物理化学课后习题答案
物理化学(天津大学第五版)课后答案
物理化学上册习题解(天津大学第五版)第一章 气体的 pVT 关系1-1 物质的体膨胀系数 V与等温压缩系数 T 的定义如下:1 V 1 VV TV T p试导出理想气体的V、T与压力、温度的关系?解:对于理想气体,pV=nRTV p T1 V VT V 1 V Tp VpT1 (nRT / p)V T1 ( nRT / p) Vp1 nR 1 V T 1 p V p V T 1 nRT 1 V p 1T V p 2 V p1-2 气柜内有 3 90kg 的流量输往使用车间,试问贮121.6kPa 、27℃的氯乙烯( C2H3Cl )气体 300m ,若以每小时 存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为pV121.6 103300n 8.314 14618.623molRT 300.15 3 3 每小时 90kg 的流量折合 p 摩尔数为 v90 10 90 10 1441.153mol h 1M C 2H3Cl 62.45 n/v= ( 14618.623 ÷1441.153 ) =10.144 小时1-3 0 ℃、 101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:CH 4 n M CH 4 p M CH 4 101325 16 103 0.714kg m 3V RT 8.314 273.151-4 一抽成真空的球形容器,质量为 25.0000g 。
充以 4℃水之后,总质量为 125.0000g 。
若改用充以 25℃、 13.33kPa 的某碳氢化合物气体,则总质量为 25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积V125.0000 25.000 100.0000 cm 3 100.0000cm 3H 2 O(l ) 1n=m/M=pV/RTM RTm 8.314 298.15 (25.0163 25.0000) mol pV 13330 10 430.31g1-5 两个体积均为 V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第六版侯新朴人民卫生出版社课后答案
思考题 1. 【答】 1 不一定正确。
绝热条件可以保证系统和环境之间没有热交换 封闭条件可以保证系统和环境之间没有物质交换。
但是单单这两个条件不能保证系统和环境之间有其他能量交换方式 如作功。
当绝热封闭的系统在重力场中高度发生大幅度变化时 系统和地球间的作功不能忽略 系统的状态将发生变化。
2 正确。
3 不正确。
系统和环境间发生物质交换时 可以作功又吸热 但显然不是封闭系统。
为了防止混淆 一般在讨论功和热的时候 都指定为封闭系统 但这并不意味着发生物质交换时没有功和热的发生。
但至少在这种情况下功和热的意义是含混的。
4 正确。
当发生化学作用 即系统和环境间物质交换 时 将同时有热和功发生 而且还有物质转移 因此是敞开系统。
3.【答】 1 对一个物理化学过程的完整描述 包括过程的始态、终态和过程所经历的具体途径 因此仅仅给定过程的始、终态不能完 整 地说明该过程。
Q、W都是途径依赖量 其数值依赖于过程的始态、终态和具体途径 只要过程不完全确定 Q、W的数值就可 能 不确定。
因为Q W △U 只要过程始、终态确定 则△U确定 因此Q W也确定。
2 在已经给定始、终态的情况下 又限定过程为绝热过程 Q 0 Q 确定 W △U W和△U也确定。
5. 【答】 1 正确。
状态是各种状态性质的综合表现 状态性质改变 状态一定改变。
2 不正确。
比如理想气体的等温过程中 状态改变但是热力学能不变。
3 不正确。
温度是热运动的―强度‖ 热是热运动的―数量‖ 两者没有必然练习。
4 不正确。
绝热和刚性只意味着内有热交换和体积功 不能排除其他作功方式的存在。
5 不正确。
理想气体可逆等温压缩时 向外放热 热力学能不减少。
6 正确。
7 不正确。
H是状态函数 但是△H却是依赖于过程的物理量 因此热 Qp 不是状态函数 他依赖于过程。
8 不正确。
理想气体的焓仅与温度有关。
9 不正确。
10 正确。
Q―W △U --。
11 不正确。
物理化学课后习题答案
四.概念题参考答案1.在温度、容积恒定的容器中,含有A 和B 两种理想气体,这时A 的分压和分体积分别是A p 和A V 。
若在容器中再加入一定量的理想气体C ,问A p 和A V 的变化为 ( )(A) A p 和A V 都变大 (B) A p 和A V 都变小 (C) A p 不变,A V 变小 (D) A p 变小,A V 不变答:(C)。
这种情况符合Dalton 分压定律,而不符合Amagat 分体积定律。
2.在温度T 、容积V 都恒定的容器中,含有A 和B 两种理想气体,它们的物质的量、分压和分体积分别为A A A ,,n p V 和B B B ,,n p V ,容器中的总压为p 。
试判断下列公式中哪个是正确的 ( )(A) A A p V n RT = (B) B A B ()pV n n RT =+(C) A A A p V n RT = (D) B B B p V n RT =答:(A)。
题目所给的等温、等容的条件是Dalton 分压定律的适用条件,所以只有(A)的计算式是正确的。
其余的,,,n p V T 之间的关系不匹配。
3. 已知氢气的临界温度和临界压力分别为633.3 K , 1.29710 Pa C C T p ==⨯。
有一氢气钢瓶,在298 K 时瓶内压力为698.010 Pa ⨯,这时氢气的状态为( )(A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定答:(B)。
仍处在气态。
因为温度和压力都高于临界值,所以是处在超临界区域,这时仍为气相,或称为超临界流体。
在这样高的温度下,无论加多大压力,都不能使氢气液化。
4.在一个绝热的真空容器中,灌满373 K 和压力为 kPa 的纯水,不留一点空隙,这时水的饱和蒸汽压 ( )(A )等于零 (B )大于 kPa(C )小于 kPa (D )等于 kPa答:(D )。
饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了,其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。
(完整版)物理化学课后答案
第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学课后习题及答案天津大学
第七章电化学7.1用铂电极电解溶液。
通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的?(2) 在的27 ØC,100 kPa下的?解:电极反应为电极反应的反应进度为因此:7.2在电路中串联着两个电量计,一为氢电量计,另一为银电量计。
当电路中通电1 h后,在氢电量计中收集到19 ØC、99.19 kPa的;在银电量计中沉积。
用两个电量计的数据计算电路中通过的电流为多少。
解:两个电量计的阴极反应分别为电量计中电极反应的反应进度为对银电量计对氢电量计7.3用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:7.4用银电极电解水溶液。
电解前每溶液中含。
阳极溶解下来的银与溶液中的反应生成,其反应可表示为总反应为通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:先计算是方便的。
注意到电解前后阳极区中水的量不变,量的改变为该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极7.5用铜电极电解水溶液。
电解前每溶液中含。
通电一定时间后,测得银电量计中析出,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:同7.4。
电解前后量的改变从铜电极溶解的的量为从阳极区迁移出去的的量为因此,7.6在一个细管中,于的溶液的上面放入的溶液,使它们之间有一个明显的界面。
令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。
以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。
计算在实验温度25 ØC下,溶液中的和。
解:此为用界面移动法测量离子迁移数7.7已知25 ØC时溶液的电导率为。
一电导池中充以此溶液,在25 ØC时测得其电阻为。
物理化学第二版习题答案
物理化学第二版习题答案【篇一:物理化学核心教程课后答案完整版(第二版学生版)】ss=txt>二、概念题1. 答:(d)热力学能是状态的单值函数,其绝对值无法测量。
2. 答:(c)气体膨胀对外作功,热力学能下降。
3. 答:(b)大气对系统作功,热力学能升高。
4. 答:(a)过程(1)中,系统要对外作功,相变所吸的热较多。
5. 答:(a)对冰箱作的电功全转化为热了。
7. 答:(c)对于理想气体而言,内能仅仅是温度的单值函数,经真空绝热膨胀后,内能不变,因此体系温度不变。
8. 答:(c)由气体状态方程pvm= rt+bp可知此实际气体的内能只是温度的函数,经真空绝热膨胀后,内能不变,因此体系温度不变(状态方程中无压力校正项,说明该气体膨胀时,不需克服分子间引力,所以恒温膨胀时,热力学能不变)。
9. 答:(b)式适用于不作非膨胀功的等压过程。
757,cv =rcp=r ,这是双原子分子的特征。
522?n2molv210. (b)1.40=??16. 答:由气体状态方程pvm= rt+bp可知此实际气体的内能与压力和体积无关,则此实际气体的内能只是温度的函数。
三、习题1. (1)一系统的热力学能增加了100kj,从环境吸收了40kj的热,计算系统与环境的功的交换量;(2)如果该系统在膨胀过程中对环境做了20kj的功,同时吸收了20kj的热,计算系统热力学能的变化值。
2. 在300 k时,有 10 mol理想气体,始态压力为 1000 kpa。
计算在等温下,下列三个过程做膨胀功:(1)在100 kpa压力下体积胀大1 dm3 ;p?nrtvp2 (?p2?nrtnrt?-) = - nrt?1??? p2p1p1??100)= -22.45 kj 1000= -nrtln(3)∵ w = -?pdv =-?v1nrtdvvv2p1= -nrtln v1p21000= -57.43 kj 1003. 在373 k恒温条件下,计算1 mol理想气体在下列四个过程中所做的膨胀功。
物理化学课后习题答案
1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 °C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 °C,使部分水蒸气凝结为水。
物理化学核心教程(第二版学生版)课后习题答案及详细解答
物理化学核心教程(第二版)参考答案第 一 章 气 体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K ,右球的温度为293 K 时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K ,中间汞滴向哪边移动? (2)若两球温度同时都升高10 K, 中间汞滴向哪边移动? 答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K ,汞滴仍向右边移动。
因为左边起始温度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
物理化学第6版课后习题答案郑新生
物理化学第6版课后习题答案郑新生1、15.学习科学知识的价值之一,是主动将所学知识创造性地服务于社会。
如“声音的传播需要介质”就有许多实际应用。
下列发明成果应用了这一知识的是()[单选题] *A.验钞机B.望远镜C.真空玻璃(正确答案)D.体温计2、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像3、用天平测小石块质量的实验中,有如下实验计划,正确的操作顺序是()①将游码移至标尺左端的“0”刻度线处;②将托盘天平放置在水平工作台面上;③在天平的左盘放入小石块;④调节平衡螺母,使天平横梁平衡;⑤用镊子在右盘中加减砝码,移动游码,使天平平衡;⑥正确读出砝码和游码的示数. [单选题] *A. ①②③④⑤⑥B. ②①④③⑤⑥(正确答案)C. ②③①④⑤⑥D. ③②①④⑤⑥4、C.环境的温度越高,花粉的运动战剧烈(正确答案)D.跟踪某个具体的花粉颖粒,它的运动总是没有规则(正确答案)答案解析:布朗运动总是无规则运动,无论静置多久都是如此.悬浮微粒越小,温度越高,无规则运动越剧烈.扩散现象说明了()*A.物质分子间存在着相互作用的引力和斥力5、26.物理知识是从实际中来的,又要应用到实际中去,下面是小芳同学利用所学物理知识对身边的一些物理现象进行的分析和计算,正确的是()[单选题] *A.已知空气的密度为29kg/m3,教室内空气的质量约300kg(正确答案)B.人体的密度跟水的密度差不多,那么初中生身体的体积约为5m3C.体积为100cm3的冰块,全部熔化成水后,体积仍为100cm3D.一个塑料瓶,用它装水最多能够装水5kg,用它也能装下5kg的酒精6、2.高空雨滴下落的运动是自由落体运动.[判断题] *对错(正确答案)7、下列实例中,用做功的方式来改变物体内能的是()[单选题]A.搓搓手,手的温度升高(正确答案)B.烧水时水温升高C.太阳能热水器中的水被晒热D.放入冰块后的饮料变凉8、4.我国自行研制的J-31隐形战机在起飞前从静止开始做匀加速直线运动,达到起飞速度v所需时间为t,则起飞前的运动距离为vt. [判断题] *对错(正确答案)9、C.影动疑是玉人来D.厕所大脏,奇臭难闻(正确答案)答案解析:A、酒香不怕巷子深,说明酒精分子能产生扩散现象,说明酒精分子可以做无规则的热运动.故A正确.B、花香扑鼻是一种扩散现象,说明分子在做无规则的热运动.故B正确.C、隔墙花影动,疑是玉人来,是由于光直线传播产生的现象,与分子热运动无关.D、厕所太脏,其臭难闻同,说明分子在做无规则运动.故D正确.有关电动势的说法中正确的是()*A.电源的电动势等于内、外电路电势降之和(正确答案)10、探究物体受到的浮力与液体密度的关系时,需要控制物体体积相同[判断题] *对错(正确答案)答案解析:需要控制物体排开液体的体积相同11、光线与平面镜成30°角入射到平面镜上,则反射角为30°[判断题] *对错(正确答案)答案解析:反射角是反射光线跟法线的夹角,反射角为60°12、70.12月3日24时,我国进行2020年的第二十三次汽柴油调价。
物理化学课后习题答案(全)
第1章 物质的pVT 关系和热性质习 题 解 答1. 两只容积相等的烧瓶装有氮气,烧瓶之间有细管相通。
若两只烧瓶都浸在100℃的沸水中,瓶内气体的压力为0.06MPa 。
若一只烧瓶浸在0℃的冰水混合物中,另一只仍然浸在沸水中,试求瓶内气体的压力。
解: 21n n n +=2212112RT V p RT V p RT V p +=⋅2111121222112p T p T T p T T T T =+⎛⎝⎜⎞⎠⎟=+ ∴112222p T T T p ⋅+=MPa0.0507=MPa 06.02)15.273100()15.2730(15.2730⎥⎦⎤⎢⎣⎡××++++=2. 测定大气压力的气压计,其简单构造为:一根一端封闭的玻璃管插入水银槽内,玻璃管中未被水银充满的空间是真空,水银槽通大气,则水银柱的压力即等于大气压力。
有一气压计,因为空气漏入玻璃管内,所以不能正确读出大气压力:在实际压力为102.00kPa 时,读出的压力为100.66kPa ,此时气压计玻璃管中未被水银充满的部分的长度为25mm 。
如果气压计读数为99.32kPa ,则未被水银充满部分的长度为35mm ,试求此时实际压力是多少。
设两次测定时温度相同,且玻璃管截面积相同。
解:对玻璃管中的空气,p V p V 2211=kPa 0.96=kPa )66.10000.102(35251212−×==p V V p ∴ 大气压力 = kPa 28.100kPa )96.032.99(=+·28· 思考题和习题解答3. 让20℃、20 dm 3的空气在101325 Pa 下缓慢通过盛有30℃溴苯液体的饱和器,经测定从饱和器中带出0.950 g 溴苯,试计算30℃时溴苯的饱和蒸气压。
设空气通过溴苯之后即被溴苯蒸气所饱和;又设饱和器前后的压力差可以略去不计。
(溴苯Br H C 56的摩尔质量为1mol g 0.157−⋅)解:n pV RT 131013252010831452027315==×××+⎡⎣⎢⎤⎦⎥−().(.) mol =0.832 mol n m M 209501570==..mol =0.00605mol p py p n n n 22212101325732==+=×= Pa 0.006050.832+0.00605 Pa4. 试用范德华方程计算1000 g CH 4在0℃、40.5 MPa 时的体积(可用p 对V 作图求解)。
物理化学课后习题答案
第一章 热力学第一定律与热化学1. 一隔板将一刚性决热容器分为左右两侧,左室气体的压力大于右室气体的压力。
现将隔板抽去左、右气体的压力达到平衡。
若以全部气体作为体系,则ΔU 、Q 、W 为正?为负?或为零?解:0===∆W Q U2. 试证明1mol 理想气体在衡压下升温1K 时,气体与环境交换的功等于摩尔气体常数R 。
证明:R T nR V V p W =∆=-=)(123. 已知冰和水的密度分别为:0.92×103kg·m -3,现有1mol 的水发生如下变化: (1) 在100o C ,101.325kPa 下蒸发为水蒸气,且水蒸气可视为理想气体; (2) 在0 o C 、101.325kPa 下变为冰。
试求上述过程体系所作的体积功。
解:(1) )(m 1096.11092.010183633--⨯⨯⨯==冰V )(m 1096.1100.110183633--⨯⨯⨯==水V )(10101.3373314.81)(3J nRT V V p W e ⨯=⨯⨯===冰水- (2) )(16.0)108.11096.1(101325)(55J V V p W e =⨯-⨯⨯=-=--水冰4. 若一封闭体系从某一始态变化到某一终态。
(1) Q 、W 、Q -W 、ΔU 是否已经完全确定。
(2) 若在绝热条件下,使体系从某一始态变化到某一终态,则(1)中的各量是否已完全确定?为什么?解:(1) Q -W 与ΔU 完全确定。
(2) Q 、W 、Q -W 及ΔU 均确定。
5. 1mol 理想气体从100o C 、0.025m 3 经过下述四个过程变为100o C 、0.1m 3: (1) 恒温可逆膨胀; (2) 向真空膨胀;(3) 恒外压为终态压力下膨胀;(4) 恒温下先以恒外压等于气体体积为0.05m 3时的压力膨胀至0.05 m 3,再以恒外压等于终态压力下膨胀至0.1m 3。
物理化学类课后习题答案大全
物理化学类课后习题答案大全【物理化学类课后习题答案大全】�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�} 【物理化学类课后习题答案大全】�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}�}《大学物理》完整习题答案《传热学》课后习题答案(第四版)《有机化学》习题答案(汪小兰主编)《分析化学》课后习题答案(第五版,高教版)《物理化学》习题解答(天津大学, 第四版,106张)《大学基础物理学》课后答案(共16个单元)《物理化学》习题答案与课件集合(南大)《大学物理学》习题解答《物理化学》习题答案(南大,第五版)《高分子化学》习题答案(第四版)《普通化学(第五版)》习题详解(配套浙大编的)《结构化学基础》习题答案(周公度,北大版)《数学物理方法》(第三版)习题答案《有机化学》课后习题答案(胡宏纹,第三版)《固体物理》习题解答(方俊鑫版)大学物理习题及答案《大学物理》课后答案(陈信义)上下册的《电磁场与电磁波》(第4版)习题答案及自学辅导《工程光学》习题答案《仪器分析》课后答案(第三版,朱明华编)《光学教程》习题答案(第四版,姚启钧原著)大学物理实验绪论课指导书及参考答案《分析化学》习题答案(第三版,上册,高教版)流体输配管网习题详解(重点)《简明结构化学》课后习题答案(第三版,夏少武)《大学物理》课后习题答案(第一册)《固体物理》习题解答(阎守胜版)《流体力学》实验分析答案(浙工大版)生物化学笔记《光学》习题答案及辅导(赵凯华)电工学课后习题答案《控制电机》习题答案《分析化学》习题解答《原子物理学》习题答案(褚圣麟版)《普通物理》习题答案(磁学,电学,热学)高分子化学(整理)《材料物理导论》习题解答(科学出版社,第二版)大学物理实验《分析化学》课后答案,高教第五版材料化学课后答案啊!!!!!!!!!!!!!!!《现代电工学》习题答案(顾伟驷,科学出版社)大学物理课后部分习题答案(理工版!)大学物理作业解答北邮的通信原理合订本的课后习题详解《化工热力学》习题与习题答案第五版普通物理学课后习题答案(程守洙)第一册有机化学一到四章课件大学物理第一册课后练习题解高分子物理第三版,课后习题答案大学物理答案化工原理修订版上册 (夏清陈常贵著) 课后答案《分析化学》思考题答案(第四版,武汉大学版)传热学课后习题答案建工出版社《现代基础化学》(化学工业出版社)课后习题答案感谢您的阅读,祝您生活愉快。
物理化学课后习题与答案
逆过程。设气体的
Cv,m
=
3 2
R
。试计算各个状态的压力
p
并填下表。
V/dm3•mol-1
44.8 C B
22.4 A
273
546
T/K
1
步骤
A B C
过程的名称
等容可逆 等温可逆 等压可逆
Q/J W/J △U/J
8. 一摩尔单原子理想气体,始态为 2×101.325kPa、11.2dm3,经 pT = 常数的可逆过程(即过
(1) 298K 时的“平衡常数”; (2) 正、逆反应的活化能; (3) 反应热;
(4) 若反应开始时只有 A,pA,0=105Pa,求总压达 1.5×105Pa 时所需时间(可忽略逆反应)。
8.有一反应,其速率正比于反应物浓度和一催化剂浓度。因催化剂浓度在反应过程中不变, 故表现为一级反应。某温度下,当催化剂浓度为 0.01 mol·dm-3 时,其速率常数为 5.8×10-6 s-1。 试问其真正的二级反应速率常数是多少?如果催化剂浓度为 0. 10 mol·dm-3,表现为一级反应
4. 固体 CO2 的饱和蒸汽压在 -103℃ 时等于 10.226kPa,在 -78.5℃ 时等于 101.325 kPa,求: (1)CO2 的升华热;(2)在 -90℃ 时 CO2 的饱和蒸汽压。
5. 设你体重为 50kg,穿一双冰鞋立于冰上,冰鞋面积为 2cm3,问温度需低于摄氏零下几 度,才使冰不熔化?已知冰的 ΔfusHm = 333.4kJ·kg-1,水的密度为 1000 kg·m3,冰的密度为 900kg·m3。
(2) 1mol 水在 100℃恒 温下于真 空容器中 全部蒸发 为蒸气, 而且蒸气 的压力恰 好为
《工科大学化学》物理化学部分课后习题参考答案(可编辑)
《工科大学化学》物理化学部分课后习题参考答案第 1 章化学热力学基本定律与函数第第第 1 1 1 章章章化学热力学基本定律与函数化学热力学基本定律与函数化学热力学基本定律与函数习题?1.1mol 双原子理想气体在 300 K、101 kPa 下,经恒外压恒温压缩至平衡态,并从此状态下QU WH恒容升温至 370 K、压强为 1 010 kPa。
求整个过程的、、及。
(答案:△U 1455 J,△H 2037 J,W17727 J,Q -16272 J)UH解: 第一步:恒外压恒温压缩至平衡态, 0, 03 3V 8.314×300/101×10 24.695dm ,13 3此平衡态的体积就是末态的体积 V , V 8.314×370/1010×10 3.046dm2 2-3此平衡态的压强 P’8.314×300/3.046×10 818.84kPa3 -3W-P’V -V -818.92×10 ×3.046-24.695×10 17727 J17.727 kJ2 1-QW17.727 kJ Q-17.727 kJ第一步: 因恒容 W0UQ C T -T 20.79×370-3001455.3 J1.455 kJv v,m 2 1H20.79+R×702037.3 J2.037 kJ整个过程:W17.727 kJ;Q -17.727+1.455 -16.27 kJ;UH1.455 kJ ;2.037 kJ。
UH2.设有 0.1 kg N ,温度为 273.15 K,压强为 101325 Pa,分别进行下列过程,求、、2QW及。
?1 恒容加热至压强为 151987.5 Pa;2 恒压膨胀至原体积的 2 倍;3 恒温可逆膨胀至原体积的 2倍;4 绝热可逆膨胀至原体积的2倍。
?4 4(答案: ①△U Q 1.01×10 J,△H 1.42×10 J,W 0;V②△H QP 28.4 kJ,△U 20.20 kJ,W -8.11 kJ;③ Q 5622 J ,W -5622 J,△H △U 0 J;④ Q 0,W △U -4911 J,△H - 6875 J)解: 将 N 气视为双原子理想气体,则2-1 -1C 29.10 J?mol ?K ;p,m-1 -1C 20.79 J?mol ?Kv,m1 W0, 末态温度 T 1.5T 1.5×273.15 K2 14U∴ Qvn CvT2-T1 100/28×20.79×1.5×273.15-273.151.01×10 J4Hn C T -T 100/28×29.10×1.5×273.15-273.151.42×10 Jp 2 12 末态温度 T 2T 2×273.15K2 1HQ n CpT -T 100/28×29.10×2×273.15-273.15 28388 J28.4 kJp 2 1Un CvT2-T1 100/28×20.79×273.15 20201 J20.20 kJVW -P -101325×100/28×8.314×273.15/101325 -8110J -8.11kJUH3 理想气体恒温, 0,W -Q -100/28×8.314×273.15×ln2 -5622 J -5.62 kJ0.4 0.4T V T V1 12 24 运用理想气体绝热过程方程:0.4 0.4T 1/2 ×T 1/2 ×273.15 207 K2 1Q0UTW n Cv,m 100/28×20.79×207-273.15 -4911 J - 4.911 kJH 100/28×29.10×207-273.15-6875 J -6.875 kJ-13.在 373.15 K、101325 Pa 下,1 mol 水缓慢蒸发。
《物理化学》教材习题参考解答
第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。
)解:理想气体等压升温(n变)。
Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。
ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。
物理化学第五版课后习题答案
第十章 界面现象10-1 请回答下列问题:(1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生?(2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象?(3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么?(5) 在一定温度、压力下,为什么物理吸附都是放热过程?答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。
产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。
(2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。
(3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。
(4) 最本质区别是分子之间的作用力不同。
物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。
(5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。
10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面张力为0.4865 N ·m -1。
解: 3143r π=N ×3243r π N =3132r rΔG =21A A dA γ⎰=γ(A 2-A 1)=4πγ·( N 22r -21r )=4πγ·(312r r -21r )=4π×0.47×(339(110)110--⨯⨯-10-6)=5.9062 J10-3 计算时373.15K 时,下列情况下弯曲液面承受的附加压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 ︒C,另一个球则维持0 ︒C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行臵换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
气体,分别用理想气体状态方程及van der Waals 1.13 今有0 C,40.530 kPa的N2方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算气(附录七)用van der Waals计算,查表得知,对于N2,用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 ︒C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 ︒C,使部分水蒸气凝结为水。
试求每摩尔干乙炔气在该冷却过程中凝结出水的物质的量。
已知25 ︒C及10 ︒C时水的饱和蒸气压分别为3.17 kPa及1.23 kPa。
解:该过程图示如下设系统为理想气体混合物,则1.17 一密闭刚性容器中充满了空气,并有少量的水。
但容器于300 K条件下大平衡时,容器内压力为101.325 kPa。
若把该容器移至373.15 K的沸水中,试求容器中到达新的平衡时应有的压力。
设容器中始终有水存在,且可忽略水的任何体积变化。
300 K时水的饱和蒸气压为3.567 kPa。
解:将气相看作理想气体,在300 K时空气的分压为由于体积不变(忽略水的任何体积变化),373.15 K时空气的分压为由于容器中始终有水存在,在373.15 K时,水的饱和蒸气压为101.325 kPa,系统中水蒸气的分压为101.325 kPa,所以系统的总压第二章热力学第一定律2.5 始态为25 ︒C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47 ︒C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态对于途径b,其功为根据热力学第一定律2.6 4 mol的某理想气体,温度升高20 C,求的值。
解:根据焓的定义2.10 2 mol某理想气体,。
由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。
求整个过程的。
解:过程图示如下由于,则,对有理想气体和只是温度的函数该途径只涉及恒容和恒压过程,因此计算功是方便的根据热力学第一定律2.13 已知20 ︒C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。
求20 ︒C,液态乙醇的。
解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。
今利用加热器件使器内的空气由0 ︒C加热至20 ︒C,问需供给容器内的空气多少热量。
已知空气的。
假设空气为理想气体,加热过程中容器内空气的温度均匀。
解:在该问题中,容器内的空气的压力恒定,但物质量随温度而改变注:在上述问题中不能应用,虽然容器的体积恒定。
这是因为,从小孔中排出去的空气要对环境作功。
所作功计算如下:在温度T时,升高系统温度 d T,排出容器的空气的物质量为所作功这正等于用和所计算热量之差。
2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 ︒C,4 mol 的Ar(g)及150 ︒C,2 mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则(g)的摩尔2.16 水煤气发生炉出口的水煤气的温度是1100 ︒C,其中CO(g)和H2分数均为0.5。
若每小时有300 kg的水煤气由1100 ︒C冷却到100 ︒C,并用所收回的热来加热水,是水温由25 ︒C升高到75 ︒C。
求每小时生产热水的质量。
(g)的摩尔定压热容与温度的函数关系查本书附录,水的CO(g)和H2比定压热容。
解:300 kg的水煤气中CO(g)和H(g)的物质量分别为2300 kg的水煤气由1100 ︒C冷却到100 ︒C所放热量设生产热水的质量为m,则2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分数,始态温度,压力。
今该混合气体绝热反抗恒外压膨胀到平衡态。
求末态温度及过程的。
解:过程图示如下分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能量。
因此,单原子分子,双原子分子由于对理想气体U和H均只是温度的函数,所以2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 ︒C 的单原子理想气体A及5 mol,100 ︒C的双原子理想气体B,两气体的压力均为100 kPa。
活塞外的压力维持在100 kPa不变。
今将容器内的隔板撤去,使两种气体混合达到平衡态。
求末态的温度T及过程的。
解:过程图示如下假定将绝热隔板换为导热隔板,达热平衡后,再移去隔板使其混合,则由于外压恒定,求功是方便的由于汽缸为绝热,因此2.20 在一带活塞的绝热容器中有一固定的绝热隔板。
隔板靠活塞一侧为2 mol,0 ︒C的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6 mol,100 ︒C的双原子理想气体B,其体积恒定。
今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。
解:过程图示如下显然,在过程中A为恒压,而B为恒容,因此同上题,先求功同样,由于汽缸绝热,根据热力学第一定律2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 kPa。
求末态温度T及整个过程的及。
解:过程图示如下要确定,只需对第二步应用绝热状态方程,对双原子气体因此由于理想气体的U和H只是温度的函数,整个过程由于第二步为绝热,计算热是方便的。
而第一步为恒温可逆2.24 求证在理想气体p-V图上任一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。
证明:根据理想气体绝热方程,得,因此。
因此绝热线在处的斜率为恒温线在处的斜率为。
由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。
2.25 一水平放臵的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气体B。
两气体均为0 C,100 kPa。
A气体内部有一体积和热容均可忽略的电热丝。
现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。
求:(1)气体B的末态温度。
(2)气体B得到的功。
(3)气体A的末态温度。
(4)气体A从电热丝得到的热。
解:过程图示如下由于加热缓慢,B可看作经历了一个绝热可逆过程,因此功用热力学第一定律求解气体A的末态温度可用理想气体状态方程直接求解,将A与B的看作整体,W = 0,因此2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。
始态温度,压力。
今以气体B为系统,求经可逆膨胀到时,系统的及过程的。
解:过程图示如下将A和B共同看作系统,则该过程为绝热可逆过程。
作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则从而对于气体BO, l)在100 ︒C的饱和蒸气压,在此温度、压2.26 已知水(H2力下水的摩尔蒸发焓。
求在在100 ︒C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。
设水蒸气适用理想气体状态方程式。
解:该过程为可逆相变2.28 已知 100 kPa 下冰的熔点为 0 °C,此时冰的比熔化焓热J·g-1. 水的平均定压热容。
求在绝热容器内向1 kg 50 °C 的水中投入 0.1 kg 0 °C 的冰后,系统末态的温度。
计算时不考虑容器的热容。
解:经粗略估算可知,系统的末态温度T应该高于0 °C, 因此2.29 已知 100 kPa 下冰的熔点为0 °C,此时冰的比熔化焓热J·g-1. 水和冰的平均定压热容分别为及。
今在绝热容器内向1 kg 50 °C 的水中投入 0.8 kg 温度 -20 °C 的冰。
求:(1)末态的温度。
(2)末态水和冰的质量。
解:1 kg 50 °C 的水降温致0 °C 时放热0.8 kg -20 °C 的冰升温致0 °C 时所吸热完全融化则需热因此,只有部分冰熔化。
所以系统末态的温度为0 °C。
设有g的冰熔化,则有系统冰和水的质量分别为2.30 蒸汽锅炉中连续不断地注入 20 °C的水,将其加热并蒸发成 180 °C,饱和蒸汽压为 1.003 MPa 的水蒸气。
求生产 1 kg 水蒸气所需要的热量。
已知:水在 100 °C的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气的摩尔定压热容与温度的函数关系见附录。
解:将过程看作是恒压过程(),系统的初态和末态分别为和。