成人高考数学公式汇总
成人高考数学必背公式
成人高考数学必背公式成人高考数学必背公式是参加成人高考的考生必须掌握的重要知识点。
以下是一些成人高考数学必背公式的总结,供考生们参考:一、集合与逻辑符号公式1.N+表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集。
2.集合元素的关系用符号表示:属于,不属于,包含,不包含等。
3.常用逻辑符号:充分条件,必要条件,充要条件,全称量词,存在量词等。
二、函数性质与定义域公式1.函数的单调性:增函数和减函数分别用“↑”和“↓”表示。
2.函数的奇偶性:奇函数和偶函数分别用“+”和“-”表示。
3.函数的定义域:使函数有意义的自变量的取值范围。
三、导数与微分公式1.导数的定义:f'(x)=lim(h→0)[f(x+h)-f(x)]/h。
2.导数的几何意义:曲线在某点处的切线的斜率。
3.导数的基本公式:常数函数,幂函数,指数函数,对数函数等。
4.微分的定义:f'(x)=lim(h→0)[f(x+h)-f(x)]/h。
5.微分的应用:近似计算,误差估计等。
四、积分公式1.不定积分的定义:∫f(x)dx=F(x)+C。
2.定积分的定义:∫[a,b]f(x)dx=F(b)-F(a)。
3.常见的积分公式:常数函数,幂函数,指数函数,对数函数等。
五、三角函数公式1.三角函数的定义:sin(x),cos(x),tan(x)。
2.三角函数的基本公式:和差角公式,积化和差公式,和差化积公式等。
3.三角函数的图像与性质:正弦曲线,余弦曲线,正切曲线等。
六、数列与极限公式1.等差数列的通项公式:a_n=a_1+(n-1)d。
2.等比数列的通项公式:a_n=a_1*q^(n-1)。
3.数列的求和公式:等差数列求和,等比数列求和等。
4.极限的定义:lim(x→x_0)f(x)=A。
5.极限的基本性质:唯一性,有界性,保号性等。
七、不等式与不等式组公式1.不等式的性质:对称性,传递性,加法单调性等。
2.不等式组的解法:取各不等式的解集的交集或并集。
成人高考数学公式
成人高考数学公式成人高考数学公式不要标题,且文中不能有标题相同的文字1. 集合的运算:- 并集:$A\cup B = \{x|x\in A \text{或} x\in B\}$- 交集:$A\cap B = \{x|x\in A \text{且} x\in B\}$- 差集:$A-B = \{x|x\in A \text{且} x\notin B\}$- 互斥事件的概率:$P(A\cup B) = P(A) + P(B)$2. 排列与组合:- 排列数:$A_n^m = \frac{n!}{(n-m)!}$- 组合数:$C_n^m = \frac{n!}{m!(n-m)!}$3. 二次方程:- 一元二次方程:$ax^2+bx+c=0$- 解的判别式:$\Delta = b^2-4ac$- 解的公式:$x=\frac{-b\pm\sqrt{\Delta}}{2a}$4. 几何相关公式:- 长方形的面积:$S = a \times b$- 正方形的面积:$S = a^2$- 圆的面积:$S = \pi r^2$- 三角形的面积:$S = \frac{1}{2}bh$5. 平均值和标准差:- 平均值:$\bar{x} = \frac{1}{n}\sum_{i=1}^{n}x_i$- 方差:$Var(x) = \frac{1}{n}\sum_{i=1}^{n}(x_i -\bar{x})^2$- 标准差:$SD(x) = \sqrt{Var(x)}$6. 概率论:- 事件的概率:$P(A) = \frac{\text{有利结果数}}{\text{总可能结果数}}$- 加法法则:$P(A\cup B) = P(A) + P(B) - P(A\cap B)$- 乘法法则:$P(A\cap B) = P(A) \times P(B|A)$7. 三角函数:- 正弦函数:$\sin\theta = \frac{\text{对边}}{\text{斜边}}$- 余弦函数:$\cos\theta = \frac{\text{邻边}}{\text{斜边}}$- 正切函数:$\tan\theta = \frac{\sin\theta}{\cos\theta}$注意:以上只是数学公式的一小部分,具体应根据考试大纲和教材进行复习和备考。
成人高考数学万能公式
成人高考数学万能公式一、函数部分。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。
- 当b = 0时,y=kx是正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 对称轴方程x =-(b)/(2a)。
- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。
3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。
二、三角函数部分。
1. 同角三角函数的基本关系。
- sin^2α+cos^2α = 1。
- tanα=(sinα)/(cosα)。
2. 两角和与差的三角函数公式。
- sin(A± B)=sin Acos B±cos Asin B。
- cos(A± B)=cos Acos Bmpsin Asin B。
- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。
3. 二倍角公式。
- sin2α = 2sinαcosα。
- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。
- tan2α=(2tanα)/(1-tan^2)α。
三、数列部分。
1. 等差数列。
- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
2. 等比数列。
- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。
- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。
成人高考专升本高等数学公式大全
成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。
成考复习数学公式
成考复习数学公式数学公式是数学的一种表达方式,它可以简洁地表示数学概念和关系。
在成考数学复习中,数学公式是备考的核心内容之一、下面是一些常见的数学公式,供你参考:1.代数公式:- 二次方程的求根公式:$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ - 因式分解公式:$(a+b)^2 = a^2 + 2ab + b^2$- 二次完全平方公式:$a^2 \pm 2ab + b^2 = (a \pm b)^2$- 二项式定理:$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{n}b^n$2.几何公式:-正方形的面积公式:$S=a^2$- 圆的面积公式:$S = \pi r^2$- 三角形的面积公式:$S = \frac{1}{2}bh$-直角三角形的勾股定理:$a^2+b^2=c^2$3.概率公式:- 事件的概率:$P(A) = \frac{\text{有利结果数}}{\text{总结果数}}$- 互斥事件的概率:$P(A \cup B) = P(A) + P(B)$- 条件概率:$P(A,B) = \frac{P(A \cap B)}{P(B)}$- 全概率公式:$P(A) = P(A,B_1)P(B_1) + P(A,B_2)P(B_2) +\ldots + P(A,B_n)P(B_n)$4.数列与级数公式:-等差数列的通项公式:$a_n=a_1+(n-1)d$-等差数列的求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$-等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$-等比数列的求和公式(当 $,q,<1$):$S_n = \frac{a_1(1-q^n)}{1-q}$- 无限等比数列求和公式:$S = \frac{a}{1-q}$ (当 $,q,<1$)5.导数与积分公式:- 基本初等函数的导数公式:$(x^n)' = nx^{n-1}, (\sin x)' =\cos x, (\cos x)' = -\sin x$- 和差函数的导数:$(u \pm v)' = u' \pm v'$- 函数乘积求导:$(uv)' = u'v + uv'$- 函数商求导:$\left(\frac{u}{v}\right)' = \frac{u'v -uv'}{v^2}$- 基本不定积分公式:$\int a \, dx = ax + C, \int x^n \, dx = \frac{1}{n+1}x^{n+1} + C$。
成人高考专升本《高等数学二》公式大全
成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
全国成人高考数学公式
全国成人高考数学公式成人高考数学公式是考试中需要记忆和运用的重要数学公式。
下面是全国成人高考数学常见公式的介绍。
1.二次函数的顶点坐标公式:对于二次函数y = ax^2 + bx + c,顶点的横坐标为:x = -b/(2a),纵坐标为:y = -D/(4a),其中D为判别式,D = b^2 -4ac。
2.平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^23.二次根式化简公式:根号ab = 根号a × 根号b(根号a+根号b)(根号a-根号b)=a-b4.三角函数基本关系公式:sin^2θ + cos^2θ = 11 + tan^2θ = sec^2θ1 + cot^2θ = csc^2θ5.三角函数和角的关系公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)6.等差数列求和公式:S_n=(a_1+a_n)×n/2,其中S_n为等差数列前n项和,a_1为首项,a_n为末项,n为项数。
7.等比数列求和公式:S_n=a_1×(1-q^n)/(1-q),其中S_n为等比数列前n项和,a_1为首项,q为公比,n为项数。
8.数列通项公式:对于等差数列:a_n=a_1+(n-1)d,其中a_n为第n项,a_1为首项,d为公差。
对于等比数列:a_n=a_1×r^(n-1),其中a_n为第n项,a_1为首项,r为公比。
9.概率相关公式:P(A∪B)=P(A)+P(B)-P(A∩B),概率的加法公式。
P(A,B)=P(A∩B)/P(B),条件概率的公式。
P(A∧B)=P(A)×P(B,A),独立事件概率的公式。
10.几何相关公式:π≈3.14,圆周率的近似值。
成人高考数学公式
成人高考数学公式一、函数及其图像1. 一次函数的公式为y = kx + b,其中k为斜率,b为截距。
斜率k表示函数图像的倾斜程度,截距b表示函数与y轴的交点。
2. 二次函数的标准公式为y = ax^2 + bx + c,其中a、b、c为常数,a不为零。
二次函数的图像为抛物线,开口方向由a的正负确定。
3. 指数函数的公式为y = a^x,其中a为底数,x为指数。
指数函数的图像随着x的增大或减小而迅速上升或下降。
4. 对数函数的公式为y = loga(x),其中a为底数,x为函数的自变量。
对数函数的图像与指数函数相反,随着x的增大,y值增长速度逐渐减慢。
二、三角函数1. 正弦函数的公式为y = sin(x),其中x为自变量,y为函数值。
正弦函数的图像为周期性的波动曲线,振幅为1,周期为2π。
2. 余弦函数的公式为y = cos(x),其中x为自变量,y为函数值。
余弦函数的图像与正弦函数相似,但相位不同,振幅也为1,周期为2π。
3. 正切函数的公式为y = tan(x),其中x为自变量,y为函数值。
正切函数的图像在某些点上会发生无穷大的跳变现象,其周期为π。
4. 反正弦函数的公式为y = arcsin(x),其中x为自变量,y为函数值。
反正弦函数的图像为一段曲线,定义域为[-1, 1],值域为[-π/2, π/2]。
5. 反余弦函数的公式为y = arccos(x),其中x为自变量,y为函数值。
反余弦函数的图像为一段曲线,定义域为[-1, 1],值域为[0, π]。
6. 反正切函数的公式为y = arctan(x),其中x为自变量,y为函数值。
反正切函数的图像为一段曲线,定义域为(-∞, +∞),值域为(-π/2, π/2)。
三、数列及其性质1. 等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d 为公差,n为项数。
等差数列的特点是每一项与前一项的差值相等。
2. 等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q 为公比,n为项数。
专升本成人高考高数常用公式
专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。
成人高考数学公式
成人高考数学公式数学公式在成人高考中占据着极其重要的地位,掌握了这些公式不仅可以帮助我们在考试中更好地解题,也可以在实际生活中解决诸多问题。
本文将重点介绍成人高考数学中的一些常用公式,供考生参考。
一、函数与方程:1.一次函数的一般式:y = kx + b,其中k为斜率,b为截距。
2.点斜式方程:y-y₁=k(x-x₁),其中k为斜率,(x₁,y₁)为直线上的一点。
3.两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。
4.二次函数的一般式:y = ax² + bx + c,其中a、b、c为常数。
5.直线与二次函数的交点坐标:将直线方程代入二次函数方程,化简得到二次方程,解得交点坐标。
6.根与系数的关系:一元二次方程ax² + bx + c = 0有两个不同的实根(相等时为两个相同的实根)的充分必要条件是:Δ = b² - 4ac > 0然后可以用公式x=(-b±√Δ)/(2a)求解根。
7.求直线与平面的交点:将直线的参数方程代入平面的方程,得到关于参数的方程组,解方程组求得交点坐标。
8.圆的方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
二、解析几何:1.直线的斜率公式:k=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。
2.直线的截距式:y = kx + b,在该式中b即为直线的截距。
3.两直线的夹角公式:α = arctan(k₁) - arctan(k₂)其中k₁和k₂分别为两直线的斜率,α为夹角。
4.点到直线的距离公式:d=,Ax+By+C,/√(A²+B²)其中(A,B,C)为直线的一般式方程系数,(x,y)为点的坐标,d为点到直线的距离。
5.直线的倾斜角:α = arctan(k),其中k为直线的斜率,α为直线的倾斜角。
成人高考数学公式大全
成人高考数学公式大全1. 三角函数公式:- 正弦定理: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理: $c^2 = a^2 + b^2 - 2ab\cos C$- 正弦函数: $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$- 余弦函数: $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$- 正切函数: $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$2. 几何公式:- 三角形面积公式: $S = \frac{1}{2} a b \sin C$- 直角三角形勾股定理: $c^2 = a^2 + b^2$- 圆面积公式: $S = \pi r^2$- 圆周长公式: $C = 2 \pi r$- 四边形面积公式: $S = \frac{1}{2} (\sum_{i=1}^{4} d_i \cdot h_i)$ (其中$d_i$为对边长度,$h_i$为对边之间的距离)3. 代数公式:- 二次方程根公式: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$- 二次展开公式: $(a + b)^2 = a^2 + 2ab + b^2$- 三次展开公式: $(a + b + c)^3 = a^3 + b^3 + c^3 + 3ab(a+b) + 3bc(b+c) + 3ca(c+a)$- 等比数列求和公式: $S_n = \frac{a(1 - r^n)}{1 - r}$ (其中$a$为首项,$r$为公比,$n$为项数)4. 概率公式:- 排列公式: $P(n, m) = \frac{n!}{(n-m)!}$ (其中$n$为总数,$m$为选择数)- 组合公式: $C(n, m) = \frac{n!}{m!(n-m)!}$- 乘法原理: 若活动A有$m$种方式进行,活动B有$n$种方式进行,则A和B一共有$m \cdot n$种方式进行- 加法原理: 若活动A有$m$种方式进行,活动B有$n$种方式进行,并且两个活动不能同时进行,则A或B一共有$m + n$种方式进行5. 应用数学公式:- 复利公式: $A = P(1 + \frac{r}{n})^{nt}$ (其中$A$为终值,$P$为本金,$r$为年利率,$n$为复利次数,$t$为存款年限) - 科学计数法: $a \times 10^n$ (其中$a$为尾数,$n$为次数) - 相似三角形比例关系: $\frac{a}{a'} = \frac{b}{b'} =\frac{c}{c'}$ (当三角形ABC与A'B'C'相似时)- 斜率公式: $k = \frac{y_2 - y_1}{x_2 - x_1}$ (其中$(x_1,y_1)$和$(x_2, y_2)$为直线上的两点坐标)。
成人高考数学公式
成人高考数学公式数学是学习成人高考数学科目的重要内容之一,掌握数学公式是解题的基础。
本文将为大家介绍一些成人高考数学常用的公式,帮助大家更好地备考。
1. 几何公式1.1 长方形的面积公式:长方形的面积可以通过长和宽的乘积来计算,公式如下:面积 = 长 × 宽1.2 正方形的面积公式:正方形的面积可以通过边长的平方来计算,公式如下:面积 = 边长 × 边长1.3 圆的面积公式:圆的面积可以通过半径的平方乘以π来计算,公式如下:面积 = 半径 × 半径× π1.4 直角三角形的勾股定理:直角三角形的边长满足勾股定理,公式如下:c² = a² + b²其中,c表示斜边长,a和b分别表示其他两条边的长度。
2. 代数公式2.1 一次方程求根公式:一次方程的通解可以用以下公式表示:x = -b/a其中,a和b分别表示一次方程ax+b=0中的系数。
2.2 二次方程求根公式:二次方程的通解可以通过以下公式计算:x = (-b ± √(b² - 4ac))/2a其中,a、b、c分别为二次方程ax²+bx+c=0中的系数。
3. 概率公式3.1 事件的概率计算公式:事件的概率可以通过事件发生的次数与总次数的比值来计算,公式如下:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。
3.2 基本概率公式:在等可能的条件下,事件A发生的概率可以通过事件A包含的基本事件的概率之和来计算,公式如下:P(A) = P(A1) + P(A2) + ... + P(An)其中,P(A)表示事件A发生的概率,P(A1)、P(A2)、…、P(An)分别表示事件A包含的基本事件的概率。
以上是部分常用的成人高考数学公式,希望能对大家的备考提供帮助。
在备考过程中,熟练掌握这些公式,并能灵活运用,才能在考试中取得好成绩。
成考复习数学公式(全)
(1)指数及其性质:1nn aa-=,1n a =,mn a = 01(0)a a =≠ (2)对数:log 10a =,log 1a a = 指数和对数互为逆运算。
指数函数和对数函数互为反函数 运算性质:log ()log log a a a MN M N =+,log log log a a a M M N N=- ,log log n a a M n M =5、函数单调性 单调增(上坡) 单调减(下坡);非常用函数单调性:导数为正单调增;导数为负单调减。
第一部分 代数 第一章 集合和简易逻辑 1、集合的运算2、充分条件与必要条件交A ∩B={B x A x x ∈∈且,|} 并A ∪B={B x A x x ∈∈或,|}补 要求U A ⊆,},|{A x U x x A A C U ∉∈==且 B A ⇒ A 叫B 的充分条件 B A ⇐ A 叫B 的必要条件B A ⇔ A 叫B 的充分必要条件(充要条件)第二章 函数1、 y=f(x)定义、函数关系、函数表示、定义域、值域、描点画图像、函数性质(奇偶、单调、最值等)、反函数2、一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数图像及其性质。
奇函数 f(-x)=-f(x) (图象关于原点对称):y=sinx 、y=tanx 、y=nx (n 为奇数)偶函数 f(-x)= f(x) (图象关于y 轴对称):y=c(常量函数)、y=cosx 、y=nx (n 为偶数) 奇+奇=奇、偶+偶=偶、奇+偶=非奇非偶、奇⨯奇=偶、偶⨯偶=偶、奇⨯偶=奇24、指数、对数函数图像和性质第三章 不等式和不等式组 1、含有绝对值的不等式 2、一元次不等式 x a x a x a x a a x a>⇔<-><⇔-<<或 不等式组四种情况分式分母不为0,分子分母同号为正异号为负 ①平方项系数变为正数 ②令02=++c bx ax 解方程③根大于号大于大根小于小 、小于号夹在两根之间3、分式A/B>0 A 、B 同号、B 不为0;0≥A A 根式;0,log >N N a 真数对数式三种情况常求函数定义域第四章 数列1、有序的一列数。
成人高考数学公式汇总
成人高考数学公式汇总1、f(x)是奇函数,图像关于原点对称。
f(x)是偶函数,图像关于Y轴对称。
一次函数y=kx+b的定义域和值域都是R.。
2、二次函数y=ax²+bx+c的顶点为(-b/2a,4ac-b²/4a),对称轴为x=-b/2a。
a>0,抛物线图像开口向上;a<0,抛物线图像开口向下。
二次函数定义域是R。
x1+x2=-b/a,x1x2=c/a.3、反比例函数y=k/x,定义域和值域都是(-∞,0)∪(0,+∞),当k>0,图像在一、三象限,是减函数;当k<0,图像在二、四象限,是增函数。
4、指数函数y=a²(a>0,a≠1),定义域为(-∞,+∞)值域为(0,+∞)。
a>1,是增函数;0<a<1,是减函数。
5、对数函数y=㏒aX(a>0,a≠1)的定义域为(0,+∞),值域为(-∞¸+∞)。
a>1,是增函数;0<a<1,是减函数。
㏒1=0,㏒a=16、等差数列通项公式an=a1+(n-1)d,等差中项A=(a+b)/2。
前n项和公式Sn=n(a1+a2)/2,或Sn=na1+n(n-1)/2*d。
7、等比数列通项公式a n=a1q n-1,等比中项G=±√ ̄ab. 前n项和公式Sn=a1(1-q n)/(1-q),或Sn=(a1-a n q)/(1-q)8、函数导数y´=(c)´=0; (X²)´=nX²-1。
9、三角余弦定理 a²=b²+c²-2bccosA; b²=a²+c²-2accosB; c²=a²+b²-2abcosC三角正弦定理 a/sinA=b/sinB=c/sinC=2R(外接圆半径)。
10、两点间距离公式:d= (x2-x1)²+(y2-y1)².线段的中点公式:x=(x1+x2)/2,y=(y1+y2)2.11、直线方程:点斜式 y-y0=k(x-x0)斜截式 y=kx+b(y轴上的截距)两点式 (y-y1)/(y2-y1)=(x-x1)/(x2-x1)(y2≠y1,x2≠x1)截距式 x/a+y/b=1(x轴上截距a,y轴上截距b)一般式 Ax+By+C=0 (k=-―,x轴上截距-―,y轴上截距-―)12、点(x0,y0)到直线Ax+By+C=0的距离: d=∣Ax0+By0+C∣/√ ̄A2+B2.13、圆的标准方程(x-a)²+(y-b)²=r²圆心C为(a,b)圆的一般方程 x²+y²+Dx+Ey+F=0 (D²+E²-4F>0)圆的切线方程 y-y0=-x0/y0(x-x0) 点P(x0,y0)是圆上一点,有 x0x+y0y=r214、椭圆的标准方程 x2/a2+y2/b2=1 (a>b>0,焦点在x轴上,a为长半轴,b为短半轴)y2/a2+x2/b2=1 (a>b>0,焦点在y轴上,a为长半轴,b为短半轴)离心率 e=c/a=√ ̄(a2+b2)/a=√ ̄{1-(b/a)2} (c为半焦距) c= a²-b²180º=π弧度;1º=(π/180)弧度≈0.017453弧度;1弧度=(180/π)º≈57.30º=57º18´同角三角函数的基本关系式:倒数关系:sinαcosα=1 cosαsecα=1 tanαcotα=1=tgαctgα商数关系:tanα=sinα/cosα cotα=cosα/sinα平方关系:sin²α+cos²α=1 1+tan²α=sec²α 1+cot²α=csc²α●诱导公式:1、sin(k·360°+α)=sinα,cos(k·360°+α)=cosα,tan(k·360°+α)=tanα,cot(k·360°+α)=cotα, ( k∈Z)2、sin(180°+α)=―sinα,cos(180°+α)= ―cosα, tan(180°+α)=tanα,cot(180°+α)=cotα.3、sin(-α)=- sinα,cos(-sinα)=- cosα,tan(-α)=-tanα,cot(-α)=-cotα4、sin(180°-α)=sinα,cos(180°-α)=-cosα,tan(180°-α)=-tanα,cot(180°-α)=-cotα.5、Sin(360°-α)= ―sinα,cos(360°-α)= cosα,tan(360°-α)=- tanα,cot(360°-α)=- cotα.6、Sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.7、Sin(90°+α)= cosα,cos(90°+α)= ―sinα,tan(90°+α)= -cotα,cot(90°+α)= -tanα.8、Sin(270°-α)=- cosα,cos(270°-α)=―sinα,tan(270°-α)=cotα,cot(270°-α)=tanα.9、Sin(270°+α)= - cosα,cos(270°+α)= sinα,tan(270°+α)= -cotα,cot(270°+α)= -tanα两角和与两角差的正弦、余弦、正切的公式:Sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ sinαsinβ,tan(α±β)=(tanα±tanβ)/(1 tanαtanβ)倍角的正弦、余弦、正切的公式:Sin2α=2 sinαcosα,cos2α=cos²α-sin²α=2 cos²α-1=1-2 sinα,tan2α=2tanα/(1-tan²α)降幂公式:cos²α=(1+cos2α)/2,sin²α=(1-cos2α)/2.升幂公式:cos2α=2cos²α-1=1-2sin²α。
成考数学公式总结大全
成考数学公式总结大全摘要:一、成考数学公式概述二、成考数学公式分类与详解1.代数公式2.几何公式3.三角函数公式4.微积分公式三、成考数学公式应用策略四、成考数学公式记忆方法五、总结与建议正文:一、成考数学公式概述成考数学公式是成人高考数学考试中涉及到的各类数学公式的总结。
掌握这些公式对于考生来说至关重要,因为它们是解决各类数学问题的基石。
本文将为大家详细分类和解析成考数学公式,帮助大家更好地应对考试。
二、成考数学公式分类与详解1.代数公式代数公式主要包括运算公式、乘法公式、因式分解公式等。
例如:(1)加法结合律:a + b + c = (a + b) + c(2)乘法结合律:a × b × c = (a × b) × c(3)乘法交换律:a × b = b × a(4)乘法分配律:a × (b + c) = a × b + a × c(5)平方差公式:a - b = (a + b)(a - b)(6)完全平方公式:a ± 2ab + b = (a ± b)2.几何公式几何公式包括基本几何图形的面积和周长公式,如:(1)正方形:面积A = s,周长C = 4s(2)长方形:面积A = l × w,周长C = 2(l + w)(3)圆形:面积A = πr,周长C = 2πr3.三角函数公式三角函数公式包括正弦、余弦、正切等函数的定义和性质,如:(1)正弦函数:sinα = 对边/斜边,sinθ = 底边/斜边(2)余弦函数:cosα = 邻边/斜边,cosθ = 高/斜边(3)正切函数:tanα = 对边/邻边,tanθ = 底边/高4.微积分公式微积分公式主要包括导数、积分等概念的定义和计算方法,如:(1)导数:f"(x)表示函数f(x)在某点的切线斜率(2)积分:∫f(x)dx 表示函数f(x)在区间[a, b]上的面积三、成考数学公式应用策略1.熟练掌握各类公式,提高解题效率2.灵活运用公式,解决实际问题3.遇到不熟悉的题目,尝试寻找相关公式进行求解四、成考数学公式记忆方法1.归纳总结:将相似的公式整理在一起,方便查找2.制作公式卡片:随身携带,随时翻阅3.创造记忆技巧:用图像、故事等方法帮助记忆五、总结与建议成考数学公式是考试取得好成绩的关键,希望大家能够通过本文对成考数学公式有一个全面的认识。
成人高考高数必考公式
成人高考高数必考公式
1.函数相关公式:
-基本初等函数(加减乘除、幂函数、指数函数、对数函数、三角函数、反三角函数等)的性质和公式;
-基本函数的导数公式(如幂函数的导数、指数函数和对数函数的导数、三角函数的导数等);
-基本函数的积分公式(如幂函数的积分、指数函数和对数函数的积分、三角函数的积分等);
-复合函数的求导公式(链式法则)。
2.极限公式:
- 基本初等函数的极限(如无穷小量的定义、极限的四则运算法则、lnx、ex、sinx、cosx等函数的极限等);
-极限运算的性质(如极限的唯一性、有界性、保号性、夹逼定理等);
-数列极限的相关公式和性质(如比较定理、夹逼定理等)。
3.导数和微分公式:
-导数的定义、性质和基本公式(如函数和导函数的关系、四则运算法则、常数函数、幂函数、指数函数、对数函数等导数的公式);
-高阶导数的定义与求法;
-隐函数和参数方程的求导公式;
-微分的定义和微分公式(如微分的四则运算法则、复合函数的微分等)。
4.积分公式与定积分:
-不定积分和定积分的定义和性质;
-基本的定积分公式(如幂函数的定积分、三角函数的定积分、指数函数和对数函数的定积分、反常积分等);
-牛顿-莱布尼茨公式(积分的几何、物理、微分方程等应用)。
5.一阶微分方程和二阶线性微分方程的基本解法:
-一阶微分方程的分离变量法、齐次方程法、一阶线性非齐次方程法等;
-二阶线性微分方程的常系数齐次方程解法、常系数非齐次方程通解公式等。
成人高考数学必背公式
成人高考数学必背公式以下是一些成人高考数学常见的必背公式:1. 二次函数的顶点坐标公式:对于二次函数y = ax^2 + bx + c,其中a ≠ 0,顶点坐标为(-b/2a, -Δ/4a),其中Δ为判别式。
2. 二次函数的解公式:对于一元二次方程ax^2 + bx + c = 0,其中a ≠ 0,解可以通过使用公式x = (-b ± √Δ) / 2a来求得,其中Δ为判别式。
3. 三角函数的和差公式:- sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B)- cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B)- tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A) tan(B))4. 三角函数的倍角公式:- sin(2A) = 2sin(A)cos(A)- cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) - tan(2A) = (2tan(A)) / (1 - tan^2(A))5. 三角函数的半角公式:- sin(A/2) = ±√[(1 - cos(A)) / 2]- cos(A/2) = ±√[(1 + cos(A)) / 2]- tan(A/2) = ±√[(1 - cos(A)) / (1 + cos(A))]6. 平面几何中的勾股定理:直角三角形中,直角边长度为a和b,斜边长度为c,则有a^2 + b^2 = c^2。
7. 平面几何中的正弦定理:对于三角形ABC,边长a、b、c 与对应的角A、B、C满足正弦定理:a/sin(A) = b/sin(B) =c/sin(C)。
8. 平面几何中的余弦定理:对于三角形ABC,边长a、b、c 与对应的角A、B、C满足余弦定理:c^2 = a^2 + b^2 -2abcos(C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成人高考数学公式汇总 Document number【980KGB-6898YT-769T8CB-246UT-
全国成人高考数学公式汇总
-----------------------------------------------------------------------
1.平方差公式 22))((b a b a b a -=-+完全平方公式
2222)(b ab a b a +±=±
2.一元二次方程2
0(0)ax bx c a ++=≠的求根公式 a
ac
b b x 242-±-=.
3.充分条件与必要条件:
B A ⇒ A 叫B 的充分条件 B A ⇐ A 叫B 的必要条件 B A ⇔ A 叫B 的充分必要条件(充要条件)
4.函数定义域的求法:(1)分母不能为0;(2)偶次根内大于等于0;(3)对数的真数 大于0.
5.函数的奇偶性:
奇函数(图象关于原点对称):y=sinx 、y=tanx 、y=n x (n 为奇数) 偶函数(图象关于y 轴对称):y=c(常量函数)、y=cosx 、y=n x (n 为偶数)
奇+奇=奇、偶+偶=偶、奇+偶=非奇非偶、奇⨯奇=偶、偶⨯偶=偶、奇⨯偶=奇
2
7. (1)指数及其性质:
1
n
n
a
a
-=,
1
n
a=,
m
n
a=01(0)
a a
=≠
(2)对数:log10
a
=,log1
a
a=
运算性质:log()log log
a a a
MN M N
=+,log log log
a a a
M
M N
N
=-
log log
n
a a
M n M
=
8.一元二次不等式的解法:
平方项系数变为正数→令0
2=
+
+c
bx
ax解方程→口决
口决:(根
大于号大于大根小于小、小于号夹在两根之间)
9.绝对值不等式的解法:
x a x a x a x a a x a
>⇔<-><⇔-<<或
11.导数公式:0)(='c (c 为常数),)()(1+-∈='N n nx x n n
12.(1)利用导数判断单调性:0)(>'='x f y ,增函数;0<'y ,减函数 (2)利用导数求切线方程:求导函数→把点横坐标代入导函数求导数即为k →
))((000x x x f y y -'=-(0
)(0x x y x f k ='
='=)
(3)求极值:求定义域→令导函数=0求根→列表(3行)→判断 (4)求最值:令导函数=0求根→求函数值(包括端点)→比较大小 13.特殊角的三角函数值:
tan α:一三正二四负
14.同角三角函数的基本关系式
商数关系:sin tan cos α
αα
= 平方关系:22sin cos 1αα+=
sin()sin cos cos sin αβαβαβ±=± ,
cos()cos cos sin sin αβαβαβ±= , tan tan tan()1tan tan αβ
αβαβ
±±=
二倍角公式:sin22sin cos ααα=, α
αα2tan 1tan 22tan -=
2222cos 2cos sin 2cos 112sin ααααα=-=-=-,
17.正弦函数)sin(ϕω+=x A y 的周期公式:T=|
|2ωπ 18.正弦定理:
C
c
B b A a sin sin sin =
=(正弦两边一对角,双角必定用正弦)
余弦定理:2222cos a b c bc A =+-,(三边必定用余弦,还有两边一夹角)
B ac c a b cos 2222-+=,
C ab b a c cos 2222-+=, 三角形面积公式:A bc B ac C ab S sin 2
1
sin 21sin 21===
19.向量)(),(2,21,1y x b y x a ==
2
121|a |y x +=,)
,(,112121 ),(y x a y y x x b a λλλ=±±=±
b a y y x x b a ||||2121⋅⋅=+=• 0 ,//21211221=+⇔⊥=⇔y y x x b a y x y x b a
2
2122112,122,21,1||)(),(,)()(,)(点y y x x AB y y x x AB y x B y x A -+-=--=
中点坐标公式:1212,2
2
x x y y x x ++==
20.直线的斜率:2121
tan y y k x x α-==-
点斜式:11()y y k x x -=- 斜截式:y kx b =+(b 为y 轴上的截距) 平行:1212,k k b b =≠, 垂直:k 1·k 2=-1,
点到直线的距离公式:d =
21.(1)圆的标准方程:222()()x a y b r -+-=
(2)直线和圆的位置关系:相离d>r ,相切d=r ,相交d<r(d 为圆心到直线距离)
23.双曲线(到两焦点距离之差的绝对值为定长2a)
25.排列数公式:
) )(1()2)(1(个连续自然数相乘开始从m n m n n n n A m
n
+---= n A n
n
=全排列数:!123)2)(1(⨯⨯--= n n n n n
m n m n
A A C =组合数:
(10==n
n n C C ) 26.概率计算公式:)()(总结果数
结果数
事件即A n m A P =
互斥事件概率加法公式:)()()(B P A P B A P +=+ 对立事件概率计算公式:)(1)(A P A P -= 独立事件概率乘法公式:)()()(B P A P B A P •=• 28.样本平均数:)(1
21n x x x n
x +++=
样本方差:])()()[(1
222212x x x x x x n
s n -++-+-=。