湖北省武汉市中考试题(数学)-真题试卷
2024年湖北省武汉市中考真题数学试卷含答案解析
2024年湖北省武汉市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【答案】C【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A.3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯5.下列计算正确的是()A .236a a a ⋅=B .()1432a a =C .()2236a a =D .()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A.B.C.D.【答案】D【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.∠;②以点A为圆心,1个单位长为半7.小美同学按如下步骤作四边形ABCD:①画MAN径画弧,分别交AM,AN于点B,D;③分别以点B,D为圆心,1个单位长为半径画弧,∠的大小是()两弧交于点C;④连接BC,CD,BD.若44∠=︒,则CBDAA.64︒B.66︒C.68︒D.70︒【答案】C【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD是菱形,进而根据菱形的性质,即可求解.===【详解】解:作图可得AB AD BC DC8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A .19B .13C .49D .59共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A B C D .2∵四边形ABCD 内接于 ∴ADC ABC ABC ∠+∠=∠∴ADC CBE∠=∠∵45BAC CAD ∠=∠=︒10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A .1-B .0.729-C .0D .1∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作℃.【答案】2-【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数k y x =具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是.【答案】3x =-【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)【答案】51【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D ,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x==15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是. 45PMN ∴∠=︒45EMG PMN ∴∠=∠=1EG MG ∴==在AEG △和ABN 中,16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是(填写序号).三、解答题17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;(2)添加AF BE =(答案不唯一)如图所示,连接EF .∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE=时,四边形ABEF是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a2151b06根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;∠=∠;(2)在(1)的基础上,在射线AD上画点E,使ECB ACB(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90︒到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180︒,画对应线段MN(点A与点M对应,点B与点N对应).(2)如图,作OP(4)如图,作OP MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF的值.∵E 是AB 的中点,H 是∴12EH AD =,EH AD ∥又∵2AD CF =,∴EH CF =,∵2AD CF CD ==,∴12AM MD FC AD ===设2AD a =,则MF CD =【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.∴90T S EGF ∠=∠=∠=∴90EGT FGS ∠=︒-∠=∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅。
武汉市中考数学试题及解析版
精品文档2021年湖北省武汉市中招考试数学试卷第I卷〔选择题共30分〕一、选择题〔共12小题,每题3分,共36分〕1.以下各数中,最大的是〔〕A.-3B.0C.1D.2答案:D解析:0大于负数,正数大于0,也大于负数,所以,2最大,选D.2.式子x 1在实数范围内有意义,那么x的取值范围是〔〕A.x<1B.x≥1C.x≤-1D.x<-1答案:B解析:由二次根式的意义,知:x-1≥0,所以x≥1.3.不等式组x20的解集是〔〕x10A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥2答案:A解析:解〔1〕得:x≥-2,解〔2〕得x≤1,所以,-2≤x≤14.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.以下事件是必然事件的是〔〕.摸出的三个球中至少有一个球是黑球.B.摸出的三个球中至少有一个球是白球.C.摸出的三个球中至少有两个球是黑球.D.摸出的三个球中至少有两个球是白球.答案:A解析:因为白球只有2个,所以,摸出三个球中,黑球至少有一个,选A.5.假设x1,x2是一元二次方程x22x30的两个根,那么x1x2的值是〔〕A.-2B.-3C.2D.3答案:B解析:由韦达定理,知:x1x2c=-3.a A6.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,那么∠DBC的度数是〔〕A.18°B.24°C.30°D.36°答案:A解析:因为AB=AC,所以,∠C=∠ABC=1〔180°-36°〕=72°,2B又BD为高,所以,∠DBC=90°72°=18°第6题图DC7.如图,是由4个相同小正方体组合而成的几何体,它的左视图是〔〕.精品文档A.B.C.D.答案:C解析:由箭所示方向看去,能看到下面三个小正方形,上面一个小正方形,所以C.8.两条直最多有1个交点,三条直最多有3个交点,四条直最多有6个交点,⋯⋯,那么六条直最多有〔〕A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直的最多交点数:1×1×2=1,2三条直的最多交点数:1×2×3=3,2四条直的最多交点数:1×3×4=6,2所以,六条直的最多交点数:1×5×6=15,29.了解学生外的喜好,某校从八年随机抽取局部学生行卷,要求每人只取一种喜的籍,如果没有喜的籍,作“其它〞.〔1〕与〔2〕是整理数据后制的两幅不完整的.以下不.正确的选项是人〔数〕..60小说30其它10%漫画科普常识30%小说漫画科普常识其它书籍第9题图〔1〕第9题图〔2〕A.由两个可知喜“科普常〞的学生有90人.B.假设年共有1200名学生,由两个可估喜“科普常〞的学生有个.C.由两个不能确定喜“小〞的人数.D.在扇形中,“漫画〞所在扇形的心角72°.答案:C解析:左,知“其它〞有30人,右,知“其它〞占10%,所以,人数300人,“科普知〞人数:30%×300=90,所以,A正确;年“科.精品文档普知识〞人数:30%×1200=360,所以,B正确;,因为“漫画〞有60人,占20%,圆心角为:20%×360=72°,小说的比例为:1-10%-30%-20%=40%,所以,D正确,C错误,选C.10.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,假设∠CED=x°,∠ECD=y°,⊙B的半径为R,那么DE的长度是〔〕A.90xRB.90yR9090E 180xR180yRBC.D.180180D答案:BA解析:由切线长定理,知:PE=PD=PC,设∠PEC=z°所以,∠PED=∠PDE=〔x+z〕°,∠PCE=∠PEC=z°,C∠PDC=∠PCD=〔y+z〕°,P 第10题图+∠DPE=〔180-2x-2z〕°,∠DPC=〔180-2y-2z〕°,在△PEC中,2z°+〔180-2x-2z〕°+〔180-2y-2z〕°=180°,化简,得:z=〔90-x-y〕°,在四边形PEBD中,∠EBD=〔180°-∠DPE〕=180°-〔180-2x-2z〕°=〔2x2z〕°=〔2x+180-2x-2y〕=〔180-2y〕°,所以,弧DE的长为:(1802y)R=90yR18090选B.第II卷〔非选择题共84分〕二、填空题〔共4小题,每题3分,共12分〕11.计算cos45=.答案:22解析:直接由特殊角的余弦值,得到.12.在2021年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.答案:28解析:28出现三次,出现的次数最多,所以,填28.13.太阳的半径约为696000千米,用科学记数法表示数696000为.答案:105解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数..精品文档696000=10514.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设 x 秒后两车间的距离为y 千米,y 关于x 的函数关系如下图,那么甲车的速度是米/秒.y/〔米〕900DAOBC100200220x/〔秒〕第14题图答案:20解析:设甲车的速度为 v 米/秒,乙车的速度为u 米/秒,由图象可得方程:100u 100v500,解得v =20米/秒 20u 20v 90015.如图,四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是〔-1,0〕,〔0,2〕,C ,D 两点在反比例函数yk(x0)的图象上,那么k 的值等于.xy CDB答案:-12解析:如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,CG 交AD 于M 点,过D 点作DH ⊥CG ,垂足为H ,CD ∥AB ,CD=AB ,∴△CDH ≌△ABO 〔AAS 〕,DH=AO=1,CH=OB=2,设C 〔m ,n 〕,D 〔m -1,n -2〕,那么mn =〔m -1〕〔n -2〕=k ,解得n=2-2m ,设直线BC 解析式为y=ax+b ,将B 、C 两点坐标代入得b 2,又n=2-2m , n am b AOx 第15题图BC =m 2 (n 2)2= 5m 2,AB =5,因为BC =2AB ,.精品文档解得:m=-2,n=6,所以,k=mn=-1216.如图,E,F是正方形ABCD的边AD上两个动点,满足AE =DF.连接CF交BD于G,连接BE交AG于点H.假设正方形的边长为2,那么线段DH长度的最小值是.AEFD HG答案:51B C第16题图解析:三、解答题〔共9小题,共72分〕17.〔此题总分值6分〕解方程:23.x3x解析:方程两边同乘以xx3,得2x3x3解得x9.经检验,x9是原方程的解.18.〔此题总分值6分〕直线y2x b经过点〔3,5〕,求关于x的不等式2xb≥0的解集..精品文档解析:∵直线y2xb 经过点〔3,5〕∴523b .∴b1.即不等式为 2x1≥0,解得x ≥1.AD219.〔此题总分值6分〕如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .B EFC解析:证明:∵BE =CF ,∴BE+EF =CF+EF ,即 第19题图BF =CE .在△ABF 和△DCE 中,AB DCCBFCE ∴△ABF ≌△DCE ,∴∠A =∠D .20.〔此题总分值7分〕有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能翻开这两把锁,其余的钥匙不能翻开这两把锁.现在任意取出一把钥匙去开任意一把锁.1〕请用列表或画树状图的方法表示出上述试验所有可能结果;2〕求一次翻开锁的概率.解析:〔1〕设两把不同的锁分别为A 、B ,能把两锁翻开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:AB(abmnabm n 由上图可知,上述试验共有8种等可能结果.〔列表法参照给分〕2〕由〔1〕可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次翻开锁的结果有2种,且所有结果的可能性相等.∴P 〔一次翻开锁〕=21.84y21.〔此题总分值7分〕如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A 〔-3,2〕,B 〔0,4〕,C 〔0,2〕.A5B32C〔1〕将△ABC 以点C 为旋转中心旋转180°,画出旋1x转后对应的△A 1B 1C ;平移△ABC ,假设A 的对应点 A 2O1 2 3 4 5 的坐标为〔0,4〕,画出平移后对应的△A 2B 2C 2;–5–4–3–2–1–1〔2〕假设将△A 1B 1C 绕某一点旋转可以得到△ A 2B 2C 2,–2请直接写出旋转中心的坐标;〔3〕在x 轴上有一点P ,使得PA+PB 的值最小,请直–3–4–5第21题图.y 54B精品文档接写出点P 的坐标.解析:〔1〕画出△A 1B 1C 如下图:32〔3〕点P 的坐标〔-2,0〕.22.〔此题总分值8分〕如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB 的中点,连接PA ,PB ,PC .〔1〕如图①,假设∠BPC =60°,求证:AC 3AP ;〔2〕如图②,假设sinBPC24,求tanPAB 的值.25A A PPO BC O 第22题图②解析:CB1〕证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又第∵2AB 2题=图AC ①,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,又∠APC =∠ABC =60°,∴AC=3AP .2〕解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=24.25OC .A设FC =24a ,那么OC =OA =25a ,∴OF =7a ,AF =32a .P在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC =EG FC,BAE ACGEOFC.第22〔2〕题图精品文档∴EG 24a,∴EG =12a .32aEG40a∴ tan ∠PAB =tan ∠PCB=EF12a1.CF 24a 223.〔本分10分〕科幻小?室的故事?中,有一个情,科学家把一种珍奇的植物分放在不同温度的境中,一天后,出种植物高度的增情况〔如下表〕:温度x /℃ ⋯⋯-4 -2 0 2⋯⋯植物每天高度增量41 49 494125y /mm ⋯⋯⋯⋯由些数据,科学家推出植物每天高度增量y 是温度x 的函数,且种函数 是反比例函数、一次函数和二次函数中的一种.1〕你一种适当的函数,求出它的函数关系式,并要明不另外两种函数的理由;2〕温度多少,种植物每天高度的增量最大?3〕如果室温度保持不,在10天内要使植物高度增量的和超250mm ,那么室的温度x 在哪个范内?直接写出果.解析:c 49a 1 〔1〕二次函数,yax 2bxc ,得4a 2b c 49,解得b24a 2b c 41c 49∴y 关于x 的函数关系式是y x 2 2x49.不另外两个函数的理由:注意到点〔0,49〕不可能在任何反比例函数象上,所以y 不是x 的反比例函数;点〔-4,41〕,〔-2,49〕,〔2,41〕不在同一直上,所以y 不是x 的一次函数.〔2〕由〔1〕,得yx 22x 49,∴yx1250,∵a10,∴当x 1,y 有最大50. 即当温度-1℃,种植物每天高度增量最大.3〕6x4.24.〔本分10分〕四形ABCD 中,E 、F 分是AB 、AD 上的点,DE 与CF 交于点G .〔1〕如①,假设四形ABCD 是矩形,且DE ⊥CF ,求DE AD;CF CD 〔2〕如②,假设四形 ABCD 是平行四形,探究:当∠ B 与∠EGC 足什.精品文档么关系时,使得DE AD成立?并证明你的结论;(CFCD 3〕如图③,假设BA=BC=6,DA=DC=8,∠BAD =90°,DE ⊥CF ,请直接写出DE的值.A CFFDEAFDAFGGGBDEEBCB第24题图① C第24题图②C第24题图③解析:〔1〕证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,∵DE ⊥CF ,∴∠ADE =∠DCF ,∴△ADE ∽△DCF ,∴DE AD.CFDC〔2〕当∠B+∠EGC =180°时,DE AD成立,证明如下:CFDC 在AD 的延长线上取点M ,使CM =CF ,那么∠CMF =∠CFM .∵AB ∥CD ,∴∠A =∠CDM ,∵∠B+∠EGC =180°,FDMA∴∠AED =∠FCB ,∴∠CMF =∠AED .∴△ADE ∽△DCM ,G∴DEAD ,即DEAD .CMDCCFDC〔3〕DE25.CF 24E B C第24题图②25.〔此题总分值12分〕如图,点P 是直线l :y2x2上的点,过点P 的另一条直线m 交抛物线yx 2于A 、B 两点.〔1〕假设直线m 的解析式为y 1x 3,求A 、B 两点的坐标;22〕①假设点P 的坐标为〔-2,t 〕,当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线 l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.3〕设直线l 交y 轴于点C ,假设△AOB 的外心在边AB 上,且∠BPC =∠OCP ,求点P 的坐标.yyylllmmPAAPBBOOxOx.x第25〔3〕题图第25〔2〕题图第25〔1〕题图C精品文档解析:133yx , x 1x 2 1〔1〕依题意,得 2 22解得, 1y x 2 .9y 2y 14∴A 〔 3,9〕,B 〔1,1〕.42〕①A 1〔-1,1〕,A 2〔-3,9〕.②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P 〔a ,2a 2〕,A 〔m ,m 2〕,∵PA =PB ,∴△PAG ≌△BAH ,∴AG =AH ,PG =BH ,∴B 〔 2m a ,2m 2 2a 2〕,将点B 坐标代入抛物线y x 2,得2m24am a 22a 20,∵△=16a28 a22 2 8 a 2 16 a 16 8a 12 8 0a∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P ,抛物线上总能找到两个满足条件的点A .〔3〕设直线m :ykxbk0交y 轴于D ,设A 〔m ,m 2〕, 〔 n , n 2 〕.B过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H .∵△AOB 的外心在AB 上,∴∠AOB =90°,由△AGO ∽△OHB ,得AGOH,∴mn1.OG BH联立y kx bkx b0,依题意,得m 、n 是方程x 2 kx b0的y x 2得x 2两根,∴mn b ,∴b 1 ,即D 〔0,1〕.∵∠BPC =∠OCP ,∴DP =DC =3.P设P 〔a ,2a2〕,过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,PQ 2DQ 2PD 2,∴a22a 21232.∴a 1 0〔舍去〕,a 212,∴P 〔 12,14〕.555∵PN 平分∠MNQ ,∴PT =NT ,∴t1t 222t ,2y .P武汉市中考数学试题及解析版 11 精品文档 y lm P Q ABG OH x 第25〔3〕题图 C .。
2022湖北武汉中考数学试卷+答案解析
2022年湖北武汉中考数学一、选择题(共10小题,每小题3分,共30分)1.实数2 022的相反数是()A.-2 022B.-12 022C.12 022D.2 0222.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性。
下列汉字是轴对称图形的是()A B C D4.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a75.如图是由4个相同的小正方体组成的几何体,它的主视图是()A B C D6.已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y27.匀速地向一个容器内注水,最后把容器注满。
在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线)。
这个容器的形状可能是()A B C D8.班长邀请A,B,C,D四位同学参加圆桌会议。
如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.239.如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9 cm,AB=20 cm,BC=24 cm。
现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.11013cm B.8 cm C.6√2cm D.10 cm10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格。
将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方。
图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12二、填空题(共6小题,每小题3分,共18分)11.计算√(−2)2的结果是.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表。
初中毕业升学考试(湖北武汉卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(湖北武汉卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】实数的值在()A.0和1之间 B.1和2之间C.2和3之间 D.3和4之间【答案】B.【解析】试题分析:因为1<2<4,可得,即.故答案选B.考点:无理数的估算.【题文】若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【答案】C.【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.【题文】下列计算中正确的是()A. a•a2=a2B. 2a•a=2a2C. (2a2)2=2a4D. 6a8÷3a2=3a4【答案】B【解析】试题分析:A.a·a2=a3,此选项错误;B.2a·a=2a2,此选项正确;C.(2a2)2=4a4,此选项错误;D.6a8÷3a2=2a6,此选项错误,故答案选B.考点:幂的运算.【题文】不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A. 摸出的3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球【答案】A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.【题文】运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9【答案】C.【解析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+9.故答案选C考点:完全平方公式.【题文】已知点A(,1)与点A′(5,)关于坐标原点对称,则实数、的值是A. B. C. D.【答案】D【解析】试题分析:已知点A(a,1)与点A′(5,b)关于坐标原点对称,根据关于原点对称的点的横坐标与纵坐标互为相反数可得a=-5,b=-1,故答案选D.考点:关于原点对称的点的坐标.【题文】如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()【答案】A.【解析】试题分析:从左面看,上面看到的是长方形,下面看到的也是长方形,且两个长方形一样大.故答案选A 考点:简单几何体的三视图.【题文】某车间20名工人日加工零件数如下表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【答案】D.【解析】试题分析:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.考点:众数;加权平均数;中位数.【题文】如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A. B.π C. D.2【答案】B.【解析】试题分析:如图,取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=PE=1,故M的轨迹为以F 为圆心,1为半径的半圆弧,轨迹长为.故答案选B.考点:点的轨迹;等腰直角三角形.【题文】平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【答案】A.【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
2022年湖北武汉中考数学试题及答案详解
2022年湖北武汉中考数学试题及答案详解(试题部分)一、选择题(共10小题,每小题3分,共30分)1.实数2 022的相反数是()A.-2 022B.-12 022C.12 022D.2 0222.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性。
下列汉字是轴对称图形的是()A B C D4.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a75.如图是由4个相同的小正方体组成的几何体,它的主视图是()A B C D6.已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y27.匀速地向一个容器内注水,最后把容器注满。
在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线)。
这个容器的形状可能是()A B C D8. 班长邀请A ,B ,C ,D 四位同学参加圆桌会议。
如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A .14B .13C .12D .23 9. 如图,在四边形材料ABCD 中,AD ∥BC ,∠A =90°,AD =9 cm ,AB =20 cm ,BC =24 cm 。
现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )A .11013 cmB .8 cmC .6√2 cmD .10 cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格。
将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方。
图(2)是一个未完成的幻方,则x 与y 的和是 ( )A .9B .10C .11D .12二、填空题(共6小题,每小题3分,共18分)11. 计算√(−2)2的结果是 .12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表。
2024年湖北省中考真题数学真题(学生版+解析版)
2024年湖北省中考数学真题本试卷共6页,满分120分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将试卷和答题卡一并交回.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作+20元,则支出10元记作()A.+10元B.—10元C.+20元D.—20元2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(正面「A.IC.D3.2x-3x2的值是()A.5x2B. 5x3C.6x2D. 6x34如图,一条公路的两侧铺设了AB,CD两条平行管道,并有纵向管道AC连通.若乙1=120°'则乙2的度数是()A BCA 50°DB. 60C 70°D 80°5 不等式x +1�2的解集在数轴上表示正确的是()�I)I,A-112B. -12c厂�,.-1]2D. -I O 1 26. 在下列事件中,必然事件是(A. 掷一次骰子,向上一面的点数是3B. 篮球队员在罚球线上投篮一次,未投中C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和180°7 我国古代数学著作《九章算术》中记载了一个关千”方程”的问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?"译文:“今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?“若设牛每头值金x两,羊每头值金y两,则可列方程组是()5x +2y =l0 A. {2x+Sy =8 C. {5x +5y =10 2x +5y =8 B. {2x +5y =I O5x+2y = 8 D. {5x +2y =I O 2x +2y =88. 如图,AB是半圆0的直径,C为半圆0上一点,以点B 为圆心,适当长为半径画弧,交BA 千点M,交1BC 千点N,分别以点M,N 为圆心,大千-MN 的长为半径画弧,两弧在乙ABC 的内部相交千点D,画2射线BD,连接AC.若乙CAB =50°,则乙CED 的度数是()A 30B 25°C 20°D. 15°9.如图,点A的坐标是(-4,6)'将线段O A绕点0顺时针旋转90°,点A的对应点的坐标是(y』A。
2023年湖北省武汉市中考数学试卷(含答案及解析)
2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
湖北省武汉市中考数学试卷含答案解析(版)
湖北省武汉市中考数学试卷含答案解析(版)湖北省武汉市2021年中考数学试卷含答案解析一、选择题(共20小题,每小题4分,共80分)1. 单选题题目:某物体的重量是其质量与重力加速度的乘积,下列说法错误的是:A. 重力加速度是指地球上物体下落的加速度;B. 重力加速度大小与物体的质量有关;C. 重力加速度与物体所处的位置无关;D. 重力加速度大小约为10m/s²。
解析:正确答案为B。
根据牛顿第二定律可知,物体的加速度与物体的质量无关,因此B选项错误。
2. 多选题题目:已知直线y=2x+3与另一直线K1的交点坐标为(-2,-1),则K1方程的可能性有:A. y=2x+1;B. y=2x+5;C. y=2x+3;D. y=2x-8;解析:正确答案为A和C。
因为直线K1与y=2x+3有交点(-2,-1),所以它们的方程一定相同,因此A选项和C选项是可能的方程。
二、解答题(共5小题,每小题12分,共60分)1. 计算题题目:已知三个数的和为60,第一个数是第二个数的3/5,第三个数是第一、第二个数之和的2/3,求三个数分别是多少?解析:设第二个数为x,则第一个数为3/5*x,第三个数为2/3*(x+3/5*x)。
根据题意,将所得三个数相加等于60,得到方程:3/5*x + x + 2/3*(x+3/5*x) = 60。
解方程可得x=20,代入可计算出三个数分别为12、20和28。
2. 解析题题目:一架飞机从A地到B地飞行,全程640km。
上午以500km/h的速率飞行了2小时,午休1小时,下午以400km/h的速率飞行了t小时,到达B地时刚好晚餐。
求飞机下午的飞行时间t。
解析:上午共飞行了2*500=1000km,剩余距离为640-1000=-360km。
设飞机下午飞行t小时后到达目的地B,根据速度和时间的关系,可得到方程:400t = 360,解得t=0.9。
飞机下午飞行0.9小时后到达B地,即飞行时间为0.9小时。
2022年湖北省武汉市中考数学试卷含答案详解(高清word版)
第1页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年湖北省武汉市中考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 实数2022的相反数是( ) A. −2022B. −12022C. 12022D. 20222. 彩民李大叔购买1张彩票中奖.这个事件是( ) A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.4. 计算(2a 4)3的结果是( ) A. 2a 12B. 8a 12C. 6a 7D. 8a 75. 如图是由4个相同的小正方体组成的几何体,它的主视图是( ) A.B.第2页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.6. 已知点A(x 1,y 1),B(x 2,y 2)在反比例函数y =6x 的图象上,且x 1<0<x 2,则下列结论一定正确的是( )A. y 1+y 2<0B. y 1+y 2>0C. y 1<y 2D. y 1>y 27. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A.B.C.D.8. 班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A. 14B. 13C. 12D. 239. 如图,在四边形材料ABCD 中,AD//BC ,∠A =90°,AD =9cm ,AB =20cm ,BC =24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )第3页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.11013cm B. 8cm C. 6√2cm D. 10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A. 9B. 10C. 11D. 12第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 计算√(−2)2的结果是______.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是______. 尺码/cm 24 24.5 25 25.5 26 销售量/双13104213. 计算:2x x 2−9−1x−3的结果是______ .14. 如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取∠ABC =150°,BC =1600m ,∠BCD =105°,则C ,D 两点的距离是______m.第4页,共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知抛物线y =ax 2+bx +c(a,b,c 是常数)开口向下,过A(−1,0),B(m,0)两点,且1<m <2.下列四个结论: ①b >0;②若m =32,则3a +2c <0;③若点M(x 1,y 1),N(x 2,y 2)在抛物线上,x 1<x 2,且x 1+x 2>1,则y 1>y 2; ④当a ≤−1时,关于x 的一元二次方程ax 2+bx +c =1必有两个不相等的实数根. 其中正确的是______(填写序号).16. 如图,在Rt △ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF.过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K.若CI =5,CJ =4,则四边形AJKL 的面积是 .三、解答题(本大题共8小题,共72.0分。
湖北省武汉市年中考数学试卷(含答案解析版)
2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算√36的结果为( )A.6B.﹣6C.18D.﹣182.(3分)若代数式1a−4在实数范围内有意义,则实数a的取值范围为( )A.a=4B.a>4ﻩC.a<4ﻩD.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣xﻩC.x2•x3ﻩD.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.601.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70ﻩB.1.65、1.75C.1.70、1.75D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2B.x2+3x+2 C.x2+3x+3ﻩD.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)ﻩB.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A .ﻩB. C. D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A.√32 B .32 C .√3 D .2√310.(3分)如图,在Rt △ABC 中,∠C=90°,以△AB C的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B .5ﻩC.6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算x x+1﹣1x+1的结果为 .13.(3分)如图,在ﻩABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2√3,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510Bb8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB 、DC的延长线相交于点F.若cos ∠A BC =cos ∠ADC=35,CD=5,CF=ED=n,直接写出AD 的长(用含n 的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线A F交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x 轴的正半轴交于点E,连接F H、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t 秒时,QM=2P M,直接写出t 的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为( )A.6 B.﹣6ﻩC.18D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:√36=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为( )A.a=4B.a>4ﻩC.a<4ﻩD.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣xﻩC.x2•x3D.(x2)3【考点】A:48:同底数幂的除法;B:35:合并同类项;C:46:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75ﻩC.1.70、1.75D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2ﻩB.x2+3x+2ﻩC.x2+3x+3D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11:计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2) B.(3,2)ﻩC.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.ﻩB. C.ﻩD.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9B.10ﻩC.11 D.12【考点】37:规律型:数字的变化类.【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A.√32 B .32ﻩC .√3ﻩD.2√3 【考点】MI:三角形的内切圆与内心.【分析】如图,AB=7,BC=5,A C=8,内切圆的半径为r,切点为D 、E 、F ,作AD ⊥BC 于D,设BD =x ,则CD=5﹣x.由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x)2,解得x=1,推出AD=4√3,由12•BC•A D=12(AB +BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB =7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作A D⊥B C于D ,设BD=x ,则C D=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +A C)•r , 12×5×4√3=12×20×r, ∴r =√3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4ﻩB.5C.6D.7【考点】KJ:等腰三角形的判定与性质.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11:计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算xx+1﹣1x+1的结果为x−1x+1.【考点】6B :分式的加减法.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−1x+1, 故答案为:x−1x+1. 【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在ﻩABCD 中,∠D =100°,∠DA B的平分线AE 交D C于点E ,连接BE.若AE=AB ,则∠EB C的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠AB C=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D =80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠AB C=∠D=100°,A B∥CD ,∴∠BAD =180°﹣∠D =80°,∵AE平分∠DAB,∴∠B AE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC =∠ABC ﹣∠A BE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果, ∴两次取出的小球颜色相同的概率为820=25, 故答案为:25 【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC =2√3,∠BAC=120°,点D 、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为 3√3﹣3 .【考点】KD :全等三角形的判定与性质;KQ:勾股定理;PB:翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A逆时针旋转120°得到△ACF ,连接EF,过点E 作EM ⊥CF 于点M,过点A 作AN ⊥BC 于点N ,由AB=AC=2√3、∠BAC=120°,可得出B C=6、∠B=∠ACB =30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE ≌△AFE (S AS),进而可得出D E=FE,设CE=2x,则CM=x ,EM=√3x、F M=4x ﹣x=3x、EF=ED =6﹣6x,在Rt△E FM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△AC F,连接EF,过点E 作EM ⊥CF 于点M,过点A 作AN ⊥BC 于点N,如图所示.∵AB=AC =2√3,∠BAC=120°,∴B N=C N,∠B=∠ACB=30°.在Rt △B AN 中,∠B =30°,AB =2√3,∴AN=12AB=√3,B N=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DA E=60°,∴∠BAD +∠CAE =60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,{AD=AF∠DAE=∠FAE=60°AE=AE,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=√3x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=√3x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(√3x)2,解得:x1=3−√32,x2=3+√32(不合题意,舍去),∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是13<a<12或﹣3<a<﹣2.【考点】HA:抛物线与x轴的交点.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=1a,x2=﹣a,∴抛物线与x轴的交点为(1a,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<1a<3,解得13<a<12;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:13<a<12或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 2【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8Cc5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9,c=6(2)求这个公司平均每人所创年利润.【考点】VB:扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组{20−x ≤2x40x +30(20−x)≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件, 根据题意得40x +30(20﹣x)=650, 解得x=5, 则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件; (2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x)件,根据题意得{20−x ≤2x40x +30(20−x)≤680,解得203≤x≤8,∵x为整数, ∴x=7或x =8,当x=7时,20﹣x=13;当x=8时,20﹣x =12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=53BC=10,由勾股定理求出BE=8,证出BE∥OA,得出OABE=ODDE,求出OD=2513,得出CD═9013,而BE∥OA,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO 平分∠B AC;(2)解:延长CD交⊙O 于E ,连接BE,如图2所示: 则CE 是⊙O 的直径, ∴∠E BC=90°,BC ⊥BE , ∵∠E=∠BA C, ∴si nE=s in ∠BAC,∴BC CE =35, ∴CE=53BC =10,∴BE=√CE 2−BC 2=8,OA=OE=12CE=5,∵AH ⊥BC, ∴BE∥OA,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴C D=5+2513=9013,∵BE ∥OA,即BE ∥OH ,OC=O E, ∴OH 是△C EB 的中位线,∴OH=12BE=4,CH =12BC=3,∴A H=5+4=9,在Rt△ACH 中,AC=√AH 2+CH 2=√92+32=3√10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a )代入y=2x +4与y=kx即可得到结论;(2)根据已知条件得到M (m+42,m),N(6m,m ),根据MN =4列方程即可得到结论; (3)根据6x−5>x得到6−x 2+5x x−5>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y =2x +4与y =kx 的图象上,∴2×(﹣3)+4=a , ∴a=﹣2,∴k=(﹣3)×(﹣2)=6; (2)∵M 在直线AB 上,∴M(m+42,m),N在反比例函数y=6x 上,∴N (6m,m),∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4,解得:∵m >0,∴m=2或m =6+4√3;(3)x <﹣1或x 5<x <6, 由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0,∴x 2−5x−6x−5<0,∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0,结合抛物线y=x2﹣5x﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x <−1x <5或{x >6x <5,∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5,∴{−1<x <6x >5,解得:5<x <6,综上,原不等式的解集是:x<﹣1或5<x <6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:E D•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠A DC=35,CD=5,A B=12,△CD E的面积为6,求四边形ABC D的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F.若co s∠A BC=c os ∠ADC=35,C D=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)【考点】SO:相似形综合题.【分析】(1)只要证明△EDC∽△EBA,可得EDEB=ECEA,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得AGCH=FGEH,即4a5+n−3a=4n+3,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴ED EB =EC EA, ∴E D•EA=EC•E B.(2)如图2中,过C 作C F⊥A D于F,AG ⊥EB 于G .在Rt △C DF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴D F=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•E D•CF=6, ∴ED=12CF=3,EF=ED +D F=6, ∵∠AB C=120°,∠G=90°,∠G +∠B AG=∠ABC,∴∠BAG=30°,∴在R t△ABG 中,BG =12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB,∴∠E FC=∠G=90°,∵∠E =∠E,∴△EFC ∽△EGA ,∴EF EG =CF AG, ∴6EG =6√3, ∴EG=9√3,∴BE=EG ﹣B G=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S△C DE =12(9√3﹣6)×6√3﹣6=75﹣18√3. (3)如图3中,作CH ⊥AD 于H,则C H=4,DH=3,∴tan ∠E=4n+3, 作A G⊥DF 于点G,设AD=5a ,则DG=3a,AG=4a,∴FG=DF ﹣DG=5+n ﹣3a,∵CH ⊥AD,AG ⊥D F,∠E=∠F,易证△AFG ∽△CEH,∴AG CH =FG EH , ∴4a 5+n−3a =4n+3,∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=a x2+bx 上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m >2),直线AF 交抛物线于另一点G,过点G 作x 轴的垂线,垂足为H.设抛物线与x 轴的正半轴交于点E,连接FH 、A E,求证:F H∥A E;(3)如图2,直线A B分别交x 轴、y 轴于C、D 两点.点P 从点C出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O 出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,Q M=2PM ,直接写出t 的值.【考点】H F:二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H)的坐标利用待定系数法,可求出直线AE (FH)的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B (4,6)代入y=ax 2+b x中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G的坐标为(2m,2m 2﹣m).∵G H⊥x轴,∴点H的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A(﹣1,1)、E(1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线A E的解析式为y =﹣12x+12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m)、H(2m,0)代入y=k2x +b2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m. ∴FH ∥AE.(3)设直线AB 的解析式为y=k 0x +b 0,将A(﹣1,1)、B(4,6)代入y=k0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t﹣2,t ),点Q 的坐标为(t,0).当点M在线段P Q上时,过点P作PP′⊥x轴于点P′,过点M 作MM′⊥x轴于点M′,则△PQ P′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t =15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M在抛物线y=12x 2﹣12x 上, ∴2t =12×(t ﹣4)2﹣12(t﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,Q M=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.。
2024年湖北省武汉市中考数学试卷正式版含答案解析
绝密★启用前2024年湖北省武汉市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是( )A.B.C.D.4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A. 0.3×105B. 0.3×106C. 3×105D. 3×1065.下列计算正确的是( )A. a2⋅a3=a6B. (a3)4=a12C. (3a)2=6a2D. (a+1)2=a2+16.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度ℎ与注水时间t的函数关系的是( )A.B.C.D.7.小美同学按如下步骤作四边形ABCD;(1)画∠MAN;(2)以点A为圆心,1个单位长为半径画弧,分别交AM,AN于点B,D;(3)分别以点B,D为圆心,1个单位长为半径画弧,两弧交于点C;(4)连接BC,CD,BD.若∠A=44°,则∠CBD的大小是( )A. 64°B. 66°C. 68°D. 70°8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( )A. 19B. 13C. 49D. 599.如图,四边形ABCD内接于⊙O,∠ABC=60°,∠BAC=∠CAD=45°,AB+AD=2,则⊙O的半径是( )A. √ 63B. 2√ 23C. √ 32D. √ 2210.如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点(1,0)中心对称.若点A1(0.1,y1),A2(0.2,y2),A3(0.3,y3),…,A19(1.9,y19),A20(2,y20)都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则y1+y2+y3+⋯+y19+y20的值是( )A. −1B. −0.729C. 0D. 111.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作+3℃,则零下2℃记作______℃.12.某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小.写出一个满足条件的k的值是______.13.分式方程xx−3=x+1x−1的解是______.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB的高度.具体过程如下:如图,将无人机垂直上升至距水平地面102m的C处,测得黄鹤楼顶端A 的俯角为45°,底端B 的俯角为63°,则测得黄鹤楼的高度是______m.(参考数据:tan63°≈2)15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD.直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD的面积为S 1,正方形MNPQ 的面积为S 2.若BE =kAE(k >1),则用含k 的式子表示S1S 2的值是______.16.抛物线y =ax 2+bx +c(a,b,c 是常数,a <0)经过(−1,1),(m,1)两点,且0<m <1.下列四个结论: ①b >0;②若0<x <1,则a(x −1)2+b(x −1)+c >1;③若a =−1,则关于x 的一元二次方程ax 2+bx +c =2无实数解;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若x 1+x 2>−12,x 1>x 2,总有y 1<y 2,则0<m ≤12.其中正确的是______(填写序号).17.求不等式组{x +3>1,①2x −1≤x②的整数解.18.如图,在▱ABCD 中,点E ,F 分别在边BC ,AD 上,AF =CE.(1)求证:△ABE ≌△CDF ;(2)连接EF.请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表根据以上信息,解答下列问题:(1)直接写出m,n的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.20.如图,△ABC为等腰三角形,O是底边BC的中点,腰AC与半圆O相切于点D,底边BC与半圆O交于E,F两点.(1)求证:AB与半圆O相切;(2)连接OA.若CD=4,CF=2,求sin∠OAC的值.21.如图是由小正方形组成的3×4网格,每个小正方形的顶点叫做格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x轴,垂直于地面的直线为y轴,建立平面直角坐标系,分别得到抛物线y=ax2+x和直线y=−1x+b.其中,当火箭运行的水平距离为9km2时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km,①直接写出a,b的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km,求这两个位置之间的距离.(2)直接写出a满足什么条件时,火箭落地点与发射点的水平距离超过15km.23.问题背景如图(1),在矩形ABCD中,点E,F分别是AB,BC的中点,连接BD,EF,求证:△BCD∽△FBE.问题探究如图(2),在四边形ABCD中,AD//BC,∠BCD=90°,点E是AB的中点,点F在边BC上,AD=2CF,EF与BD交于点G,求证:BG=FG.问题拓展如图(3),在“问题探究”的条件下,连接AG,AD=CD,AG=FG,直接写出EGGF的值.24.抛物线y=12x2+2x−52交x轴于A,B两点(A在B的右边),交y轴于点C.(1)直接写出点A,B,C的坐标;(2)如图(1),连接AC,BC,过第三象限的抛物线上的点P作直线PQ//AC,交y轴于点Q.若BC平分线段PQ,求点P的坐标;(3)如图(2),点D与原点O关于点C对称,过原点的直线EF交抛物线于E,F两点(点E在x轴下方),线段DE交抛物线于另一点G,连接FG.若∠EGF=90°,求直线DE的解析式.答案和解析1.【答案】C【解析】解:A、B、D选项中的汉字都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.C选项中的汉字能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是随机事件.故选:A.根据必然事件、随机事件的定义进行判断即可.本题考查的是随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解题的关键.3.【答案】B【解析】解:该几何体的主视图为:.故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.【答案】C【解析】解:300000=3×105,故选:C.将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.【答案】B【解析】解:a2⋅a3=a5,则A不符合题意;(a3)4=a12,则B符合题意;(3a)2=9a2,则C不符合题意;(a+1)2=a2+2a+1,则D不符合题意;故选:B.利用同底数幂乘法法则,幂的乘方与积的乘方法则,完全平方公式逐项判断即可.本题考查同底数幂乘法,幂的乘方与积的乘方,完全平方公式,熟练掌握相关运算法则是解题的关键.6.【答案】D【解析】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D.分成3段分析可得答案.本题主要考查函数的图象,利用分类讨论思想,根据不同时间段能装水部分的宽度的变化情况分析水的深度变化情况是解题关键.7.【答案】C【解析】解:由(1)(2)(3)可知四边形ABCD是菱形,∴AB=AD,BC//AD,∴∠ABD=∠ADB=∠CBD,∵∠A=44°,∴∠ABD+∠ADB=180°−∠A=180°−44°=136°,∴∠ABD=∠ADB=∠CBD=68°,故选:C.由(1)(2)(3)可知四边形ABCD是菱形,然后根据菱形的性质和三角形内角和定理求出答案即可.本题主要考查了多边形的内角与外角和菱形的判定与性质,解题关键是根据已知条件中的作图判定四边形ABCD的形状.8.【答案】D【解析】解:列表如下:由表格可知,共有9种等可能的结果,由表格可知,至少有一辆车向右转的结果有共5种,∴至少有一辆车向右转的概率为59.故选:D .根据题意列表,由表格可得出所有等可能的结果数以及至少有一辆车向左转的结果数,再利用概率公式可得出答案.本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键. 9.【答案】A【解析】解:过C 作CM ⊥AB 于M ,CN ⊥AD 交AD 延长线于N ,过O 作OH ⊥AC 于H ,连接OA ,OC ,∵∠BAC =∠CAD =45°,∴AC 平分∠BAN ,∴MC =CN ,∵∠MAN =∠BAC +∠CAD =90°,∠AMC =∠ANC =90°,∴四边形AMCN 是正方形,∴AM =AN ,∵∠BAC =∠CAD ,∴CD⏜=BC ⏜, ∴CD =BC ,∵CN =CM ,∴Rt △CDN ≌Rt △CBM(HL),∴ND =MB ,∵AB +AD =AM +MB +AD =AM +DN +AD =AM +AN =2AM =2,∴AM =1,∵∠BAC =45°,∠AMC =90°,∴△ACM 是等腰直角三角形,∴AC =√ 2AM =√ 2, ∵∠B =60°,∴∠AOC =2∠B =120°, ∵OA =OC ,OH ⊥AC ,∴AH =12AC =√ 22,∠AOH =12∠AOC =60°, ∵sin∠AOH =sin60°=AH OA=√ 32,∴OA =√ 63, ∴⊙O 的半径是√ 63.故选:A .过C 作CM ⊥AB 于M ,CN ⊥AD 交AD 延长线于N ,过O 作OH ⊥AC 于H ,连接OA ,OC ,由角平分线的性质推出MC =CN ,判定四边形AMCN 是正方形,得到AM =AN ,由圆周角定理得到CD⏜=BC ⏜,推出CD =BC ,即可证明Rt △CDN ≌Rt △CBM(HL),得到ND =MB ,推出AB +AD =2AM =2,求出AM =1,判定△ACM 是等腰直角三角形,求出AC =√ 2AM =√ 2,由圆周角定理得到∠AOC =2∠B =120°,由等腰三角形的性质推出AH =12AC =√ 22,∠AOH =12∠AOC =60°,由sin∠AOH =AH OA=√ 32,求出OA =√ 63,得到⊙O 的半径是√ 63.本题考查全等三角形的判定和性质,正方形的判定和性质,圆周角定理,角平分线的性质,等腰三角形的性质,解直角三角形,关键是由Rt △CDN ≌Rt △CBM(HL),推出ND =MB ,得到AB +AD =2AM .10.【答案】D【解析】解:由题知, 点A 10的坐标为(1,0), 则y 10=0.因为函数图象关于点(1,0)中心对称,所以y 9+y 11=y 8+y 12=⋯=y 1+y 19=0, 将x =2代入函数解析式得, y =23−3×22+3×2−1=1, 即y 20=1,所以y 1+y 2+y 3+⋯+y 19+y 20的值为1. 故选:D .根据所给函数图象,发现点A n纵坐标的变化规律,再根据中心对称图形的性质即可解决问题.本题主要考查了点的坐标变化规律,能通过计算得出点A10的坐标,进而发现y9+y11=y8+y12=⋯=y1+ y19=0是解题的关键.11.【答案】−2【解析】解:“正”和“负”相对,所以,若零上3℃记作+3℃,则零下2℃记作−2℃.故答案为:−2在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.12.【答案】1(答案不唯一)【解析】解:由题可知,具有下列性质:当x>0时,y随x的增大而减小,当反比例函数y=kx即k>0时满足条件,则k的值取1.故答案为:1(答案不唯一).根据反比例函数的性质以及题意可知k>0,再进行取值即可.本题考查反比例函数的性质,熟练掌握反比例的性质是解题的关键.13.【答案】x=−3【解析】解:原方程去分母得:x2−x=x2−2x−3,解得:x=−3,检验:当x=−3时,(x−1)(x−3)≠0,故原方程的解为x=−3,故答案为:x=−3.利用去分母将原方程化为整式方程,解得x的值后进行检验即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.14.【答案】51【解析】解:过点C作CH//BD,延长BA交CH于H,由题意得∠ABD=∠CDB=90°,∴∠AHC=180°−90°=90°,∴四边形BDCH是矩形,∴BH=CD=102m,在Rt△BCH中,∠BCH=63°,tan∠BCH=BHCH,∴CH=BHtan63∘≈1022=51(m),在Rt△ACH中,∠ACH=45°,∴∠CAH=45°=∠ACH,∴AH=CH=51m,∴AB=BH−AH=51m.答:黄鹤楼的高度约为51m.故答案为:51.过点C作CH//BD,延长BA交CH于H,在Rt△BCH中和Rt△ACH中,解直角三角形求出CH,AH,即可求出答案.本题主要考查了直角三角形的应用,把实际问题转换为直角三角形问题解决是解决问题的关键.15.【答案】k2+1(k−1)2【解析】解:方法一:如图,过A作AG//BP交FE延长线于点G,∵AG//BP ,∴∠GAE =∠PBE ,∠AGE =∠BPE , ∴△AGE ∽△PBE , ∴AG BP=AE BE=1k,设AG =1,则BP =k , ∵∠NMP =45°,∴∠AMG =45°,AM =AG =1, ∵AN =BP =k , ∴MN =k −1,∵S 1=AD 2=AM 2+MD 2=k 2+1,S 2=MN 2=(k −1)2, ∴S 1S 2=k 2+1(k−1)2;方法二:如图,过B 作BG ⊥BP 交FE 延长线于点G ,则△GBP 是等腰直角三角形,易证△GBA ≌△PBC , ∴∠BGP =∠AGP =45°, 根据角平分线比例定理得:AG BG=AE BE =1k ,设AG =1,则BG =k , ∴AM =1,MD =k =AN , ∴MN =k −1,∵S 1=AD 2=AM 2+MD 2=k 2+1,S 2=MN 2=(k −1)2, ∴S 1S 2=k 2+1(k−1)2;故答案为:k 2+1(k−1)2.方法一:由BE =kAE 可想到构造8字型相似,再利用比例线段求解即可;方法二:见到45°可构造等腰直角三角形,再利用手拉手全等和一个角平分线比例定理即可求解.本题主要考查勾股定理得证明及正方形得性质、相似的判定和性质等知识点,熟练掌握以上知识和添加合适辅助线是解题关键.16.【答案】②③④【解析】解:∵y =ax 2+bx +c(a,b,c 是常数,a <0)经过(−1,1),(m,1)两点,且0<m <1, ∴对称轴为直线x =−b2a =−1+m2, ∴−12<−1+m 2<0,∴x =−b 2a<0,∵a <0,∴b <0,故①错误; ∵0<m <1,∴m −(−1)>1,即(−1,1),(m,1)两点之间的距离大于1, 又∵a <0,∴x =m −1时,y >1,∴若0<x <1,则a(x −1)2+b(x −1)+c >1,故②正确; 由①可得−12<−1+m2<0,∴−12<b2<0,即−1<b <0,当a =−1时,抛物线解析式为y =−x 2+bx +c , 设顶点线坐标为t =4ac−b 24a=−4c−b 2−4,∵抛物线y =−x 2+bx +c(a,b,c 是常数,a <0)经过(−1,1), ∴−1−b +c =1, ∴c =b +2, ∴t =−4c−b 2−4=b 2+4c 4=14b 2+c =14b 2+b +2=14(b +2)2+1,∵−1<b <0,−14>0,对称轴为直线b =−2, ∴当b =0时,t 取得最大值为2,而b <0,∴关于x 的一元二次方程ax 2+bx +c =2无解,故③正确;∵a <0,抛物线开口向下,点A(x 1,y 1),B(x 2,y 2)在抛物线上,x 1+x 2>−12,x 1>x 2,总有y 1<y 2, 又x =x 1+x 22>−14,∴点A(x 1,y 1)离x =−14较远, ∴对称轴−12<−1+m 2≤−14,解得:0<m ≤12,故④正确; 故答案为:②③④.通过对称轴可判断①;(−1,1),(m,1)两点之间的距离大于1,所以若0<x <1,则a(x −1)2+b(x −1)+c >1,判断②正确;根据抛物线的最大值判断③;根据点A 和点B 离对称轴的距离判断④.本题考查了二次函数的性质,二次函数系数与图象的关系,二次函数图象上的点的特征等,掌握二次函数性质是解题的关键.17.【答案】解:{x +3>1,①2x −1≤x②,由①得,x >−2; 由②得,x ≤1,故此不等式组的解集为:−2<x ≤1,故不等式组{x +3>1,①2x −1≤x②的整数解为−1、0、1.【解析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数解即可. 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠B =∠D . ∵AF =CE ,∴AD −AF =BC −CE , ∴DF =BE ,在△ABE 与△CDF 中, {AB =CD ∠B =∠D BE =DF, ∴△ABE ≌△CDF(SAS);(2)解:如图,添加BE=CE,理由如下:∵AF=CE,BE=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD//BC,∴四边形ABEF是平行四边形.【解析】(1)由平行四边形的性质得AB=CD,AD=BC,∠B=∠D.再证明DF=BE,然后由SAS证明△ABE≌△CDF即可;(2)证明AF=BE,再由平行四边形的性质得AD//BC,然后由平行四边形的判定即可得出结论.此题考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.19.【答案】解:(1)由题意得,m=15÷25%=60,∴a=60×30%=18,∴b=60−12−18−15−6=9,×100%=15%,∴n%=960∴n=15,样本的众数为3;=450(名),(2)900×12+1860答:估计得分超过2分的学生人数有450名.【解析】(1)用频数分布表中2分的频数除以扇形统计图中2分的百分比可得m的值,用总人数乘以3分百分比求出a的值,即可求出b的值,用b的值除以总人数即可求出n的值,根据众数的定义即可求出众数;(2)根据用样本估计总体,用900乘以样本中超过2分的学生人数所占的百分比,即可得出答案.本题考查扇形统计图、频数(率)分布表、众数、用样本估计总体,能够读懂统计图表,掌握用样本估计总体、众数的定义是解答本题的关键.20.【答案】(1)证明:连接OD,OA,作OH⊥AB于H,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AC与⊙O相切于点D,∴OD⊥AC,而OH⊥AB,∴OH=OD,∴AC是⊙O的切线;(2)由(1)知OD⊥AC,在Rt△OCD中,CD=4,OC=OF+CF=OD+2,OD2+CD2=OC2,∴OD2+42=(OD+2)2,∴OD=3,∴OC=5,∴cosC=CDOC =45,在Rt△OCA中,cosC=OCAC =45,∴sin∠OAC=OCAC =45.【解析】(1)连接OD,连接OD,OA,作OH⊥AB于H,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AC,然后利用角平分线的性质得到OH=OD,从而根据切线的判定定理得到结论;(2)在Rt△OCD中,根据勾股定理求得OD=3,OC=5,进而得到cosC=45,在Rt△OCA中,由cosC=OCAC=45,即可求出sin∠OAC.本题考查了切线的判定与性质,解直角三角形,等腰三角形的性质,角平分线的性质,综合运用相关知识是解决问题的关键.21.【答案】解:(1)如图1中,线段AD即为所求;(2)如图1中,点E即为所求;(2)如图2中,点C,射线AF,点G即为所求;(3)如图2中,线段MN即为所求.【解析】(1)根据三角形中线的定义画出图形;(2)作点A故BC的对称点A′,连接CA′交射线ADF于点E,点E即为所求;(3)构造等腰直角三角形AFC即可;(4)取格点P,Q,E,W,K,L,连接排球,EW,KL,PQ交射线AF于点M,EW交KL于点J,连接MJ,延长MJ交BC一点N,线段MN即为所求(证明△ABG≌△MNG,可得结论).本题考查作图−旋转变换,角平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.【答案】解:(1)①∵y=ax2+x经过点(9,3.6),∴81a+9=3.6.解得:a=−115.∵y=−12x+b经过点(9,3.6),∴3.6=−12×9+b.解得:b=8.1;②由①得:y=−115x2+x=−115(x2−15x+2254)+154=−115(x−152)2+154(0≤x≤9).∴火箭运行的最高点是154km.∴154−1.35=2.4(km).∴2.4=−115x2+x.整理得:x2−15x+36=0.解得:x1=12>9(不合题意,舍去),x2=3.由①得:y=−12x+8.1.∴2.4=−12x+8.1.解得:x=11.4.∴11.4−3=8.4(km).答:这两个位置之间的距离为8.4km;(2)当x=9时,y=81a+9.∴火箭第二级的引发点的坐标为(9,81a+9).设火箭落地点与发射点的水平距离为15km.∴y=−12x+b经过点(9,81a+9),(15,0)∴{−12×9+b=81a+9−12×15+b=0.解得:{a=−2 27b=7.5.∴−227<a<0时,火箭落地点与发射点的水平距离超过15km.【解析】(1)①、易得火箭第二级的引发点的坐标为(9,3.6),分别代入抛物线的解析式和直线的解析式可得a和b的值;②、把①中得到的抛物线的解析式整理成顶点式,可得火箭运行的最高点的坐标,取纵坐标减去1.35km即为相应的高度,把所得高度分别代入①中得到的两个函数解析式,求得合适的x的值,相减即为两个位置间的距离;(2)假设火箭落地点与发射点的水平距离为15km.用a表示出火箭第二级的引发点的坐标,把火箭第二级的引发点的坐标和(15,0)代入直线解析式可得火箭落地点与发射点的水平距离恰好为15km时a和b的值,进而结合抛物线开口向下可得a的取值范围.本题考查二次函数的应用.比火箭运行的最高点低的高度,要从求得的两个函数解析式去考虑合适的自变量的取值;求火箭落地点与发射点的水平距离超过15km时a的取值范围,需要求出火箭落地点与发射点的水平距离恰好是15km时a的值.23.【答案】(1)证明:∵E、F分别是AB和BC中点,∴BE AB =12,BFBC=12,∵四边形ABCD是矩形,∴AB=CD,∴BE CD =BFBC,∵∠EBF=∠C=90°,∴△BCD∽△FBE;(2)方法一:如图延长FE交DA延长线于点M,作FH⊥AD于点H,则四边形CDHF是矩形.∵E是AB中点,∴AE=BE,∵AM//BC,∴∠AME=∠BFE,∠MAE=∠FBE,∴△AME≌△BFE(AAS),∴AM=BF,∵AD=2CF,CF=DH,∴AH=DH=CF,∴AM+AH=BF+CF,即MH=BC,∵FH=CD,∠MHF=∠BCD=90°,∴△MFH≌△BDC(SAS),∴∠AMF=∠CBD,又∵∠AMF=∠BFG,∴∠CBD=∠BFG,∴BG=FG;方法二:如图,取BD中点H,连接EH、CH,∵E是AB中点,H是BD中点,∴EH=1AD,EH//AD,2∵AD=2CF,∴EH=CF,∵AD//BC,∴EH//CF,∴四边形EHCF是平行四边形,∴EF//CH,∴∠HCB=∠GFB,∵∠BCD=90°,H是BD中点,∴CH=12BD=BH,∴∠HCB=∠HBC,∴∠GFB=∠HBC,∴BG=FG;(3)如图,过F作FM⊥AD于点M,取BD中点H,连接AF,则四边形CDMF是矩形,∴CF=DM,∵AD=2CF,∴AM=DM=CF,设CF=a,则AM=DM=CF=a,AD=CD=2a=MF,∴AF=√ AM2+MF2=√ 5a,∵E是AB中点,且AG=FG,∴FE垂直平分AB,∴BF=AF=√ 5a,∵H是BD中点,∴EH是△ABD中位线,∴EH=12AD=a,EH//AD//BC,∴△EGH∽△FGB,∴EG GF =EHBF=√ 5a=√ 55.【解析】(1)根据中点可得出两边对应成比例且夹角相等得两个三角形相似;(2)由中点和平行线可以联想作倍长中线全等,即延长FE 交DA 延长线于点M ,作FH ⊥AD 于点H ,证△AME ≌△BFE(AAS),再证△MFH ≌△BDC(SAS)即可得证;(3)这一问是建立在第二问的基础上,所以很容易想到构造相似通过线段关系转化求解,过F 作FM ⊥AD 于点M ,取BD 中点H ,连接AF ,设CF =a ,则AM =DM =CF =a ,AD =CD =2a =MF ,AF =√ 5a ,证FE 垂直平分AB 得到AF =BF =√ 5a ,再证△EGH ∽△FGB 即可求解.本题主要考查了相似三角形的判定和性质、矩形的性质、全等三角形的判定和性质、直角三角形斜边中线等于斜边的一半以及中位线定理等知识点,熟练掌握以上知识和添加辅助线是解题的关键.24.【答案】解:(1)在y =12x 2+2x −52中,令x =0得y =−52,∴C(0,−52),令y =0得0=12x 2+2x −52,解得x =−5或x =1, ∴A(1,0),B(−5,0);(2)设直线AC 的解析式为y =kx +b(k ≠0), 把A(,0),C(0,−52)代入得: {k +b =0b =−52, 解得:{k =52b =−52, ∴直线AC 的解析式为y =52x −52,由PQ//AC ,设直线PQ 的解析式为y =52x +b′,设P(t,12t 2+2t −52), ∴12t 2+2t −52=52t +b′, ∴b′=12t 2−12t −52,∴直线PQ 的解析式为y =52x +12t 2−12t −52,令x =0得y =12t 2−12t −52,∴Q(0,12t 2−12t −52); ∵BC 平分线段PQ ,∴PQ 的中点(t 2,12t 2+34t −52)在直线BC 上,由B(−5,0),C(0,−52)得直线BC 解析式为y =−12x −52,∴12t 2+34t −52=−t 4−52, 解得t =−2或t =0(舍去), ∴P(−2,−92);(3)过点G 作TS//x 轴,过点E ,F 分别作TS 的垂线,垂足分别为T ,S ,如图:∴∠T =∠S =∠EGF =90°, ∴∠EGT =90°−∠FGS =∠GFS , ∴△ETG ∽△GSF , ∴ET GS=TG FS, ∴ET ⋅FS =GS ⋅TG ,∵点D 与原点O 关于C(0,−52) 对称,∴D(0.−5),设直线EF 的解析式为y 1=k 1x ,直线ED 的解析式为y 2=k 2x −5, 联立{y 1=k 1x y =12x 2+2x −52得:k 1x =12x 2+2x −52,∴12x 2+(2−k 1)x −52=0,联立{y 2=k 2x −5y =12x 2+2x −52得:k 2x −5=12x 2+2x −52,∴12x 2+(2−k 2)x +52=0, 设x E =e ,x F =f ,x G =g ,∴ef =−5,eg =5,e +g =2k 2−4,∴f =−g ,ET =12e 2+2e −52−(12g 2+2g −52)=12(e +g +4)(e −g),FS =12f 2+2f −52−(12g 2+2g −52)=12(f +g +4)(f −g),∵ET ⋅FS =GS ⋅TG ,∴12(e +g +4)(e −g)⋅12(f +g +4)(f −g)=(g −e)(f −g), ∴12(e +g +4)(e −g)⋅12(−g +g +4)(−g −g)=(g −e)(−g −g), ∴e +g =−5, ∴2k 2−4=−5, 解得k 2=−12,∴直线DE 解析式为y =−12x −5.【解析】(1)在y =12x 2+2x −52中,令x =0得C(0,−52),令y =0得A(1,0),B(−5,0);(2)由A(,0),C(0,−52)得直线AC 的解析式为y =52x −52,设直线PQ 的解析式为y =52x +b′,P(t,12t 2+2t −52),可得b′=12t 2−12t −52,故Q(0,12t 2−12t −52);根据BC 平分线段PQ ,知PQ 的中点(t 2,12t 2+34t −52)在直线BC 上,求得直线BC 解析式为y =−12x −52,有12t 2+34t −52=−t 4−52,解出t 的值从而可得P(−2,−92); (3)过点G 作TS//x 轴,过点E ,F 分别作TS 的垂线,垂足分别为T ,S ,证明△ETG ∽△GSF ,可得ET ⋅FS =GS ⋅TG ,求出D(0.−5),设直线EF 的解析式为y 1=k 1x ,直线ED 的解析式为y 2=k 2x −5,联立{y 1=k 1x y =12x 2+2x −52得12x 2+(2−k 1)x −52=0,联立{y 2=k 2x −5y =12x 2+2x −52得12x2+(2−k 2)x +52=0,设x E =e ,x F =f ,x G =g ,故ef =−5,eg =5,e +g =2k 2−4,从而知f =−g ,ET =12e 2+2e −52−(12g 2+2g −52)=12(e +g +4)(e −g),FS =12f 2+2f −52−(12g 2+2g −52)=12(f +g +4)(f −g),故12(e +g +4)(e −g)⋅12(f +g +4)(f −g)=(g −e)(f −g),可得e +g =−5,即得2k 2−4=−5,k 2=−12,得直线DE 解析式为y=−1x−5.2本题考查二次函数综合问题,一次函数与二次函数综合,中点坐标公式,相似三角形的性质与判定,一元二次方程根与系数的关系,熟练掌握以上知识是解题的关键.。
2022年湖北省武汉市中考数学真题(解析版)
2022年武汉市初中毕业生学业考试数学试卷一、选择题1.2022的相反数是()A.12022 B.12022C.−2022D.2022【答案】C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【答案】D【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件.故选:D.【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.计算()342a 的结果是()A.122a B.128a C.76a D.78a 【答案】B 【解析】【分析】直接运用幂的乘方、积的乘方计算即可.【详解】解:()()()4134233228a a a ==.故答案为B .【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5.如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B.C. D.【答案】A 【解析】【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形.故选:A .【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解答本题的关键.6.已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A.120y y +< B.120y y +> C.12y y < D.12y y >【答案】C 【解析】【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是()A.B. C. D.【答案】A 【解析】【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA 段上升最慢,AB 段上升较快,BC 段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢,∴题中图象所表示的容器应是下面最粗,中间其次,上面最细;故选:A .【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是()A.14B.13C.12D.23【答案】C 【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122=.故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.9.如图,在四边形材料ABCD 中,AD BC ∥,90A ∠=︒,9cm AD =,20cm AB =,24cm BC =.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.110cm 13B.8cmC.62cmD.10cm【答案】B 【解析】【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵AD BC ∥,∠BAD =90°,∴△EAD ∽△EBC ,∠B =90°,∴EA AD EB BC=,即92024EA EA =+,∴12cm EA =,∴EB =32cm ,∴2240cm EC EB BC =+=,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵=EBC EOB COB EOC S S S S ++△△△△,∴11112222EB BC EB OF BC OG EC OH ⋅=⋅+⋅+⋅,∴()2432=243240OF ⨯++⋅,∴8cm OF =,∴此圆的半径为8cm ,故选B .【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12【答案】D【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可.【详解】解:设如图表所示:x62022z yn m根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y =3z -24=12故选:D .【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.二、填空题11.的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/cm 2424.52525.526销售量/双131042【答案】25【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码25的运动鞋销售量最多为10双,即众数为25.故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.13.计算:22193x x x ---的结果是__.【答案】13x +.【解析】【分析】【详解】原式23(3)(3)(3)(3)x x x x x x +=-+-+-23(3)(3)x x x x --=+-3(3)(3)x x x -=+-13x =+.故答案为:13x +.14.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600m BC =,105BCD ∠=︒,则C ,D 两点的距离是_________m .【答案】【解析】【分析】如图所示:过点C 作CE BD ⊥于点E ,先求出800m CE =,再根据勾股定理即可求出CD 的长.【详解】如图所示:过点C 作CE BD ⊥于点E ,则∠BEC =∠DEC =90°,150ABC ∠=︒ ,30CBD ∴∠=︒,∴∠BCE =90°-30°=60°,又105BCD ∠=︒ ,45CDB ∴∠=︒,∴∠ECD =45°=∠D ,∴CE DE =,1600m BC = ,111600800m 22CE BC ∴==⨯=,22222CD CE DE CE ∴=+=,即CD ==.故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15.已知抛物线2y ax bx c =++(a ,b ,c 是常数)开口向下,过()1,0A -,(),0B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<;③若点()11,M x y ,()22,N x y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a ≤-时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是_________(填写序号).【答案】①③④【解析】【分析】首先判断对称轴02bx a=->,再由抛物线的开口方向判断①;由抛物线经过A (-1,0),(),0B m ,当32m =时,()312y a x x ⎛⎫=+- ⎪⎝⎭,求出32c a =-,再代入32a c +判断②,抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,由点()11,M x y ,()22,N x y 在抛物线上,得()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,通过判断12x x -,121x x m ++-的符号判断③;将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,再利用判别式即可判断④.【详解】解: 抛物线过()1,0A -,(),0B m 两点,且12m <<,122b m x a -+∴=-=,12m <<,11022m -+∴<<,即02ba-, 抛物线开口向下,0a <,0b ∴>,故①正确;若32m =,则()23131222y a x x ax ax a ⎛⎫=+-=-- ⎪⎝⎭,32c a ∴=-,3323202a c a a ⎛⎫∴+=+⨯-= ⎪⎝⎭,故②不正确;抛物线()()()2211y ax bx c a x x m ax a m x am =++=+-=+--,点()11,M x y ,()22,N x y 在抛物线上,∴()21111y ax a m x am =+--,()22221y ax a m x am =+--,把两个等式相减,整理得()()1212121y y a x x x x m -=-++-,120,a x x << ,121x x +>,12m <<,12120,10x x x x m ∴-<++->,()()12121210y y a x x x x m ∴-=-++->,12y y ∴>,故③正确;依题意,将方程21ax bx c ++=写成a (x -m )(x +1)-1=0,整理,得()2110x m x m a+---=,()()2214141m m m a a ⎛⎫∴∆=----=++ ⎪⎝⎭,12m << ,1a ≤-,()2419m ∴<+<,44a≥-,()2410m a∴++>,故④正确.综上所述,①③④正确.故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.16.如图,在Rt ABC 中,90ACB ∠=︒,AC BC >,分别以ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若5CI =,4CJ =,则四边形AJKL 的面积是_________.【答案】80【解析】【分析】连接LC 、EC 、EB ,LJ ,由平行线间同底的面积相等可以推导出:JAL CAL BAE EAC S S S S == ,,由CAL EAB ≅ ,可得CAL EAB S S = ,故JAL CAL BAE EAC S S S S === ,证得四边形ALKJ 是矩形,可得2ALJ ALKJ S S = 矩形,在正方形ACDE 中可得:2EAC ACDE S S = 正方形,故得出:2ALKJ S AC =矩形.由ACJ CBJ ,可得CJ AJBJ CJ=,即可求出8AJ =,可得出【详解】连接LC 、EC 、EB ,LJ ,在正方形ABHL ,ACDE ,BCFG 中90,ALK LAB EAC ACD BCF ∠=∠=∠=∠=∠=︒,,,,AL AB EA AC BC CF AC CD AE CD ==== ,AB LH ,2EAC ACDE S S = 正方形.∵CK LH ⊥,∴90CKL ∠=︒,CK AB⊥∴180CKL ALK ∠+∠=︒,90CJA CJB ∠=∠=︒∴CK AL ,∴CAL JAL S S = .∵90JKL ALK JAL ∠=∠=∠=︒,∴四边形ALKJ 是矩形,∴2ALJ ALKJ S S = 矩形.∵LAB EAC ∠=∠,∴LAB BAC EAC BAC ∠+∠=∠+∠,∴EAB CAL ∠=∠,∵,,AL AB EA AC ==∴CAL EAB ≅ ,∴CAL EAB S S = .∵AE CD ∥,∴EAB EAC S S = .∴JAL CAL BAE EACS S S S === ∴22EAC ALKJ ACDE S S S AC === 矩形正方形.∵90,DCA BCF DCF BCD ∠=∠=︒∠=∠.∴90DCF BCD ∠=∠=︒,∵,,BC CF AC CD ==∴ABC DCF ≅ ,∴,CAB CDF AB DF ∠=∠=,∵90,90ACB CJB ∠=︒∠=︒,∴90,90CAB ABC JCB CBJ ∠+∠=︒∠+∠=︒,∴CAB JCB ∠=∠,∵DCI JCB ∠=∠,∴DCI IDC ∠=∠,∴5ID CI ==,∵90,90IDC DFC DIC ICF ∠+∠=︒∠+∠=︒,∴ICF IFC ∠=∠,∴5IF CI ==,∴10DF =,∴10AB =.设,10AJ x BJ x ==-,∵,,CAJ BCJ CJA CJB ∠=∠∠=∠∴ACJ CBJ ,∴CJ AJBJ CJ=,∴4104xx =-,∴1228x x ==,,∵AC BC >,∴AJ BJ >,∴10x x >-,∴5x >,∴8x =.∴222224880AC CJ AJ =+=+=,∴280ALKJ S AC ==矩形.故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.三、解答题17.解不等式组2532x x x -≥-⎧⎨<+⎩①②请按下列步骤完成解答.(1)解不等式①,得_________;(2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.【答案】(1)3x ≥-(2)1x <(3)详见解析(4)31x -≤<【解析】【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集.【小问1详解】解:解不等式①,得3x ≥-【小问2详解】解:解不等式②,得1x <【小问3详解】解:把不等式①和②的解集在数轴上表示出来:【小问4详解】解:由图可得,原不等式组的解集是:31x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【答案】(1)100BAD ∠=︒(2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.【小问1详解】解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.【小问2详解】证明:∵AE 平分BAD ∠,∴50DAE ∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19.为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,B 项活动所在扇形的圆心角的大小是_________,条形统计图中C 项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【答案】(1)80,54︒,20(2)大约有800人【解析】【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本容量及B 项活动所在扇形的圆心角度数,从而求得C 项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案.【小问1详解】解:样本容量:16÷20%=80(人),B 项活动所在扇形的圆心角:123605480︒⨯=︒,C 项活动的人数:80-32-12-16=20(人);故答案为:80,54°,20;【小问2详解】解:32200080080⨯=(人),答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20.如图,以AB 为直径的O 经过ABC 的顶点C ,AE ,BE 分别平分BAC ∠和ABC ∠,AE 的延长线交O 于点D ,连接BD .(1)判断BDE 的形状,并证明你的结论;(2)若10AB =,BE =BC 的长.【答案】(1)BDE 为等腰直角三角形,详见解析(2)8BC =【解析】【分析】(1)由角平分线的定义、结合等量代换可得BED DBE ∠=∠,即BD ED =;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接OC ,CD ,OD ,OD 交BC 于点F .先说明OD 垂直平分BC .进而求得BD 、OD 、OB 的长,设OF t =,则5DF t =-.然后根据勾股定理列出关于t 的方程求解即可.【小问1详解】解:BDE 为等腰直角三角形,证明如下:证明:∵AE 平分BAC ∠,BE 平分ABC ∠,∴BAE CAD CBD ∠=∠=∠,ABE EBC ∠=∠.∵BED BAE ABE ∠=∠+∠,DBE DBC CBE ∠=∠+∠,∴BED DBE ∠=∠.∴BD ED =.∵AB 为直径,∴90ADB ∠=︒.∴BDE 是等腰直角三角形.【小问2详解】解:如图:连接OC ,CD ,OD ,OD 交BC 于点F .∵DBC CAD BAD BCD ∠=∠=∠=∠,∴BD DC =.∵OB OC =,∴OD 垂直平分BC .∵BDE 是等腰直角三角形,BE =∴BD =.∵10AB =,∴5OB OD ==.设OF t =,则5DF t =-.在Rt BOF 和Rt BDF V 中,22225(5)t t -=--.解得,3t =.∴4BF =.∴8BC =.【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键.21.如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC 的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D ,E 分别是边AB ,AC 与网格线的交点.先将点B 绕点E 旋转180︒得到点F ,画出点F ,再在AC 上画点G ,使DG BC ∥;(2)在图(2)中,P 是边AB 上一点,BAC α∠=.先将AB 绕点A 逆时针旋转2α,得到线段AH ,画出线段AH ,再画点Q ,使P ,Q 两点关于直线AC 对称.【答案】(1)作图见解析(2)作图见解析【解析】【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出DG BC ∥;(2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出P ,Q 两点关于直线AC 对称【小问1详解】解:作图如下:取格点F ,连接AF,AF BC ∥且AF BC =,所以四边形ABCF 是平行四边形,连接BF,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点;【小问2详解】解:作图如下:取格点D 、E ,连接DE ,AC 平行于DE ,取格点R ,连接BR 并延长BR 交DE 于一点H ,连接AH ,此线段即为所求作线段;理由如下:取格点W 连接AW 、CW ,连接CR ,∴AWC RCB ≅ ,∴WAC CRB ∠=∠,∵90WAC ACW ∠+∠=︒,∴90CRB ACW ∠+∠=︒,∴90RKC ∠=︒,∴AC BH ⊥,∵DH CK ∥,∴BK BCBH BD=,∵点C 是BD 的中点,∴点K 是BH 的中点,即BK KH =,∴AC 垂直平分BH ,∴AB AH =.连接PH ,交AC 于点M ,连接BM 交AH 于点Q ,则该点就是点P 关于AC 直线的对称点.理由如下:∵AC 垂直平分BH ,∴BMH 是等腰三角形,PAM QAM ∠=∠,∴BMK AMQ HMK AMP ∠=∠=∠=∠,∴AMP AMQ ≅ ,∴AP AQ =,∴P ,Q 两点关于直线AC 对称.【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.22.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度v (单位:cm/s )、运动距离y (单位:cm )随运动时间t (单位:s )变化的数据,整理得下表.运动时间/s t 01234运动速度/cm/s v 109.598.58运动距离/cmy 09.751927.7536小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直..以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.【答案】(1)1102v t =-+,21104y t t =-+(2)6cm/s(3)黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球【解析】【分析】(1)根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入两组数值求解即可;根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm 时,代入(1)式中y 关于t 的函数解析式求出时间t ,再将t 代入v 关于t 的函数解析式,求得速度v 即可;(3)设黑白两球的距离为cm w ,得到217028704w t y t t =+-=-+,化简即可求出最小值,于是得到结论.【小问1详解】根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为v =kt +b ,代入(0,10),(1,9.5)得,109.5b k b =⎧⎨=+⎩,解得1210k b ⎧=-⎪⎨⎪=⎩,∴1102v t =-+,根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为2y at bt c =++,代入(0,0),(1,9.75),(2,19)得09.751942c a b a b =⎧⎪=+⎨⎪=+⎩,解得14100a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴21104y t t =-+;【小问2详解】依题意,得2110644t t -+=,∴2402560t t -+=,解得,18t =,232t =;当18t =时,6v =;当232t =时,6v =-(舍);答:黑球减速后运动64cm 时的速度为6cm/s .【小问3详解】设黑白两球的距离为cm w ,217028704w t y t t =+-=-+21(16)64t =-+,∵104>,∴当16t =时,w 的值最小为6,∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.23.问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究A FA B 的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出A F A B 的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n =<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出A F A B 的值(用含n 的式子表示).【答案】(1)[问题提出](1)14;(2)见解析(2)[问题拓展]24n -【解析】【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解;(2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC △≌△,得出,GH EC =,证明EDH EFB △∽△,得到2+2FB EB n DH EH ==,进而可得AF AB =24n -.【小问1详解】[问题探究]:(1)如图,ABC 中,AB AC =,D 是AC 的中点,60BAC ∠=︒,ABC ∴ 是等边三角形,12AD AB =30ABD DBE ∴∠=∠=︒,60A ∠=︒,DB DE ∴=,30E DBE ∴∠=∠=︒,180120DCE ACB ∠=︒-∠=︒ ,18030ADF CDE E DCE ∴∠=∠=︒-∠-∠=︒,60A ∠=︒ ,90AFD ∴∠=︒,12AF AD ∴=,1124AD AF AB AB ∴==.(2)证明:取BC 的中点H ,连接DH.∵D 是AC 的中点,∴DH AB ∥,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =.∴32EB EH =.∵DH AB ∥,∴EDH EFB △∽△.∴32FB EB DH EH ==.∴34FB AB =.∴14AF AB =.【小问2详解】[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB =.∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC =.HE CG∴= ()12CG n BC n=<BC nCG∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++==== ⎪⎝⎭.∵DH AB ∥,∴EDH EFB △∽△.∴2+2FB EB n DH EH ==.∴24FB n AB +=.∴42244AF n n AB ---==.∴AF AB =24n -.【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.24.抛物线223y x x =--交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图(1),当OP OA =时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图(2),直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FP OP的值(用含m 的式子表示).【答案】(1)()1,0A -,()3,0B ;(2)0,3412-或3412+;(3)13m .【解析】【分析】(1)令223=0x x --求出x 的值即可知道A ,B 两点的坐标;(2)求出直线AC 的解析式为1y x =+,分情况讨论:①若点D 在AC 下方时,②若点D 在AC 上方时;(3)设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx by x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.利用A ,B 点的横坐标求出3m b =+,13b n =--,设直线CE 的解析式为y px q =+,求出3mn q =--,进一步求出OP b =,213FP b b =+即可求出答案.【小问1详解】解:令223=0x x --,解得:11x =-,2=3x ,∴()1,0A -,()3,0B .【小问2详解】解:∵1OP OA ==,∴()0,1P ,∴直线AC 的解析式为1y x =+.①若点D 在AC 下方时,过点B 作AC 的平行线与抛物线的交点即为1D .∵()3,0B ,1BD AC ∥,∴1BD 的解析式为3y x =-.联立2323y x y x x =-⎧⎨=--⎩,解得,10x =,23x =(舍).∴点1D 的横坐标为0.②若点D 在AC 上方时,点()10,3D -关于点P 的对称点为()0,5G .过点G 作AC 的平行线l ,则l 与抛物线的交点即为符合条件的点D .直线l 的解析式为5y x =+.联立2523y x y x x =+⎧⎨=--⎩,得2380x x --=,解得,13412x -=,23412x +=.∴点2D ,3D 的横坐标分别为3412,3412+.∴符合条件的点D 的横坐标为:0,3412-或3412+.【小问3详解】解:设点E 的横坐标为n .过点P 的直线解析式为y kx b =+.联立223y kx by x x =+⎧⎨=--⎩,得2(2)30x k x b -+--=.设1x ,2x 是方程2(2)30x k x b -+--=两根,则123x x b =--.(*)∴3A C B E x x x x b ==--.∵1A x =-,∴3C x b =+,∴3m b =+.∵3B x =,∴13E b x =--,∴13b n =--.设直线CE 的解析式为y px q =+,同(*)得3mn q =--,∴3q mn =--.∴21(3)13233b q b b b ⎛⎫=-+---=+ ⎪⎝⎭.∴2123OF b b =+.∵OP b =,∴213FP b b =+.∴1111(3)1333FP b m m OP =+=-+=.【点睛】本题考查二次函数与一次函数的综合,难度较大,需要掌握函数与x 轴交点坐标,x x--进行求解;(2)的关键是分点D在AC下方和在AC上方时(1)的关键是令223=0两种情况讨论:(3)的关键是求出OP,FP.。
2022年湖北省武汉市中考数学试卷和答案解析
2022年湖北省武汉市中考数学试卷和答案解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数2022的相反数是()A.﹣2022B.﹣C.D.2022 2.(3分)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件3.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.4.(3分)计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a75.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.(3分)已知点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y2 7.(3分)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.8.(3分)班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.B.C.D.9.(3分)如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A .cm B.8cm C.6cm D.10cm 10.(3分)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出参考答案过程,请将结果直接填写在答题卡指定的位置.11.(3分)计算的结果是.12.(3分)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是.尺码2424.52525.526/cm销售量131042/双13.(3分)计算﹣的结果是.14.(3分)如图,沿AB方向架桥修路,为加快施工进度,在直线AB上湖的另一边的D处同时施工.取∠ABC=150°,BC=1600m,∠BCD=105°,则C,D两点的距离是m.15.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数)开口向下,过A(﹣1,0),B(m,0)两点,且1<m<2.下列四个结论:①b>0;②若m=,则3a+2c<0;③若点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,则y1>y2;④当a≤﹣1时,关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.其中正确的是(填写序号).16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH 于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.三、参考答案题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组请按下列步骤完成参考答案.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.18.(8分)如图,在四边形ABCD中,AD∥BC,∠B=80°.(1)求∠BAD的度数;(2)AE平分∠BAD交BC于点E,∠BCD=50°.求证:AE∥DC.19.(8分)为庆祝中国共青团成立100周年,某校开展四项活动:A项参观学习,B项团史宣讲,C项经典诵读,D项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是,B项活动所在扇形的圆心角的大小是,条形统计图中C项活动的人数是;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.20.(8分)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.21.(8分)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.22.(10分)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.01234运动时间t/s运动速度109.598.58v/cm/s09.751927.7536运动距离y/cm小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.23.(10分)问题提出如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F ,探究的值.问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC 上一点,=(n<2),延长BC至点E,使点DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).24.(12分)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).参考答案与解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.【参考答案】解:实数2022的相反数是﹣2022,故选:A.【解析】本题主要考查相反数的定义,熟练掌握相反数的定义是参考答案此题的关键.2.【参考答案】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.【解析】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的定义是解题的关键.3.【参考答案】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【解析】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.【参考答案】解:(2a4)3=8a12,故选:B.【解析】本题考查了幂的乘方与积的乘方,熟练掌握幂的乘方与积的乘方运算法则是解题的关键.5.【参考答案】解:从正面看共有两层,底层三个正方形,上层左边是一个正方形.故选:A.【解析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.【参考答案】解:∵反比例函数y=中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y随x的增大而减小,∵点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,且x1<0<x2,∴点A位于第三象限,点B位于第一象限,∴y1<y2.故选:C.【解析】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的性质是参考答案此题的关键.7.【参考答案】解:注水量一定,函数图象的走势是平缓,稍陡,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为选项A.故选:A.【解析】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.8.【参考答案】解:画树状图为:共有24种等可能的结果数,其中A,B两位同学座位相邻的结果数为12,故A,B两位同学座位相邻的概率是=.故选:C.【解析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.【参考答案】解:如图,当AB,BC,CD相切于⊙O于点E,F,G时时,⊙O的面积最大.连接OA,OB,OC,OD,OE,OF,OG,过点D作DH⊥BC于点H.∵AD∥CB,∠BAD=90°,∴∠ABC=90°,∵∠DHB=90°,∴四边形ABHD是矩形,∴AB=DH=20cm,AD=BH=9cm,∵BC=24cm,∴CH=BC﹣BH=24﹣9=15(cm),∴CD===25(cm),设OE=OF=OG=rcm,则有×(9+24)×20=×20×r+×24×r+×25×r+×9×(20﹣r),∴r=8,故选:B.【解析】本题考查切线的性质,直角梯形的性质,勾股定理等知识,解题的关键是理解题意,学会利用面积法构建方程解决问题.10.【参考答案】解:∵每一横行、每一竖列以及两条对角线上的3个数之和相等,∴最左下角的数为:6+20﹣22=4,∴最中间的数为:x+6﹣4=x+2,或x+6+20﹣22﹣y=x﹣y+4,最右下角的数为:6+20﹣(x+2)=24﹣x,或x+6﹣y=x﹣y+6,∴,解得:,∴x+y=12,故选:D.【解析】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出参考答案过程,请将结果直接填写在答题卡指定的位置.11.【参考答案】解:法一、=|﹣2|=2;法二、==2.故答案为:2.【解析】本题考查了二次根式的性质,掌握“=|a|”是解决本题的关键.12.【参考答案】解:由表知,这组数据中25出现次数最多,有10次,所以这组数据的众数为25,故答案为:25.【解析】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.【参考答案】解:原式=﹣===.故答案为:.【解析】本题考查了分式的加减,掌握异分母分式的加减法法则,是解决本题的关键.14.【参考答案】解:过点C作CE⊥BD,垂足为E.∵∠ABC=150°,∴∠DBC=30°.在Rt△BCE中,∵BC=1600m,∴CE=BC=800m,∠BCE=60°.∵∠BCD=105°,∴∠ECD=45°.在Rt△DCE中,∵cos∠ECD=,∴CD===800(m).故答案为:800.【解析】本题考查了解直角三角形的应用,掌握“直角三角形中30°角所对的边等于斜边的一半”及直角三角形的边角间关系是解决本题的关键.15.【参考答案】解:∵对称轴x=>0,∴对称轴在y轴右侧,∴﹣>0,∵a<0,∴b>0,故①正确;当m=时,对称轴x=﹣=,∴b=﹣,当x=﹣1时,a﹣b+c=0,∴c=0,∴3a+2c=0,故②错误;由题意,抛物线的对称轴直线x=h,0<h<0.5,∵点M(x1,y1),N(x2,y2)在抛物线上,x1<x2,且x1+x2>1,∴点M到对称轴的距离<点N到对称轴的距离,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)(x﹣m),方程a(x+1)(x﹣m)=1,整理得,ax2+a(1﹣m)x﹣am﹣1=0,Δ=[a(1﹣m)]2﹣4a(﹣am﹣1)=a2(m+1)2+4a,∵1<m<2,a≤﹣1,∴Δ>0,∴关于x的一元二次方程ax2+bx+c=1必有两个不相等的实数根.故④正确,故答案为:①③④.【解析】本题考查二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.16.【参考答案】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.【解析】本题考查正方形的性质,勾股定理,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,利用全等三角形的性质进行求解.三、参考答案题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.【参考答案】解:(1)解不等式①,得:x≥﹣3;(2)解不等式②,得:x<1;(3)把不等式①和②的解集在数轴上表示出来为:(4)原不等式组的解集为:﹣3≤x<1.故答案为:(1)x≥﹣3;(2)x<1;(4)﹣3≤x<1.【解析】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,体现了数形结合的思想,在数轴上找到解集的公共部分是解题的关键.18.【参考答案】(1)解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=80°,∴∠BAD=100°;(2)证明:∵AE平分∠BAD,∴∠DAE=50°,∵AD∥BC,∴∠AEB=∠DAE=50°,∵∠BCD=50°,∴∠AEB=∠BCD,∴AE∥DC.【解析】本题考查的是平行线的判定和性质、角平分线的定义,掌握平行线的性质是解题的关键.19.【参考答案】解:(1)本次调查的样本容量是16÷20%=80,B 项活动所在扇形的圆心角的大小是360°×=54°,条形统计图中C项活动的人数是80﹣32﹣12﹣16=20(人),故答案为:80,54°,20;(2)2000×=800(人),答:该校意向参加“参观学习”活动的人数约为800人.【解析】本题考查了条形统计图,扇形统计图,用样本估计总体,正确地理解题意是解题的关键.20.【参考答案】解:(1)△BDE为等腰直角三角形.理由如下:∵AE 平分∠BAC,BE 平分∠ABC,∴∠BAE=∠CAD=∠CBD,∠ABE=∠EBC.∵∠BED=∠BAE+∠ABE,∠DBE=∠DBC+∠CBE,∴∠BED=∠DBE.∴BD=ED.∵AB为直径,∴∠ADB=90°∴△BDE是等腰直角三角形.另解:计算∠AEB=135°也可以得证.(2)解:连接OC、CD、OD,OD交BC于点F.∵∠DBC=∠CAD=∠BAD=∠BCD.∴BD=DC.∵OB=OC.∴OD垂直平分BC.∵△BDE是等腰直角三角形,BE=2,∴BD=2.∵AB=10,∴OB=OD=5.设OF=t,则DF=5﹣t.在Rt△BOF和Rt△BDF中,52﹣t2=(2)2﹣(5﹣t)2,解得t=3,∴BF=4.∴BC=8.另解:分别延长AC,BD相交于点G.则△MBG为等腰三角形,先计算AG=10,BG=4,AD=4,再根据面积相等求得BC.【解析】此题是圆的综合题,主要考查了等腰直角三角形的性质,勾股定理等知识,证明△BDE是等腰直角三角形是解题关键.21.【参考答案】解:(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.【解析】本题考查作图﹣旋转变换,轴对称变换,平行线的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.22.【参考答案】解:(1)设v=mt+n,将(0,10),(2,9)代入,得,解得,,∴v=﹣t+10;设y=at2+bt+c,将(0,0),(2,19),(4,36)代入,得,解得,∴y=﹣t2+10t.(2)令y=64,即﹣t2+10t=64,解得t=8或t=32,当t=8时,v=6;当t=32时,v=﹣6(舍);(3)设黑白两球的距离为wcm,根据题意可知,w=70+2t﹣y=t2﹣8t+70=(t﹣16)2+6,∵>0,∴当t=16时,w的最小值为6,∴黑白两球的最小距离为6cm,大于0,黑球不会碰到白球.另解1:当w=0时,t2﹣8t+70=0,判定方程无解.另解2:当黑球的速度减小到2cm/s时,如果黑球没有碰到白球,此后,速度低于白球速度,不会碰到白球.先确定黑球速度为2cm/s 时,其运动时间为16s,再判断黑白两球的运动距离之差小于70 cm.【解析】本题属于函数综合应用,主要考查待定系数法求函数解析式,函数上的坐标特点等知识,(3)关键是弄明白如何判断黑白两球是否碰到.23.【参考答案】解:(1)如图,取AB的中点G,连接DG,∵点D是AC的中点,∴DG是△ABC的中位线,∴DG∥BC,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∵点D是AC的中点,∴∠DBC=30°,∵BD=ED,∴∠E=∠DBC=30°,∴DF⊥AB,∵∠AGD=∠ADG=60°,∴△ADG是等边三角形,∴AF=AG,∵AG=AB,∴AF=AB,∴;(2)取BC的中点H,连接DH,∵点D为AC的中点,∴DH∥AB,DH=AB,∵AB=AC,∴DH=DC,∴∠DHC=∠DCH,∵BD=DE,∴∠DBH=∠DEC,∴∠BDH=∠EDC,∴△DBH≌△DEC(ASA),∴BH=EC,∴,∵DH∥AB,∴△EDH∽△EFB,∴,∴,∴;问题拓展取BC的中点H,连接DH,由(2)同理可证明△DGH≌△DEC(ASA),∴GH=CE,∴HE=CG,∵=,∴,∴,∴,∵DH∥BF,∴△EDH∽△EFB,∴,∵DH=AB,∴,∴.【解析】本题是三角形综合题,主要考查了等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角形中位线定理等知识,作辅助线构造三角形全等是解题的关键.24.【参考答案】解:(1)令y=0,得x2﹣2x﹣3=0,解得x=3或﹣1,∴A(﹣1,0),B(3,0);(2)∵OP=OA=1,∴P(0,1),∴直线AC的解析式为y=x+1.①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.∵B(3,0),BD1∥AC,∴直线BD1的解析式为y=x﹣3,由,解得或,∴D1(0,﹣3),∴D1的横坐标为0.②若点D在AC的上方时,点D1关于点P的对称点G(0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.直线l的解析式为y=x+5,由,可得x2﹣3x﹣8=0,解得x=或,∴D2,D3的横坐标为,,综上所述,满足条件的点D的横坐标为0,,.(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,∴x A•x C=x B•x E=﹣3﹣b∵x A=﹣1,∴x C=3+b,∴m=3+b,∵x B=3,∴x E=﹣1﹣,∴n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q∴q=﹣mn﹣3,∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,∴OF=b2+2b,∴=b+1=(m﹣3)+1=m.【解析】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.。
湖北省武汉市2022年中考[数学]考试真题与答案解析
湖北省武汉市2022年中考[数学]考试真题与答案解析一、选择题下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1. 实数2022的相反数是( )A. -2022B. C.D. 202212022-120222. 彩民李大叔购买1张彩票,中奖.这个事件是( )A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C. D.4. 计算的结果是( )()342a A. B. C. D. 122a 128a 76a 78a 5. 如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.6. 已知点,在反比例函数的图象上,且,则下列结论一定正()11,A x y ()22,B x y 6y x=120x x <<确的是( )A. B. C. D. 120y y +<120y y +>12y y <12y y >7. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律h t 如图所示(图中为一折线).这个容器的形状可能是()OABCA. B. C. D.8. 班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机A B C D坐在①②③④四个座位,则,两位同学座位相邻的概率是()A BA. B.1413C. D.12239. 如图,在四边形材料中,,,,,ABCD AD BC∥90A∠=︒9cmAD=20cmAB= .现用此材料截出一个面积最大的圆形模板,则此圆的半径是()24cmBC=A. B. C. D.110cm138cm10cm10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是()x yA. 9B. 10C. 11D. 12二、填空题下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
2022年湖北省武汉市中考数学试卷(解析版)
2022年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数2022的相反数是()A .2022-B .12022-C .12022D .2022【分析】根据相反数的定义直接求解.【解答】解:实数2022的相反数是2022-,故选:A .2.(3分)彩民李大叔购买1张彩票,中奖.这个事件是()A .必然事件B .确定性事件C .不可能事件D .随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D .3.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A .B .C .D .【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A 、B 、C 不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D .4.(3分)计算43(2)a 的结果是()A .122a B .128a C .76a D .78a 【分析】根据幂的乘方与积的乘方运算法则,进行计算即可解答.【解答】解:4312(2)8a a =,故选:B .5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是()A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看共有两层,底层三个正方形,上层左边是一个正方形.故选:A .6.(3分)已知点1(A x ,1)y ,2(B x ,2)y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >【分析】先根据反比例函数6y x=判断此函数图象所在的象限,再根据120x x <<判断出1(A x ,1)y 、2(B x ,2)y 所在的象限即可得到答案.【解答】解: 反比例函数6y x=中的60>,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,点1(A x ,1)y ,2(B x ,2)y 在反比例函数6y x=的图象上,且120x x <<,∴点A 位于第三象限,点B 位于第一象限,12y y ∴<.故选:C .7.(3分)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是()A .B .C .D .【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为选项A .故选:A .8.(3分)班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是()A .14B .13C .12D .23【分析】画树状图展示所有24种等可能的结果数,再找出A ,B 两位同学座位相邻的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有24种等可能的结果数,其中A,B两位同学座位相邻的结果数为12,故A,B两位同学座位相邻的概率是121 242=.故选:C.9.(3分)如图,在四边形材料ABCD中,//AD BC,90A∠=︒,9AD cm=,20AB cm=,24BC cm=.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.11013cm B.8cm C.D.10cm【分析】如图,当AB,BC,CD相切于O于点E,F,G时,O的面积最大.连接OA,OB,OC,OD,OE,OF,OG,过点D作DH BC⊥于点H.利用面积法构建方程求解.【解答】解:如图,当AB,BC,CD相切于O于点E,F,G时时,O的面积最大.连接OA,OB,OC,OD,OE,OF,OG,过点D作DH BC⊥于点H.//AD CB,90BAD∠=︒,90ABC∴∠=︒,90DHB∠=︒,∴四边形ABHD 是矩形,20AB DH cm ∴==,9AD BH cm ==,24BC cm = ,24915()CH BC BH cm ∴=-=-=,25()CD cm ∴===,设OE OF OG r ===cm ,则有11111(924)202024259(20)22222r r r r ⨯+⨯=⨯⨯+⨯⨯+⨯⨯+⨯⨯-,8r ∴=,故选:B .10.(3分)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是()A .9B .10C .11D .12【分析】由题意:每一横行、每一竖列以及两条对角线上的3个数之和相等,表示出最中间的数和最右下角的数,列出二元一次方程组,解方程组即可.【解答】解: 每一横行、每一竖列以及两条对角线上的3个数之和相等,∴最左下角的数为:620224+-=,∴最中间的数为:642x x +-=+,或620224x y x y ++--=-+,最右下角的数为:620(2)24x x +-+=-,或66x y x y +-=-+,∴24246x x y x x y +=-+⎧⎨-=-+⎩,解得:102x y =⎧⎨=⎩,12x y ∴+=,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(32.【分析】利用二次根式的性质计算即可.【解答】|2|=-2=;=2=.故答案为:2.12.(3分)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是25.尺码/cm 2424.52525.526销售量/双131042【分析】根据众数的定义求解即可.【解答】解:由表知,这组数据中25出现次数最多,有10次,所以这组数据的众数为25,故答案为:25.13.(3分)计算22193x x x ---的结果是13x +.【分析】先通分,再加减.【解答】解:原式23(3)(3)(3)(3)x x x x x x +=-+-+-23(3)(3)x x x x --=+-3(3)(3)x x x -=+-13x =+.故答案为:13x +.14.(3分)如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取150ABC ∠=︒,1600BC m =,105BCD ∠=︒,则C ,D两点的距离是m.【分析】过点C 作CE BD ⊥,在Rt BCE ∆中先求出CE ,再在Rt DCE ∆中利用边角间关系求出CD .【解答】解:过点C 作CE BD ⊥,垂足为E .150ABC ∠=︒ ,30DBC ∴∠=︒.在Rt BCE ∆中,1600BC m = ,18002CE BC m ∴==,60BCE ∠=︒.105BCD ∠=︒ ,45ECD ∴∠=︒.在Rt DCE ∆中,cos CEECD CD∠= ,cos 45CE CD ∴=︒22=)m =.故答案为:15.(3分)已知抛物线2(y ax bx c a =++,b ,c 是常数)开口向下,过(1,0)A -,(,0)B m 两点,且12m <<.下列四个结论:①0b >;②若32m =,则320a c +<;③若点1(M x ,1)y ,2(N x ,2)y 在抛物线上,12x x <,且121x x +>,则12y y >;④当1a -时,关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.其中正确的是①③④(填写序号).【分析】①正确.根据对称轴在y 轴的右侧,可得结论;②错误.320a c +=;③正确.由题意,抛物线的对称轴直线x a =,00.5a <<,由点1(M x ,1)y ,2(N x ,2)y 在抛物线上,12x x <,且121x x +>,推出点M 到对称轴的距离<点N 到对称轴的距离,推出12y y >;④正确,证明判别式0>即可.【解答】解: 对称轴102mx -+=>,∴对称轴在y 轴右侧,02ba∴->,0a < ,0b ∴>,故①正确;当32m =时,对称轴124b x a =-=,2ab ∴=-,当1x =-时,0a b c -+=,∴302ac +=,320a c ∴+=,故②错误;由题意,抛物线的对称轴直线x a =,00.5a <<,点1(M x ,1)y ,2(N x ,2)y 在抛物线上,12x x <,且121x x +>,∴点M 到对称轴的距离<点N 到对称轴的距离,12y y ∴>,故③正确;设抛物线的解析式为(1)()y a x x m =+-,方程(1)()1a x x m +-=,整理得,2(1)10ax a m x am +---=,△2[(1)]4(1)a m a am =----22(1)4a m a =++,12m << ,1a -,∴△0>,∴关于x 的一元二次方程21ax bx c ++=必有两个不相等的实数根.故④正确,故答案为:①③④.16.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC >,分别以ABC ∆的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若5CI =,4CJ =,则四边形AJKL 的面积是80.【分析】过点D 作DM CI ⊥于点M ,过点F 作FN CI ⊥于点N ,由正方形的性质可证得ACJ CDM ∆≅∆,BCJ CFN ∆≅∆,可得DM CJ =,FN CJ =,可证得DMI FNI ∆≅∆,由直角三角形斜边上的中线的性质可得DI FI CI ==,由勾股定理可得MI ,NI ,从而可得CN ,可得BJ 与AJ ,即可求解.【解答】解:过点D 作DM CI ⊥,交CI 的延长线于点M ,过点F 作FN CI ⊥于点N ,ABC ∆ 为直角三角形,四边形ACDE ,BCFG 为正方形,过点C 作AB 的垂线CJ ,4CJ =,AC CD ∴=,90ACD ∠=︒,90AJC CMD ∠=∠=︒,90CAJ ACJ ∠+∠=︒,BC CF =,90BCF ∠=︒,90CNF BJC ∠=∠=︒,90FCN CFN ∠+∠=︒,90ACJ DCM ∴∠+∠=︒,90FCN BCJ ∠+∠=︒,CAJ DCM ∴∠=∠,BCJ CFN ∠=∠,()ACJ CDM AAS ∴∆≅∆,()BCJ CFN AAS ∆≅∆,AJ CM ∴=,4DM CJ ==,BJ CN =,4NF CJ ==,DM NF ∴=,()DMI FNI AAS ∴∆≅∆,DI FI ∴=,MI NI =,90DCF ∠=︒ ,5DI FI CI ∴===,在Rt DMI ∆中,由勾股定理可得:3MI ===,3NI MI ∴==,538AJ CM CI MI ∴==+=+=,532BJ CN CI NI ==-=-=,8210AB AJ BJ ∴=+=+=, 四边形ABHL 为正方形,10AL AB ∴==, 四边形AJKL 为矩形,∴四边形AJKL 的面积为:10880AL AJ ⋅=⨯=,故答案为:80.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组25,32x x x --⎧⎨<+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得3x -;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【分析】分别解这两个不等式,把不等式①和②的解集在数轴上表示出来,找到解集的公共部分即可得到原不等式组的解集.【解答】解:(1)解不等式①,得:3x -;(2)解不等式②,得:1x <;(3)把不等式①和②的解集在数轴上表示出来为:(4)原不等式组的解集为:31x -<.故答案为:(1)3x -;(2)1x <;(4)31x -<.18.(8分)如图,在四边形ABCD 中,//AD BC ,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证://AE DC .【分析】(1)根据两直线平行,同旁内角互补求出BAD ∠;(2)根据角平分线的定义求出DAE∠,得到AEB BCD∠,根据平行线的性质求出AEB∠=∠,根据平行线的判定定理证明结论.【解答】(1)解://,AD BCB BAD∴∠+∠=︒,180,∠=︒B80∴∠=︒;100BAD(2)证明:AE∠,平分BADDAE∴∠=︒,50,AD BC//∴∠=∠=︒,AEB DAE50,∠=︒BCD50∴∠=∠,AEB BCD∴.AE DC//19.(8分)为庆祝中国共青团成立100周年,某校开展四项活动:A项参观学习,B项团史宣讲,C项经典诵读,D项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是80,B项活动所在扇形的圆心角的大小是,条形统计图中C项活动的人数是;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.【分析】(1)根据两幅统计图提供的信息列式计算即可;(2)根据样本估计总体列式计算即可.【解答】解:(1)本次调查的样本容量是1620%80÷=,B 项活动所在扇形的圆心角的大小是123605480︒⨯=︒,条形统计图中C 项活动的人数是8032121620---=(人),故答案为:80,54︒,20;(2)32200080080⨯=(人),答:该校意向参加“参观学习”活动的人数约为800人.20.(8分)如图,以AB 为直径的O 经过ABC ∆的顶点C ,AE ,BE 分别平分BAC ∠和ABC ∠,AE 的延长线交O 于点D ,连接BD .(1)判断BDE ∆的形状,并证明你的结论;(2)若10AB =,BE =,求BC 的长.【分析】(1)由角平分线的定义可知,BAE CAD CBD ∠=∠=∠,ABE EBC ∠=∠,所以BED DBE ∠=∠,所以BD ED =,因为AB 为直径,所以90ADB ∠=︒,所以BDE ∆是等腰直角三角形.(2)连接OC 、CD 、OD ,OD 交BC 于点F .因为DBC CAD BAD BCD ∠=∠=∠=∠.所以BD DC =.因为OB OC =.所以OD 垂直平分BC .由BDE ∆是等腰直角三角形,BE =,可得BD =.因为5OB OD ==.设OF t =,则5DF t =-.在Rt BOF ∆和Rt BDF ∆中,22225(5)t t -=--,解出t 的值即可.【解答】解:(1)BDE ∆为等腰直角三角形.理由如下:AE 平分BAC ∠,BE 平分ABC ∠,BAE CAD CBD ∴∠=∠=∠,ABE EBC ∠=∠.BED BAE ABE ∠=∠+∠ ,DBE DBC CBE ∠=∠+∠,BED DBE ∴∠=∠.BD ED ∴=.AB 为直径,90ADB ∴∠=︒BDE ∴∆是等腰直角三角形.另解:计算135AEB ∠=︒也可以得证.(2)解:连接OC 、CD 、OD ,OD 交BC 于点.F DBC CAD BAD BCD ∠=∠=∠=∠ .BD DC ∴=.OB OC = .OD ∴垂直平分BC .BDE ∆ 是等腰直角三角形,BE =,BD ∴=.10AB = ,5OB OD ∴==.设OF t =,则5DF t =-.在Rt BOF ∆和Rt BDF ∆中,22225(5)t t -=--,解得3t =,4BF ∴=.8BC ∴=.另解:分别延长AC ,BD 相交于点G .则MBG ∆为等腰三角形,先计算10AG =,BG =,AD =,再根据面积相等求得BC .∆的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180︒得到点F,画出点F,再在AC上画点G,使//DG BC;(2)在图(2)中,P是边AB上一点,BACα∠=.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.【分析】(1)构造平行四边形ABCF即可解决问题,CF交格线于点T,连接DT交AC于点G,点G,点F即为所求;(2)取格点M,N,J,连接MN,BJ交于点H,连接AH,PH,PH交AC于点K,连接BK,延长BK交AH于点Q,线段AH,点Q即为所求.【解答】解:(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.22.(10分)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度v (单位:/)cm s 、运动距离y (单位:)cm 随运动时间t (单位:)s 变化的数据,整理得下表.运动时间/t s 01234运动速度//v cm s109.598.58运动距离/y cm09.751927.7536小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直以2/cm s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.【分析】(1)设v mt n =+,代入(0,10),(2,9),利用待定系数法可求出m 和n ;设2y at bt c =++,代入(0,0),(2,19),(4,36),利用待定系数法求解即可;(2)令64y =,代入(1)中关系式,可先求出t ,再求出v 的值即可;(3)设黑白两球的距离为w cm ,根据题意可知702w t y =+-,化简,再利用二次函数的性质可得出结论.【解答】解:(1)设v mt n =+,将(0,10),(2,9)代入,得1029n m n =⎧⎨+=⎩,解得,1210m n ⎧=-⎪⎨⎪=⎩,1102v t ∴=-+;设2y at bt c =++,将(0,0),(2,19),(4,36)代入,得0421916436c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得14100a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,21104y t t ∴=-+.(2)令64y =,即2110644t t -+=,解得8t =或32t =,当8t =时,6v =;当32t =时,6v =-(舍);(3)设黑白两球的距离为w cm ,根据题意可知,702w t y =+-218704t t =-+21(16)64t =-+,104>,∴当16t =时,w 的最小值为6,∴黑白两球的最小距离为6cm ,大于0,黑球不会碰到白球.另解1:当0w =时,2187004t t -+=,判定方程无解.另解2:当黑球的速度减小到2/cm s 时,如果黑球没有碰到白球,此后,速度低于白球速度,不会碰到白球.先确定黑球速度为2/cm s 时,其运动时间为16s ,再判断黑白两球的运动距离之差小于70cm .23.(10分)问题提出如图(1),在ABC ∆中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究AFAB的值.问题探究(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出AFAB的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在ABC ∆中,AB AC =,D 是AC 的中点,G 是边BC 上一点,1(2)CG n BC n=<,延长BC 至点E ,点DE DG =,延长ED 交AB 于点F .直接写出AFAB的值(用含n 的式子表示).【分析】问题探究(1)取AB 的中点G ,连接DG ,利用等边三角形的性质可得点F 为AG 的中点,从而得出答案;(2)取BC 的中点H ,连接DH ,利用ASA 证明DBH DEC ∆≅∆,得BH EC =,则32EB EH =,再根据//DH AB ,得EDH EFB ∆∆∽,从而得出答案;问题拓展取BC 的中点H ,连接DH ,由(2)同理可证明DGH DEC ∆≅∆,得GH CE =,得1HE BC n =,再根据//DH AB ,得EDH EFB ∆∆∽,同理可得答案.【解答】解:(1)如图,取AB 的中点G ,连接DG ,点D 是AC 的中点,DG ∴是ABC ∆的中位线,//DG BC ∴,AB AC = ,60BAC ∠=︒,ABC ∴∆是等边三角形, 点D 是AC 的中点,30DBC ∴∠=︒,BD CD = ,30E DBC ∴∠=∠=︒,DF AB ∴⊥,60AGD ADG ∠=∠=︒ ,ADG ∴∆是等边三角形,12AF AG ∴=,12AG AB = ,14AF AB ∴=,∴14AF AB =;(2)取BC 的中点H ,连接DH , 点D 为AC 的中点,//DH AB ∴,12DH AB =,AB AC = ,DH DC ∴=,DHC DCH ∴∠=∠,BD DE=,DBH DEC∴∠=∠,BDH EDC∴∠=∠,() DBH DEC ASA∴∆≅∆,BH EC∴=,∴32 EBEH=,// DH AB,EDH EFB ∴∆∆∽,∴32 FB EBDH EH==,∴34 FBAB=,∴14 AFAB=;问题拓展取BC的中点H,连接DH,由(2)同理可证明()DGH DEC ASA∆≅∆,GH CE∴=,HE CG∴=,1 CGBC n=,∴1 HEBC n=,∴2 HEBH n=,∴22 HEBE n=+,//DH BF,EDH EFB ∴∆∆∽,∴22HE DH BE BF n ==+,12DH AB =,∴24BF n AB +=,∴24AF n AB -=.24.(12分)抛物线223y x x =--交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图(1),当OP OA =时,在抛物线上存在点D (异于点)B ,使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图(2),直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FP OP的值(用含m 的式子表示).【分析】(1)令0y =,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为1D .②若点D 在AC 的上方时,点1D 关于点P 的对称点(0,5)G ,过点G 作AC 的平行线l 交抛物线于点2D ,3D ,2D ,3D 符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y kx b =+,由223y kx b y x x =+⎧⎨=--⎩,可得2(2)30x k x b -+--=,设1x ,2x 是方程2(2)30x k x b -+--=的两根,则123x x b =--,推出3A C B E x x x x b ⋅=⋅=--可得13b n =--,设直线CE 的解析式为y px q =+,同法可得3mn q =--推出3q mn =--,推出21(3)(1)3233b q b b b =-+---=+,推出213OF b b =+,可得结论.【解答】解:(1)令0y =,得2230x x --=,解得3x =或1-,(1,0)A ∴-,(3,0)B ;(2)1OP OA == ,(0,1)P ∴,∴直线AC 的解析式为1y x =+.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为1D .(3,0)B ,1//BD AC ,∴直线1BD 的解析式为3y x =-,由2323y x y x x =-⎧⎨=--⎩,解得30x y =⎧⎨=⎩或03x y =⎧⎨=-⎩,1(0,3)D ∴-,1D ∴的横坐标为0.②若点D 在AC 的上方时,点1D 关于点P 的对称点(0,5)G ,过点G 作AC 的平行线l 交抛物线于点2D ,3D ,2D ,3D 符合条件.直线l 的解析式为5y x =+,由2523y x y x x =+⎧⎨=--⎩,可得2380x x --=,解得3412x =或3412+,2D ∴,3D 的横坐标为3412,3412,综上所述,满足条件的点D 的横坐标为0,32-,32+.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y kx b =+,由223y kx b y x x =+⎧⎨=--⎩,可得2(2)30x k x b -+--=,设1x ,2x 是方程2(2)30x k x b -+--=的两根,则123x x b =--,3A C B E x x x x b∴⋅=⋅=--1A x =- ,3C x b ∴=+,3m b ∴=+,3B x = ,13E b x ∴=--,13b n ∴=--,设直线CE 的解析式为y px q =+,同法可得3mn q=--3q mn ∴=--,21(3)(1)3233b q b b b ∴=-+---=+,2123OF b b ∴=+,∴1111(3)1333FP b m m OP =+=-+=.。
2023年湖北省武汉市中考数学试卷(含答案及解析)
2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
2022年湖北省武汉市中考数学真题(含解析)
z2022年湖北省武汉市中考数学试卷一、选择题1. 2022的相反数是( ) A.B. C. −2022 D. 20222. 彩民李大叔购买1张彩票,中奖.这个事件( ) A. 必然事件B. 确定性事件C. 不可能事件D. 随机事件3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.4. 计算的结果是( )A.B.C.D.5. 如图是由4个相同的小正方体组成的几何体,它的主视图是( )A.B.C.D.6. 已知点,在反比例函数的图象上,且,则下列结论一定正确的是( ) A.B.C.D.7. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律如图所示(图中为一折线).这个容器的形状可能是( )1202212022-是()342a 122a 128a 76a 78a ()11,A x y ()22,B x y 6y x=120x x <<120y y +<120y y +>12y y <12y y >h t OABCzA. B. C. D.8. 班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则,两位同学座位相邻的概率是( )A.B.C.D.9. 如图,在四边形材料中,,,,,.现用此材料截出一个面积最大的圆形模板,则此圆的半径是( )A.B.C.D.10. 幻方是古老数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是( )A B C D A B 14131223ABCD AD BC !90A Ð=°9cm AD =20cm AB =24cm BC =110cm 138cm 10cm 的x yzA. 9B. 10C. 11D. 12二、填空题11._________.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/销售量/双13104213. 计算:的结果是__. 14. 如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________.15. 已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:①; ②若,则; ③若点,在抛物线上,,且,则; ④当时,关于的一元二次方程必有两个不相等的实数根.其中正确的是_________(填写序号).的cm 2424.52525.52622193x x x ---AB AB D 150ABC Ð=°1600m BC =105BCD Ð=°C D m 2y ax bx c =++a b c ()1,0A -(),0B m 12m <<0b >32m =320a c +<()11,M x y ()22,N x y 12x x <121x x +>12y y >1a £-x 21ax bx c ++=z16. 如图,在中,,,分别以的三边为边向外作三个正方形,,,连接.过点作的垂线,垂足为,分别交,于点,.若,,则四边形的面积是_________.三、解答题17. 解不等式组请按下列步骤完成解答.(1)解不等式①,得_________; (2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________.18. 如图,在四边形中,,.(1)求的度数;(2)平分交于点,.求证:.19. 为庆祝中国共青团成立100周年,某校开展四项活动:项参观学习,项团史宣讲,项经典诵读,项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.Rt ABC !90ACB Ð=°AC BC >ABC !ABHL ACDE BCFG DF C AB CJ J DF LH I K 5CI =4CJ =AJKL 2532x x x -³-ìí<+î①②ABCD AD BC !80B Ð=°BAD ÐAE BAD ÐBC E 50BCD Ð=°AE DC !A B C Dz(1)本次调查的样本容量是__________,项活动所在扇形的圆心角的大小是_________,条形统计图中项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.20. 如图,以为直径的经过的顶点,,分别平分和,的延长线交于点,连接.(1)判断的形状,并证明你的结论;(2)若,的长.21. 如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.B C AB O !ABC !C AE BE BAC ÐABC ÐAE O !D BD BDE !10AB =BE =BC 96´ABC !z(1)在图(1)中,,分别是边,与网格线的交点.先将点绕点旋转得到点,画出点,再在上画点,使;(2)在图(2)中,是边上一点,.先将绕点逆时针旋转,得到线段,画出线段,再画点,使,两点关于直线对称.22. 在一条笔直的滑道上有黑、白两个小球同向运动,黑球在处开始减速,此时白球在黑球前面处.小聪测量黑球减速后运动速度(单位:)、运动距离(单位:)随运动时间(单位:)变化的数据,整理得下表.运动时间 0 1 2 3 4 运动速度 10 9.5 9 8.5 8 运动距离9.751927.7536小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间之间成二次函数关系.(1)直接写出关于函数解析式和关于的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为时,求它此时的运动速度;(3)若白球一直..以的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由. 23. 问题提出:如图(1),中,,是的中点,延长至点,使,延长交于点,探究的值.D E AB AC B E 180°F F AC G DG BC !P AB BAC a Ð=AB A 2a AH AH Q P Q AC A 70cm 的v cm/s y cm t s /s t /cm/s v /cm y v t y t v t的y t 64cm 2cm/s ABC !AB AC =D AC BC E DE DB =ED AB F AFABz(1)先将问题特殊化.如图(2),当时,直接写出的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在中,,是的中点,是边上一点,,延长至点,使,延长交于点.直接写出的值(用含的式子表示).24. 抛物线交轴于A ,两点(A 在的左边),是第一象限抛物线上一点,直线交轴于点.(1)直接写出A ,两点的坐标;(2)如图(1),当时,在抛物线上存在点(异于点),使,两点到的距离相等,求出所有满足条件的点的横坐标;(3)如图(2),直线交抛物线于另一点,连接交轴于点,点的横坐标为.求的值(用含的式子表示).60BAC Ð=°AFABABC !AB AC =D AC G BC ()12CG n BC n =<BC E DE DG =ED AB F AF ABn 223y x x =--x B B C AC y P B OP OA =D B B D AC D BP E CE y F C m FP OPm2022年湖北省武汉市中考数学试卷一、选择题1. 2022的相反数是( ) A.B.C. −2022D. 2022【答案】C 【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数. 【详解】解:2022的相反数是−2022. 故选:C .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键. 2. 彩民李大叔购买1张彩票,中奖.这个事件是( ) A. 必然事件 B. 确定性事件 C. 不可能事件 D. 随机事件 【答案】D 【解析】【分析】直接根据随机事件的概念即可得出结论.【详解】购买一张彩票,结果可能为中奖,也可能为不中奖,中奖与否是随机的,即这个事件为随机事件. 故选:D .【点睛】本题考查了随机事件的概念,解题的关键是熟练掌握随机事件发生的条件,能够灵活作出判断.3. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B.C. D.【答案】D 【解析】【分析】利用轴对称图形的概念可得答案.1202212022-z【详解】解:A .不是轴对称图形,故此选项不合题意; B .不是轴对称图形,故此选项不合题意; C .不是轴对称图形,故此选项不合题意; D .是轴对称图形,故此选项符合题意; 故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形. 4. 计算的结果是( )A. B.C.D.【答案】B 【解析】【分析】直接运用幂的乘方、积的乘方计算即可. 【详解】解:.故答案为B .【点睛】本题主要考查了幂的乘方、积的乘方的运算,灵活运用相关运算法则成为解答本题的关键.5. 如图是由4个相同的小正方体组成的几何体,它的主视图是( )A.B.C. D.【答案】A 【解析】【分析】根据从正面所看得到的图形为主视图,据此解答即可.【详解】解:从正面可发现有两层,底层三个正方形,上层的左边是一个正方形. 故选:A .【点睛】本题主要考查了三视图的知识,掌握主视图是从物体的正面看得到的视图成为解()342a 122a 128a 76a 78a ()()()4134233228a a a ==z答本题的关键.6. 已知点,在反比例函数的图象上,且,则下列结论一定正确的是( ) A.B.C.D.【答案】C 【解析】【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出、的大小关系. 【详解】解:∵点,)是反比例函数的图象时的两点, ∴. ∵, ∴. 故选:C .【点睛】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.7. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律如图所示(图中为一折线).这个容器的形状可能是( )A. B.C. D.【答案】A 【解析】【分析】根据函数图象的走势:较缓,较陡,陡,注水速度是一定的,上升的快慢跟容器()11,A x y ()22,B x y 6y x=120x x <<120y y +<120y y +>12y y <12y y >1y 2y ()11,A x y ()22,B x y 6y x=11226x y x y ==120x x <<120y y <<h tOABCz的粗细有关,越粗的容器上升高度越慢,从而得到答案.【详解】解:从函数图象可以看出:OA 段上升最慢,AB 段上升较快,BC 段上升最快,上升的快慢跟容器的粗细有关,越粗的容器上升高度越慢, ∴题中图象所表示的容器应是下面最粗,中间其次,上面最细; 故选:A .【点睛】本题考查了函数图象的性质在实际问题中的应用,判断出每段函数图象变化不同的原因是解题的关键.8. 班长邀请,,,四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则,两位同学座位相邻的概率是( )A.B.C.D.【答案】C 【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种 则,两位同学座位相邻的概率是 . 故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题关键. 9. 如图,在四边形材料中,,,,,.现用此材料截出一个面积最大的圆形模板,则此圆的半径是A B C D A B 14131223A B 61122=的ABCD AD BC !90A Ð=°9cm AD =20cm AB =24cm BC =z( )A.B.C.D.【答案】B 【解析】【分析】如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,据此求解即可.【详解】解:如图所示,延长BA 交CD 延长线于E ,当这个圆为△BCE 的内切圆时,此圆的面积最大,∵,∠BAD =90°, ∴△EAD ∽△EBC ,∠B =90°, ∴,即, ∴, ∴EB =32cm , ∴,设这个圆的圆心为O ,与EB ,BC ,EC 分别相切于F ,G ,H ,∴OF =OG =OH ,∵, ∴, ∴, ∴, ∴此圆的半径为8cm , 故选B.110cm 138cm 10cm AD BC !EA AD EB BC=92024EA EA =+12cm EA=40cm EC ===EBC EOB COB EOC S S S S ++△△△△11112222EB BC EB OF BC OG EC OH ×=×+×+×()2432=243240OF ´++×8cm OF =z【点睛】本题主要考查了三角形内切圆半径与三角形三边的关系,勾股定理,正确作出辅助线是解题的关键.10. 幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则与的和是( )A. 9B. 10C. 11D. 12【答案】D 【解析】【分析】根据题意设出相应未知数,然后列出等式化简求值即可. 【详解】解:设如图表所示: x 6 20 22 z y nm根据题意可得:x +6+20=22+z +y ,整理得:x-y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m , 整理得:x =-2+z ,y =2z -22, ∴x -y =-2+z -(2z -22)=-4+z , 解得:z =12,x y∴x +y =3z -24 =12 故选:D .【点睛】题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.二、填空题11. 【答案】2【解析】【分析】根据二次根式的性质进行化简即可.【详解】解. 故答案为:2.【点睛】此题主要考查了二次根式的化简,注意.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.【答案】 【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论. 【详解】由表格可知:尺码的运动鞋销售量最多为双,即众数为. 故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义. 13. 计算:的结果是__. 【答案】. 【解析】 【分析】2=()()(0000a a a a a a ìï===íï-î>)<2525102522193x x x ---13x +z【详解】原式. 故答案为:. 14. 如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________.【答案】【解析】【分析】如图所示:过点作于点,先求出,再根据勾股定理即可求出的长.【详解】如图所示:过点作于点,则∠BEC =∠DEC =90°, ,,∴∠BCE =90°-30°=60°, 又,,∴∠ECD =45°=∠D , ∴,,, ,即.23(3)(3)(3)(3)x x x x x x +=-+-+-23(3)(3)x x x x --=+-3(3)(3)x x x -=+-13x =+13x +AB AB D 150ABC Ð=°1600m BC =105BCD Ð=°C D m C CE BD ^E 800m CE =CD C CE BD ^E 150ABC Ð=°!30CBD \Ð=°105BCD Ð=°!45CDB \Ð=°CE DE =1600m BC =!111600800m 22CE BC \==´=22222CD CE DE CE \=+=CD ==z故答案为:【点睛】本题考查三角形内角和定理、等腰三角形的判定与性质、直角三角形的性质及勾股定理,解题的关键是熟练掌握相关内容并能灵活运用.15. 已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论: ①; ②若,则; ③若点,在抛物线上,,且,则; ④当时,关于的一元二次方程必有两个不相等的实数根. 其中正确的是_________(填写序号). 【答案】①③④ 【解析】【分析】首先判断对称轴,再由抛物线的开口方向判断①;由抛物线经过A (-1,0),,当时,,求出,再代入判断②,抛物线,由点,在抛物线上,得,,把两个等式相减,整理得,通过判断,的符号判断③;将方程写成a (x -m )(x +1)-1=0,整理,得,再利用判别式即可判断④.详解】解:抛物线过,两点,且,, ,2y ax bx c =++a b c ()1,0A -(),0B m 12m <<0b >32m =320a c +<()11,M x y ()22,N x y 12x x <121x x +>12y y >1a £-x 21ax bx c ++=02bx a=->(),0B m 32m =()312y a x x æö=+-ç÷èø32c a =-32a c+()()()2211y ax bx c a x x m ax a m x am =++=+-=+--()11,M x y ()22,N x y ()21111y ax a m x am =+--()22221y ax a m x am =+--()()1212121y y a x x x x m -=-++-12x x -121x x m ++-21ax bx c ++=()2110x m x m a+---=【!()1,0A -(),0B m 12m <<122b mx a -+\=-=!12m <<,即, 抛物线开口向下,,,故①正确;若,则,,,故②不正确;抛物线,点,在抛物线上,∴,,把两个等式相减,整理得, ,,, ,, ,故③正确;依题意,将方程写成a (x -m )(x +1)-1=0,整理,得, ,,,,, , 故④正确.综上所述,①③④正确. 故答案为;①③④.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.11022m -+\<<02ba->!0a <0b \>32m =()23131222y a x x ax ax a æö=+-=--ç÷èø32c a \=-3323202a c a a æö\+=+´-=ç÷èø!()()()2211y ax bx c a x x m ax a m x am =++=+-=+--()11,M x y ()22,N x y ()21111y ax a m x am =+--()22221y ax a m x am =+--()()1212121y y a x x x x m -=-++-120,a x x <<!121x x +>12m <<12120,10x x x x m \-<++->()()12121210y y a x x x x m \-=-++->12y y \>21ax bx c ++=()2110x m x m a+---=()()2214141m m m a a æö\D =----=++ç÷èø12m <<!1a £-()2419m \<+<44a³-()2410m a\++>z16. 如图,在中,,,分别以的三边为边向外作三个正方形,,,连接.过点作的垂线,垂足为,分别交,于点,.若,,则四边形的面积是_________.【答案】80 【解析】【分析】连接LC 、EC 、EB ,LJ ,由平行线间同底的面积相等可以推导出:,由,可得,故,证得四边形是矩形,可得,在正方形中可得:,故得出:.由,可得,即可求出,可得出【详解】连接LC 、EC 、EB ,LJ ,在正方形,,中Rt ABC !90ACB Ð=°AC BC >ABC !ABHL ACDE BCFG DF C AB CJ J DF LH I K 5CI =4CJ =AJKL JAL CAL BAE EAC S S S S ==!!!!,CAL EAB @!!CAL EAB S S =!!JAL CAL BAE EAC S S S S ===!!!!ALKJ 2ALJ ALKJ S S =!矩形ACDE 2EAC ACDE S S =!正方形2ALKJ S AC =矩形ACJ CBJ !"!CJ AJBJ CJ=8AJ=ABHL ACDE BCFG 90,ALK LAB EAC ACD BCF Ð=Ð=Ð=Ð=Ð=°. ∵,∴,∴, ∴, ∴.∵, ∴四边形矩形,∴. ∵,∴, ∴, ∵ ∴, ∴. ∵, ∴.∴∴.∵. ∴, ∵ ∴,∴, ∵,∴, ∴, ∵, ∴, ∴,∵,,,,,AL AB EA AC BC CF AC CD AE CD ====!,AB LH !,2EAC ACDE S S =!正方形CK LH ^90CKL Ð=°CK AB ^180CKL ALK Ð+Ð=°90CJA CJB Ð=Ð=°CK AL !CAL JAL S S =!!90JKL ALK JAL Ð=Ð=Ð=°ALKJ是2ALJ ALKJ S S =!矩形LAB EAC Ð=ÐLAB BAC EAC BAC Ð+Ð=Ð+ÐEAB CAL Ð=Ð,,AL AB EA AC ==CAL EAB @!!CAL EAB S S =!!AE CD !EAB EAC S S =!!JAL CAL BAE EAC S S S S ===!!!!22EAC ALKJ ACDE S S S AC ===!矩形正方形90,DCA BCF DCF BCD Ð=Ð=°Ð=Ð90DCF BCD Ð=Ð=°,,BC CF AC CD ==ABC DCF @!!,CAB CDF AB DF Ð=Ð=90,90ACB CJB Ð=°Ð=°90,90CAB ABC JCB CBJ Ð+Ð=°Ð+Ð=°CAB JCB Ð=ÐDCI JCB Ð=ÐDCI IDC Ð=Ð5ID CI ==90,90IDC DFC DIC ICF Ð+Ð=°Ð+Ð=°∴, ∴, ∴, ∴.设,∵ ∴, ∴, ∴,∴ ∵,∴, ∴, ∴, ∴.∴, ∴. 故答案为:80.【点睛】此题考查正方形的性质、矩形的性质与判定、相似三角形的判定与性质、勾股定理,平行线间同底的两个三角形,面积相等;难度系数较大,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.三、解答题17. 解不等式组请按下列步骤完成解答.(1)解不等式①,得_________; (2)解不等式②,得_________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集是_________. 【答案】(1)ICF IFC Ð=Ð5IF CI ==10DF =10AB =,10AJ x BJ x ==-,,CAJ BCJ CJA CJB Ð=ÐÐ=ÐACJ CBJ !"!CJ AJBJ CJ=4104xx =-1228x x ==,,ACBC >AJ BJ >10x x >-5x >8x =222224880AC CJ AJ =+=+=280ALKJ S AC ==矩形2532x x x -³-ìí<+î①②3x ³-z(2)(3)详见解析 (4) 【解析】【分析】分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小找不到”原则取所含不等式解集的公共部分,即确定为不等式组的解集. 【小问1详解】 解:解不等式①,得【小问2详解】 解:解不等式②,得【小问3详解】解:把不等式①和②的解集在数轴上表示出来:小问4详解】解:由图可得,原不等式组的解集是:【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 18. 如图,在四边形中,,.(1)求的度数;(2)平分交于点,.求证:. 【答案】(1) (2)详见解析 【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据平分,可得.再由,可得1x <31x -£<3x ³-1x <【31x -£<ABCD AD BC !80B Ð=°BAD ÐAE BAD ÐBC E 50BCD Ð=°AE DC !100BAD Ð=°AE BAD Ð50DAE Ð=°AD BC !.即可求证.【小问1详解】 解:∵, ∴, ∵, ∴. 【小问2详解】证明:∵平分, ∴. ∵,∴. ∵, ∴. ∴.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键19. 为庆祝中国共青团成立100周年,某校开展四项活动:项参观学习,项团史宣讲,项经典诵读,项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是__________,项活动所在扇形的圆心角的大小是_________,条形统计图中项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动人数. 【答案】(1)80,,20 (2)大约有800人 【解析】【分析】(1)根据“总体=部分÷对应百分比”与“圆心角度数=360°×对应百分比”可求得样本50AEB DAE Ð=Ð=°AD BC !180B BAD Ð+Ð=°80B Ð=°100BAD Ð=°AE BAD Ð50DAE Ð=°AD BC !50AEB DAE Ð=Ð=°50BCD Ð=°BCD AEB Ð=ÐAE DC !A B CD B C 的54°z容量及B 项活动所在扇形的圆心角度数,从而求得C 项活动的人数;(2)根据“部分=总体×对应百分比”,用总人数乘以样本中“参观学习”的人数所占比例可得答案. 【小问1详解】解:样本容量:16÷20%=80(人), B 项活动所在扇形的圆心角:, C 项活动的人数:80-32-12-16=20(人); 故答案为:80,54°,20; 【小问2详解】 解:(人), 答:该校意向参加“参观学习”活动的学生大约有800人.【点睛】本题主要考查了条形统计图,扇形统计图,用样本估计总体,读懂图,找出对应数据,熟练掌握总体、部分与百分比之间的关系是解题的关键.20. 如图,以为直径的经过的顶点,,分别平分和,的延长线交于点,连接.(1)判断的形状,并证明你的结论; (2)若,的长. 【答案】(1)为等腰直角三角形,详见解析 (2) 【解析】【分析】(1)由角平分线的定义、结合等量代换可得,即;然后再根据直径所对的圆周角为90°即可解答;(2)如图:连接,,,交于点.先说明垂直平分.进123605480°´=°32200080080´=AB O !ABC !C AE BE BAC ÐABC ÐAE O !D BD BDE !10AB =BE =BC BDE !8BC =BED DBE Ð=ÐBD ED =OC CD OD OD BC F OD BCz而求得BD 、OD 、OB 的长,设,则.然后根据勾股定理列出关于t 的方程求解即可. 【小问1详解】解:为等腰直角三角形,证明如下: 证明:∵平分,平分, ∴,. ∵,, ∴. ∴. ∵为直径, ∴.∴是等腰直角三角形. 【小问2详解】解:如图:连接,,,交于点. ∵, ∴. ∵, ∴垂直平分.∵是等腰直角三角形,∴∵, ∴.设,则.在和中,.解得,. ∴. ∴.OF t =5DF t =-BDE !AEBAC ÐBE ABC ÐBAE CAD CBD Ð=Ð=ÐABE EBC Ð=ÐBED BAE ABE Ð=Ð+ÐDBE DBC CBE Ð=Ð+ÐBED DBE Ð=ÐBD ED =AB 90ADB Ð=°BDE !OC CD OD OD BC F DBC CAD BAD BCD Ð=Ð=Ð=ÐBD DC =OB OC =OD BC BDE !BE =BD =10AB =5OB OD ==OF t =5DF t =-Rt BOF !Rt BDF V 22225(5)t t -=--3t =4BF =8BC =z【点睛】本题主要考查了角平分线的定义、等腰三角形的判定与性质、勾股定理的应用、垂直平分线的判定与性质、圆的性质等知识点,灵活运用相关知识成为解答本题的关键. 21. 如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,,分别是边,与网格线的交点.先将点绕点旋转得到点,画出点,再在上画点,使;(2)在图(2)中,是边上一点,.先将绕点逆时针旋转,得到线段,画出线段,再画点,使,两点关于直线对称. 【答案】(1)作图见解析 (2)作图见解析 【解析】【分析】(1)取格点,作平行四边形,利用平行四边形对角顶点关于对角线交点对称即可求点F ;平行四边形对边在网格中与格线的交点等高,连接等高点即可作出; (2)取格点,作垂直平分线即可作出线段AH ;利用垂直平分线的性质,证明三角形全等,作出,两点关于直线对称 【小问1详解】 解:作图如下:96´ABC!D E AB AC B E 180°F F AC G DG BC !P AB BAC a Ð=AB A 2a AH AH Q P Q AC DG BC !P Q ACz取格点,连接,且,所以四边形是平行四边形,连接,与AC 的交点就是点E ,所以BE =EF ,所以点F 即为所求的点;连接CF ,交格线于点M ,因为四边形ABCF 是平行四边形,连接DM 交AC 于一点,该点就是所求的G 点; 【小问2详解】 解:作图如下:取格点D 、E ,连接DE ,AC 平行于DE ,取格点R ,连接BR 并延长BR 交DE 于一点H ,连接AH ,此线段即为所求作线段;理由如下:取格点W 连接AW 、CW ,连接CR ,∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴, ∵点是的中点, ∴点是的中点,F AF AF BC !AF BC =ABCFBF AWC RCB @!!WAC CRB Ð=Ð90WAC ACW Ð+Ð=°90CRB ACW Ð+Ð=°90RKC Ð=°AC BH ^DH CK !BK BCBH BD=C BD K BHz.com即, ∴垂直平分, ∴.连接,交AC 于点,连接交于点,则该点就是点关于直线的对称点.理由如下:∵垂直平分,∴是等腰三角形,, ∴ , ∴, ∴,∴,两点关于直线对称.【点睛】本题考查了用无刻度直尺在网格中作图的知识,找准格点作出平行四边形和垂直平分线是解决本题的关键.22. 在一条笔直的滑道上有黑、白两个小球同向运动,黑球在处开始减速,此时白球在黑球前面处.小聪测量黑球减速后的运动速度(单位:)、运动距离(单位:)随运动时间(单位:)变化的数据,整理得下表.运动时间1 2 3 4 运动速度 10 9.5 9 8.5 8 运动距离9.751927.7536小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间之间成二次函数关系.(1)直接写出关于的函数解析式和关于的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为时,求它此时的运动速度;(3)若白球一直..以的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.BK KH =AC BH AB AH =PH M BM AH Q P AC AC BH BMH !PAM QAM Ð=ÐBMK AMQ HMK AMP Ð=Ð=Ð=ÐAMP AMQ @!!AP AQ =P Q AC A 70cm v cm/s y cm t s /s t /cm/s v /cm y v t y t v t y t 64cm 2cm/s【答案】(1), (2)(3)黑、白两球的最小距离为,大于0,黑球不会碰到白球 【解析】【分析】(1)根据黑球的运动速度与运动时间之间成一次函数关系,设表达式为v =kt +b ,代入两组数值求解即可;根据运动距离与运动时间之间成二次函数关系,设表达式为,代入三组数值求解即可;(2)当黑球减速后运动距离为时,代入(1)式中关于的函数解析式求出时间t ,再将t 代入关于的函数解析式,求得速度v 即可;(3)设黑白两球的距离为,得到,化简即可求出最小值,于是得到结论.【小问1详解】根据黑球的运动速度与运动时间之间成一次函数关系,设表达式为v =kt +b ,代入(0,10),(1,9.5)得,,解得, ∴, 根据运动距离与运动时间之间成二次函数关系,设表达式为,代入(0,0),(1,9.75),(2,19)得,解得,∴; 【小问2详解】 依题意,得, ∴, 解得,,;1102v t =-+21104y t t =-+6cm/s 6cm v t y t 2y at bt c =++64cm y t v t cm w 217028704w t y t t =+-=-+v t 109.5b k b =ìí=+î1210k b ì=-ïíï=î1102v t =-+y t 2y at bt c =++09.751942c a b a b=ìï=+íï=+î14100a b c ì=-ïï=íï=ïî21104y t t =-+2110644t t -+=2402560t t -+=18t =232t =z当时,;当时,(舍); 答:黑球减速后运动时的速度为. 【小问3详解】设黑白两球的距离为,, ∵,∴当时,的值最小为6, ∴黑、白两球的最小距离为,大于0,黑球不会碰到白球.【点睛】本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.23. 问题提出:如图(1),中,,是的中点,延长至点,使,延长交于点,探究的值.(1)先将问题特殊化.如图(2),当时,直接写出的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在中,,是的中点,是边上一点,,延长至点,使,延长交于点.直接写出的值(用含的式子表示). 【答案】(1)[问题提出](1);(2)见解析 (2)[问题拓展]18t =6v =232t =6v =-64cm 6cm/s cm w 217028704w t y t t =+-=-+21(16)64t =-+104>16t =w 6cm ABC !AB AC =D AC BC E DE DB =ED AB F AFAB60BAC Ð=°AFABABC !AB AC =D AC G BC ()12CG n BC n=<BC E DE DG =ED AB F AFABn 1424n-z【解析】【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得,,根据含30度角的直角三角形的性质,可得,即可求解; (2)取的中点,连接.证明,可得,根据,证明,根据相似三角形的性质可得,进而可得; [问题拓展]方法同(2)证明,得出,,证明,得到,进而可得. 【小问1详解】[问题探究]:(1)如图,中,,是的中点,,是等边三角形, ,,,,,,,,, 30ADF ADB Ð=Ð=°90AFD Ð=°111,222AF AD AD AC AB ===BC H DH DBH DEC △≌△BH EC =DH AB !EDH EFB △∽△32FB EB DH EH ==14AF AB =DBH DEC △≌△GH EC =EDH EFB △∽△2+2FB EB nDH EH ==AF AB=24n-!ABC !AB AC =D AC 60BAC Ð=°ABC \!12AD AB =30ABD DBE \Ð=Ð=°60A Ð=°DB DE \=30E DBE \Ð=Ð=°180120DCE ACB Ð=°-Ð=°!18030ADF CDE E DCE \Ð=Ð=°-Ð-Ð=°60A Ð=°!90AFD \Ð=°12AF AD \=z . (2)证明:取的中点,连接.∵是的中点,∴,. ∵,∴,∴.∵,∴.∴.∴.∴.∴. ∵,∴.∴. ∴. ∴. 【小问2详解】[问题拓展]如图,取的中点,连接. 1124AD AF AB AB \==BC HDH D AC DH AB !12DH AB =AB AC =DH DC =DHC DCH Ð=ÐBD DE =DBH DEC Ð=ÐBDH EDC Ð=ÐDBH DEC △≌△BH EC =32EB EH =DH AB !EDH EFB △∽△32FB EB DH EH ==34FB AB =14AF AB =BC H DHz∵是的中点,∴,. ∵,∴,∴.∵,∴.∴.∴.∴.,∴. ∵,∴.∴. ∴. D AC DH AB !12DH AB =AB AC =DH DC =DHC DCH Ð=ÐDE DG =DGH DEC Ð=ÐGDH EDC Ð=ÐDGH DEC !!≌GH EC =HE CG \=!()12CG n BC n=<BC nCG \=()1BG n CG \=-()1111222n CE GH BC BG nCG n CG CG æö==-=--=-ç÷èø1221+22nCG EB BC CE n n EH EH n C CG G æö-+++====ç÷èøDH AB !EDH EFB △∽△2+2FB EB n DH EH ==24FB n AB +=z ∴. . 【点睛】本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.24. 抛物线交轴于A ,两点(A 在的左边),是第一象限抛物线上一点,直线交轴于点.(1)直接写出A ,两点的坐标;(2)如图(1),当时,在抛物线上存在点(异于点),使,两点到的距离相等,求出所有满足条件的点的横坐标; (3)如图(2),直线交抛物线于另一点,连接交轴于点,点的横坐标为.求的值(用含的式子表示). 【答案】(1),;(2)0,; (3). 【解析】【分析】(1)令求出x 的值即可知道A ,两点的坐标;(2)求出直线的解析式为,分情况讨论:①若点在下方时,②若点42244AF n n AB ---==\AF AB=24n -223y x x =--x B B C AC y P B OP OA =D B B D AC D BP E CE y F C m FP OPm ()1,0A -()3,0B 32-32+13m 223=0x x --B AC 1y x =+D AC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共10小题,每小题3分,共30分)
1.计算36的结果为( ) A .6 B .-6 C .18 D .-18
2.若代数式
41 a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4
C .a <4
D .a ≠4 3.下列计算的结果是x 5的为( )
A .x 10÷x 2
B .x 6-x
C .x 2·x 3
D .(x 2)3
4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩/m
1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1
则这些运动员成绩的中位数、众数分别为( )
A .1.65、1.70
B .1.65、1.75
C .1.70、1.75
D .1.70、1.70
5.计算(x +1)(x +2)的结果为( )
A .x 2+2
B .x 2+3x +2
C .x 2+3x +3
D .x 2
+2x +2 6.点A (-3,2)关于y 轴对称的点的坐标为( )
A .(3,-2)
B .(3,2)
C .(-3,-2)
D .(2,-3)
7.某物体的主视图如图所示,则该物体可能为( )
8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )
A .9
B .10
C .11
D .12
9.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )
A .
23 B .23 C .3 D .32
10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A .4
B .5
C .6
D .7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算2×3+(-4)的结果为___________
12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________
14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________
15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________
16.已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m
<3,则a 的取值范围是___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:4x -3=2(x -1)
18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论
19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
各部门人数及每人所创年利润统计表各部门人数分布扇形图
(1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________
② 在统计表中,b =___________,c =___________
(2) 求这个公司平均每人所创年利润
20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元
(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?
(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?
21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D
(1) 求证:AO 平分∠BAC
(2) 若BC =6,sin ∠BAC =5
3
,求AC 和CD 的长 部
门 员工人数
每人所创的年利润/万元 A 5 10
B b 8
C c
5
22.(本题10分)如图,直线y =2x +4与反比例函数x k y =
的图象相交于A (-3,a )和B 两点 (1) 求k 的值
(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值
(3) 直接写出不等式x x >-56的解集
23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E
(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB
(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积
(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53
,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)
24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2
+bx 上
(1) 求抛物线的解析式
(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE
(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。