AB为半径的圆弧外切,则 BE 的
练 ·

AE

习 值为_____.





精 题





·















· 预
【解析】设⊙A半径为R,⊙E半径为r,由题意得
· 基


点 R2+(R-r)2=(R+r)2,R=4r,
3,⊙A的圆心A的坐标为(- 3 ,1),半径为1,试判断⊙O与

础 达 标
⊙A的位置关系.

题 例
【思路点拨】先根据题意,建立符合题意的坐标系,根据勾
知 能

· 股定理求出两圆的圆心距,然后利用两圆的圆心距与两圆的



一 反
半径之间的数量关系判断.



基 【自主解答】如图所示,连接OA,过A点作AB⊥x轴,垂

人教版九年级上册数学2与圆有关的位置关系

人教版九年级上册数学2与圆有关的位置关系

.
例题: 如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm。
D.外切或内切
相切的两个圆,除了切点外,一个圆上的点都在另一圆的外部时,我们就说这两个圆外切;
则 OP=5+R =8
6.两圆相切,圆心距等于3,一个圆的半径为5cm,则另一个圆的
半径为 2cm或8cm. 已知两圆的半径为R和r(R>r), 圆心距为d ,
圆 若以P为圆心作⊙P与⊙O相切,求⊙P的半径?
两圆相切,圆心距等于3,一个圆的半径为5cm,则另一个圆的半径为
.
所以⊙P的半径为3cm或13cm
R=3 cm
的 两圆位置关系的性质与判定:
若以P为圆心作⊙P与⊙O相切,求⊙P的半径?
位 外 切 所以⊙P的半径为3cm或13cm
置 ∠O1AB的度数为
.
2、如果两圆没有交点,则这两圆的位置关系是外离.
∠O1AB的度数为
.
关 内 切 1、若两圆只有一个交点,则这两圆外切.
相切的两个圆,除了切点外,一个圆上的点都在另一个圆的内部时,我们就说这两个圆内切.
系 所以⊙P的半径为3cm或13cm
∠O1AB的度数为
.
∠O1AB的度数为
.

则两圆的位置关系为( )
相切:当两个圆有唯一公共点时,叫做两圆相切.
相切的两个圆,除了 切点外,一个圆上的点 都在另一圆的外部时, 我们就说这两个圆外切;
相切的两个圆,除了 切点外,一个圆上的点 都在另一个圆的内部时, 我们就说这两个圆内切.
相交:当两个圆有两个公共点时,叫做两圆相交.
相离:当两个圆没有公共点
时,叫做两圆相离.
)
两圆位置关系的性质与判定:
A.d<6 B. d <4 ∠O1AB的度数为

圆与圆的位置关系

圆与圆的位置关系

y
B (0,b)
(c,0) C
O
M
A (a,0)
N O`
x
E( a ,d )
2 2
(0,d) D
解:以四边形ABCD互相垂直的对角线作为x轴y轴, 建立直角坐标系,设A(a,0), B(0,b), C(c,0), D(0,d) 过四边形的外接圆圆心O’作AC、BD、AD边的垂 线,垂足为M、N、E, 则M、N、E分别为AC、BD、 AD边的中点.由线段的中点坐标公式有:
△=0
△>0
n=1 n=2
两个圆相切 两个圆相交
x2 y 2 2x 8 y 8 0 解:将两圆方程联立: 2 x y 2 4x 4 y 2 0
两式相减得: x 2 y 1 0
2
代数法
代入第一个圆的方程有 :x 2 x 3 0
其判别式为 (2) 4 1 (2) 0
把点P2的横坐标x= -2 代入圆的方程,得 (-2)2+(y+10.5)2=14.52 因为y>0, 所以y= 14.52-(-2)2 -10.5≈14.36-10.5=3.86(m)
答:支柱A2P2的长度约为3.86m.
例5.已知内接于圆的四边形的对角线互相垂直, 求证圆心到一边的距离等于这条边所对边长的 一半.
圆心距 | C1C2 | (a2 a1 )2 (b2 b1 )2
例1.已知 圆C1:x 2 y 2 2 x 8 y 8 0
2 2 圆C2: x y 4x 4 y 2 0 试判断圆C1与 圆C2 的关系. 2 2 解: 圆C1: ( x 1) ( y 4) 25
第一步:建立适当的平面直角坐标系,用坐标 和方程表示问题中的几何元素,将平面几何问 题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.

圆与圆的位置关系综合问题

圆与圆的位置关系综合问题

圆与圆的位置关系综合问题
圆与圆之间的位置关系有以下几种情况:
1.相离:两个圆之间没有交集,彼此之间没有任何交点。

此时,两个圆的中心点之间的距离大于两个圆的半径之和。

2.外切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的外切点。

此时,两个圆的中心点之间的距离等于两个圆的半径之和。

3.相交:两个圆之间有两个交点,但是不包含在彼此内部。

此时,两个圆的中心点之间的距离小于两个圆的半径之和。

4.内切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的内切点。

此时,两个圆的中心点之间的距离等于两个圆的半径之差的绝对值。

5.包含:一个圆完全包含在另一个圆的内部。

此时,两个圆的中心点之间的距离小于两个圆的半径之差的绝对值。

6.同心:两个圆的中心点重合,半径可以相等也可以不等。

在判断两个圆的位置关系时,可以通过计算两个圆的中心点之间的距离和两个圆的半径之和或半径之差的绝对值来确定。

同时,还需要考虑两个圆是否具有相同的半径,以及是否有共同的交点。

总结一下,圆与圆的位置关系综合问题主要包括相离、外切、相交、内切、包含和同心这几种情况。

判断两个圆的位置关系
可以通过计算两个圆的中心点之间的距离和半径之和或半径之
差的绝对值来确定。

圆与圆的位置关系 提问

圆与圆的位置关系 提问

R2•O2 (d)
O•1 O2 • d R2 R1 (d)两圆内含: 0≤d<│R1-R2│
(c) (c)两圆外离: d >R1+R2
r1A R2 O • O1 d • 2
R1 r2 O•1 d O2 •
│R 结论:两圆相交: 1-R2│<d<R1+R2
总结: 总结:
如果两圆的半径分别为R1和R2,圆心距为d,那么
6cm或14cm ⊙A的半径为4cm,则⊙B的半径为_____
练习3: 已知两圆的半径比为2∶3,内切时的圆心距为
40cm 8cm,则外切时的圆心距为______
巩固新知: 例1已知⊙A、⊙B、⊙C两两外切,AB= 3cm,BC=5cm,AC=6cm,求这 三个圆的半径长。



例2:在△ABC中,∠C=900,AC=12,BC=8,以AC为直径 作⊙O,以B为圆心,4为半径作⊙B。 求证:⊙O与⊙B外切
探索:两圆的位置关系与这两圆的半径长和 圆心距之间有怎样的联系? 如果两圆的半径长分别为 R1、R2,圆心距为d
R2 • R1 O2 • O1 d (a) 结论: (a)两圆外切: d=R1+R2 ;
o1 •o2 • R2 d R1 (b) (b)两圆内切: 0<d=│R1-R2│
O•1 R1
d
C O • A B
两圆的五种位置关系: 两圆的五种位置关系: 1、外离 2、外切 3、相交 4、内切 5、内含 d>R1+R2 d=R1+R2 │R1-R2│<d<R1+R2 0<d=│R1-R2│ 0≤d<│R1-R2│
六、作业
1、练习册、堂堂练31.3(1) 2、设计一个包含了圆与圆的5种位置关系的 图案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.已知两圆的圆心距为5,⊙O1和⊙O2的 2 半径分别是 x 9 x 14 0 方程 的两根, 则两圆的关系为 内切 . 9.两圆的半径为5和3,且两圆无公共点,则 两圆圆心距d的取值范围为 d>8或d<2 .
5、⊙O1与⊙O2的圆心O1、O2的坐标 分别是O1(3,0),O2(0,4),两圆的半 径分别是R=8,r=2,则⊙O1与⊙O2的位 置关系是 内含 .
1.直线和圆有几种不同的位置关系?各是怎 样定义的? 答:直线和圆有三种不同的位置关系即直线和 圆相离、相切、相交。 在各种位置关系中,是用直线和圆的公共点 的个数来定义的。
相离
相切
相交
2.直线和圆的各种位置关系中,圆心距和 半径各有什么相应的数量关系?若设⊙O 的半径为r,圆心O到直线l距离为d,则
在实际应用中,常采用第二种方法判定。
判断正误:
1、若两圆只有一个交点,则这两圆外切.(×) 2、如果两圆没有交点,则这两圆的位置关 系是外离. (× ) 3、当O1O2=0时,两圆位置关系是同心圆. (√ ) 4、若O1O2=1.5,r=1,R=3,则O1O2<R+r,所 以两圆相交. (× ) 5、若O1O2=4,且r =7,R=3,则O1O2<R-r, 所以两圆内含. (× )
Y
·
O
O1
d =O1O2=5
O2
·
X
已知⊙01和⊙02的半径分别为R和r(R>r),圆心距 为d,若两圆相交,试判定关于x的方程 x2-2(d-R)x+r2=0的根的情况。
解: ∵两圆相交 ∴R- r<d<R+r △ =b2-4ac=[-2(d-R)]2-4r2 =4(d-R)2-4r2 =4(d-R+r)(d-R-r) =4[d-(R-r)][d-(R+r)] ∵d-(R-r)>0 d-(R+r)<0 ∴ 4[d-(R-r)][d-(R+r)]<0 ∴ 方程没有实数根
例1:如图⊙O的半径为5cm,点P是⊙O外一点, OP=8cm求:(1)以P为圆心作⊙P与⊙O外切,小 圆⊙P的半径是多少? (2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半 径是多少? 解:(1)设⊙O与⊙P外切 于点A,则 PA=OP-OA ∴ PA=3 cm (2)设⊙O与⊙P内切 于点B,则 PB=OP+OB ∴ PB=13 cm.
没 有 公 共 点 一 个 公 共 点 两 个 公 共 点
相 离
相 切
相交
相 交
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
d>R+r ⊙A和⊙B外离
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
d=R+r ⊙A和⊙B外切
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B相交 R-r <d<R+r
B
O
.
A
.P
定圆O的半径是4cm,动圆P的半径是1cm, 例2 (1) 设⊙ P和⊙ O相外切,那么点P与点O的距 离是多少?点P可以在什么样的线上运动? (2) 设⊙ P 和 ⊙O 相内切,情况又怎样?
(1) 解: ∵⊙0和⊙P相外切 ∴OP= R + r ∴OP=5cm P点在以O点为圆心,以5cm为半径 的圆上运动
(2) 解: ∵⊙0和⊙P相内切 ∴ OP=R-r ∴OP=3cm ∴P点在以O点为圆心,以3cm为半径的圆上运动
2、个圆的半径的比为2 : 3 ,内切时圆心距等 于 8cm,那么这两圆相交时,圆心距d的取值 范围是多少?
解: 设大圆半径 R = 3x,小圆半径 r = 2x
依题意得: ∴ 3x-2x=8 ∵ 两圆相交 ∵两圆内切 x=8 R-r<d<R+r
A.16 B.2 C.2或16 D.以上均不对 2.若半径为1和5的两圆相交,则圆心距d的取 值范围为( B ) A.d<6 ห้องสมุดไป่ตู้. 4< d <6
C.4≤d≤6 D.1<d<5 3.若两圆半径为6cm和4cm,圆心距为10cm, 那么这两圆的位置关系为( C )
A.内切 B.相交 C.外切 D.外离
4. 两圆的半径5:3,两圆外切时圆心距d=16,那 么两圆内含时,他们的圆心距d满足( B ) A.d<6 B. d <4 C.6<d<10 D.d<8
5.两圆相切,圆心距等于3,一个圆的半径为
5cm,则另一个圆的半径为
2cm或8cm .
6.两个等圆⊙O1和⊙O2相交于A,B两点, ⊙O1经过点O2,则∠O1AB的度数为 30° .
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
d=R-r ⊙A和⊙B内切
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B内含 d<R-r
小结: 两 判定圆与圆的位置关系的方法有__种:
个数来判断;
圆 与圆的公共点 (1)根据定义,由__________________的
两个圆心间的距离d与两个圆 半径R与r的大小 (2)根据性质_____________________ . 的关系来判断。
相交:两圆有两个公共点时,叫两圆相交.
切点
内切:两圆有一个公共点,并且除了公共点外,
一个圆上的点都在另一个圆的内部时,叫两 圆内切.
同心圆
特例
内含:两圆无公共点,并且一个圆上的
点都在另一个圆的内部时,叫两圆内含.
圆 圆 与 和 圆 圆 的 的 位 位 置 置 关 关 系 系
外离 内含 外切 内切
课堂练习
1、⊙O1 和⊙O2的半径分别为3厘米和4厘米 在下列条件下,⊙O1 和⊙O2求位置关系:
(1)O1O2=8厘米
(2)O1O2=7厘米 (3)O1O2=5厘米
(4)O1O2=1厘米 (5)O1O2=0.5厘米 (6)O1和O2重合
外离 外切 相交 内切 内含 同心
1.若半径为7和9的两圆相切,则这两圆的圆 心距长一定为( C )
直线l和⊙ O相离
直线l和⊙ O相切 直线l和⊙ O相交

d>r d=r
d<r
观察与思考
通过刚才对日全食的观察,想象 一下两圆有没有出现公共点?公共点 的个数是怎样的?
外离:两圆无公共点,并且每个圆上的点都
在另一个圆的外部时,叫两圆外离.
切点 外切:两圆有一个公共点,并且除了公共点
外,每个圆上的点都在另一个圆的外部时, 叫两圆外切.
∴ R=24 cm r=16cm ∴ 8cm<d<40cm
练习 判别两圆关系 3、若两圆的圆心距 d 6,两圆半径是方程
x 5 x 1 0两根,则两圆位置关系为外离 .
2
4、若两圆的半径为 R与r, ( R r ) 圆心距 d 满足
2 2 2
. R d r 2Rd 则两圆位置关系为外切或内切
相关文档
最新文档