第二章 机构的结构分析分析

合集下载

第二章 平面机构的结构分析

第二章 平面机构的结构分析

同一运动链可以生成的不同机构
B
1
2
3
A
4
C
B
1
2
3
A 4
B
1
C 2
3
A
4
B
C
2
1 A
曲柄滑块机构 摇块机构 导杆机构
4
3
运动链的生成是创造、获取新机构的重要手段。运动链的设计只关
注构件数和联接这些构件的运动副的数量和类型,所以又称为机构的型
数综合(Type and number synthesis)。
球面高副
柱面高副
齿轮副
凸轮副
★ 运动副元素以面接触的运动副称为低副(lower pair)。
球面低副 回转副
移动副
3. 根据组成运动副两个构件的相对运动形式分类 ★ 空间运动副
球销副
螺旋副
圆柱套筒副
★ 平面运动副 A. 低副
B. 高副
移动副
凸轮副
转动副 齿轮副
三、运动链(Kinematical Chain)与机构 构件通过运动副的连接而构成的可相对运动的系统称为运动链。
4. 运动简图绘制举例
1) 绘制牛头刨床主运动机构的运动简图
选取比例尺l = m/mm
2) 绘制破碎机的机构运动简图
选取比例尺l
3) 绘制图示机构的运动简图
§2-3 机构自由度(Degrees of Freedom)的计算
一、平面机构自由度的计算公式 1. 构件的自由度与约束
构件具有确定运动时所必须给定的独立运动参 数的数目称为机构的自由度。F
由两个以上构件(包括活动构件与机架)在同一处 构成的重合转动副称为复合铰链。
7
46

《机械原理》课件第二章平面机构的结构分

《机械原理》课件第二章平面机构的结构分

用规定的符号和线条代表构件和运动 副,按比例绘制出机构运动简图。
选择合适的投影面
一般选择机构的多数构件在同一平面 或相互平行的平面内运动的投影面作 为绘制运动简图的投影面。
自由度概念及计算公式
自由度概念
机构具有确定运动的独立参数数目称为机构的自由度。
自由度计算公式
F = 3n - 2PL - PH,其中F为机构自由度,n为活动构件数,PL为 低副数,PH为高副数。
《机械原理》课件第二章平面机构 的结构分析
目 录
• 平面机构基本概念与分类 • 平面机构运动简图及自由度计算 • 平面连杆机构结构分析与设计 • 凸轮机构结构分析与设计 • 齿轮传动系统结构分析与设计 • 其他常见平面机构介绍
01 平面机构基本概念与分类
平面机构定义及特点
定义
平面机构是指所有构件都在相互平行的平面内运动的机构,也称为平面连杆机 构。
采用多个连杆机构和关节组合而成,可实现 复杂的空间运动和操作任务。具有结构紧凑 、灵活性强等特点。
04 凸轮机构结构分析与设计
凸轮机构类型及特点
移动凸轮
凸轮相对机架作直线移动,适用于需要直 线往复运动的场合,如机床的进给机构等。
盘形凸轮
凸轮为绕固定轴线转动且有变化直 径的盘形构件,具有结构简单、紧 凑的特点,广泛应用于各种自动化
尺度和相对位置。具有直观、简便等优点,但精度较低。
02
解析法
通过建立机构的数学模型,利用数学方法求解机构的未知尺度和运动参
数。具有精度高、适用范围广等优点,但计算较复杂。
03
优化设计法
以机构的某项或多项性能指标为优化目标,通过计算机辅助设计软件进
行尺度综合和优化设计。可得到性能更优的机构方案,但需要较高的计

机械原理—平面机构的结构分析

机械原理—平面机构的结构分析

齿轮齿廓
作者:潘存云教授
活塞与缸套
§2-1 运动链与机构
按两构件之间相对运动方式分:
运动副
转动副——两构件之间的相对 运动为转动的运动副
移动副——两构件之间的相对 运动为平动的运动副
对于空间机构,还有螺旋副和球面副
§2-1 运动链与机构
按两构件之间接触方式分:
运动副
低副——两构件之间为面接触 的运动副
第二章 平面机构的结构分析
§2-1 运动链与机构 §2-2 机构运动简图 §2-3 机构自由度的计算 §2-4 机构分析与创新 §2-5 机构结构的拓展内容简介
§2-1 运动链与机构
机构是传递机械运动的装置,也就是传递机械运动、力 或者导引构件上的点按给定轨迹运动的机械装置。
机构的组成要素为构件和运动副。

机 架 上
齿 轮 齿
的 电 机
条 传 动




齿




§2-2 机构的运动简图

圆柱

蜗杆

蜗轮
传动
外啮 合圆 柱齿 轮传 动
凸 轮 传 动
§2-2 机构的运动简图
内啮

合圆

柱齿

轮传


§2-2 机构的运动简图
(3)构件表示时的注意事项:
画构件时应撇开构件的实际外形,而只考虑运动 副的性质。
C D4
A1 1 B
3 2
5
E
6
冲床传动机构运动简图
§2-2 平面机构运动简图
§2-2 平面机构运动简图
§2-2 平面机构运动简图

2-Structure-Analysis(结构分析)

2-Structure-Analysis(结构分析)
第二章机构的结构分析
(Mechanisms Structural Analysis)
Main Content for Studying Mechanism Structure
Composing of Mechanism Layout of Mechanism Scheme Conditions to Move Determinately for a Mechanism Structure Classifying and Analysis of Planar Mechanism
Choose a drawing plane. Sometimes, a local view may be drawn to clarify the structure.
First, draw all fixed pair elements!!!!!!!
Draw the drivers first and then draw driven links according to route of transmission(传递路线).
Composing of Mechanism
平面
Revolute pair
Sliding pair or Prismatic pair
only relative rotation
only relative rectilinear(直线的) translation(平移)
Composing of Mechanism
平面 运动副分类:齿轮副和凸轮副
Cam pair(凸轮副)
Gear pair(齿轮副)
• It is necessary to draw the actual cam contour(凸轮 实际廓线) and the end profile (轮廓) of the

机械原理典型例题第二章机构分析

机械原理典型例题第二章机构分析
A
A
B
C
运动链能够成为机构的条件是,运动链相对于机架的自由度大于零,且等于原动件的数目。 平面机构的级别取决于机构能够分解出的基本杆组的级别。
Y
N
1
2
3
2.判断题:
作业评讲
2-8: 图示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A来连续回转,而固定在A轴上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动达到冲压的目的。试绘出机构运动简图,分析是否能实现设计意图,并提出修改方案。
例4:图示机构中,AB∥=EF ∥=CD,试计算机构自由度。
解: C处为复合铰链, m=3; G处为局部自由度;有一个虚约束。 I处有一个高副虚约束。 机构ABCDEF为平行四边形机构,构件EF及引入的约束为虚约束。 机构自由度F n=6, Pl=7, Ph=2 F=3n-2Pl- Ph =3×6-2×7-2 =2
F=3×8-2×10-2 =2
局部自由度
复合铰链
F=3×7-2×9-2 =1
虚约束
2-14(b):图示凸轮—连杆组合机构的自由度。在D处为铰接在一起的两个滑块。
虚约束
局部自由度
F=3×5+2×6-2=1
2-17: 试计算所示惯性筛机构的自由度,判断机构是否具有确定的运动(标箭头的构件为原动件)。
不同的原动件,组成机构的杆组与级别不相同。
例9:图示牛头刨机构设计方案图。设计者的意图是动力由曲柄1输入,通过滑块2使摆动导杆3做往复摆动,并带动滑枕4往返移动以达到刨削的目的。试分析此方案有无结构组成原理上的错误,若有,请说明原因并修改。(作业:补充修改方案)
解: 机构的自由度, n = 4, pl = 6, ph = 0 F = 3n - 2 pl - ph = 3×4-2×6-0 =0 F<机构原动件数 不能运动。 修改: 增加机构自由度的方法是:在机构的适当位置添加一个活动构件和一个低副或者用一个高副代替原来机构中的一个低副。AEBDCFG

第二章 机构的结构分析

第二章 机构的结构分析

第一章绪论1 何谓机器,何谓机构?它们有什么区别与联系?2 参照内燃机的机构分析,试对机械手进行分解,说明它是由哪些机构组成的。

3 举例说明什么是构件、零件?第二章机构的结构分析1 什么是运动副、运动副元素、运动链?运动副是如何分类的?2 何谓“高副”和“低副”?在平面机构中高副和低副一般各带入几个约束?3 机构具有确定运动的条件是什么?4 既然虚约束对于机构的运动实际上不起约束作用,那么在实际机械中为什么又常常存在虚约束?5 杆组具有什么特点?如何确定机构的级别?选择不同的原动件对机构的级别有无影响?6 图所示机构在组成上是否合理?指出其错误所在,并针对错误处更改局部运动副和构件,使之成为合理的机构。

7 计算图示平面机构的自由度,指出复合铰链、局部自由度和虚约束,在进行高副低代后,分析机构级别。

8 计算图所示机构的自由度,若有复合铰链、局部自由度或虚约束,应予以指出,并进行高副低代,确定该机构的级别。

9试计算图所示凸轮-连杆组合机构的自由度。

10 在图所示机构中,AB EF CD,试计算其自由度。

11试计算图所示齿轮-连杆组合机构的自由度。

12试计算图所示齿轮-连杆组合机构的自由度。

13 试确定图所示机构的自由度;并将其中的高副换成低副,确定机构所含的杆组合机构的级别(当取凸轮为原动件时)。

14计算图示机构的自由度,并在高副低代后,分析组成这次机构的基本杆组及杆组的级别15计算图示机构的自由度,并在高副低代后,分析组成这次机构的基本杆组及杆组的级别16根据图示机构,画出去掉了虚约束和局部自由度的等效机构运动简图,并计算机构的自由度。

设标有箭头者为原动件,试判断该机构的运动是否确定,为什么?17计算图示机构的自由度。

如有复合铰链、局部自由度、虚约束,请指明所在之处。

ADECHGF IBK12345678918计算图示各机构的自由度。

19计算图示各机构的自由度。

20 计算机构的自由度,并进行机构的结构分析,将其基本杆组拆分出来,指出各个基本杆组的级别以及机构的级别。

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析
结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'

机构的结构分析

机构的结构分析

2
§2-2运动副及其分类
一、基本概念
1.运动副 (1)运动副定义:由两个构件组成的可动联接。 (2)运动副元素:两个构件上能够参加接触而构
成运动副的表面。
编辑ppt
3
(3)运动 副的自由度: 构成运动副 的两构件相 对运动独立 参数的数目。
编辑ppt
4
编辑ppt
5
(4)运动副约束:两个构件组成运动副后对独立 的相对运动的限制。
F=3n-( 2pL+pH) =3*3-(2*4+0) =1 正确
编辑ppt
36
判断机构中虚约束的方法:
(1)在机构中,如 果用转动副联接的是 两构件运动轨迹相重 合的点,则该联接将 带入一个虚约束。
F=3n-( 2pL +pH ) =3*3-(2*4+0) =1
编辑ppt
37
(2)在机构中,如 果两构件上某两点 的距离始终保持不 变,用双转动副杆 将此两点联接,则 该联接将带入一个 虚约束。
三、平面机构的结构分析 1.机构结构分析的内容
(1)拆分基本杆组 (2)确定机构级别
编辑ppt
53
2.机构结构分析的步骤
(1)除去虚约束和局部自由度,计算机构的自由度,并确 定原动件;
(2)从远离原动件的构件开始拆组。先试拆n=2的杆组 (Ⅱ级组),如不可能,再依次试拆n=4或n=6的杆组。当 分出一个杆组后,第二次仍须从最简单(n=2)的杆组开始 试拆,直到剩下机架和原动件为止。
44
(3)直线与曲线轮廓组成的高副
编辑ppt
45
(4)两接触轮廓之一为一点
编辑ppt
46
§2-7平面机构的组成原理、结构分类及结构分析

机构的结构分析

机构的结构分析

2)开式链
在运动链中至少有一个构件只有一个 运动副,不能组成封闭系统。如:机械手
6、机构
具有机架、原动件和 从动件系统的运动链。
机构中构件的分类:
1)机架
2)原动件
3)从动件
1)机架 ——支撑活动构件的构件。 具有唯一性,是研究 所有活动构件的绝对 坐标。
2)原动件——驱动力作用的构件 (主动件)。 3)从动件——除原动件以外的所 有活动构件。
§
2-1
机构的组成
机器是由一个或多个机构所构成的,而 机构是由构件和运动副组成的。 任何机械都是由许多零件组成的。
零件是加工制造的基本单元体。
1、构件: 几个零件刚性地连接在一起构成的 一个独立运动的单元体。
Hale Waihona Puke 、构件的自由度: 构件所具有的独立运动的数目;
或确定构件位姿所需要的独立广义坐标数。
Y Z S
平面高副自由度和约束数:
t 1 n V12 t
齿轮副:自由度为2 约束数:
平面内为1
n 2
A
(c)
在平面内: 低副:自由度为1,约束数为2 高副:自由度为2,约束数为1
5、运动链 若干个构件通过运动副的联接而构成 的系统称为运动链。 1)闭式链 在运动链中每个构件上至少包含两个 运动副,组成首末封闭的系统。如:机床
第二章 平面机构的结构分析
(Chapter 2: Structure Analysis of Mechanisms)
机构结构分析的内容及目的
目的: 研究机构在何种条件下可动,具
备何种条件时具有确定的相对运
动。 内容: 1)机构的组成;
2)机构运动简图画法; 3)机构的自由度计算;

chap2机构的组成及结构分析

chap2机构的组成及结构分析

Mechanical Design
第二章 机构的组成及结构分析 3 机构运动简图绘制
机构运动简图
机构运动简图的作用
表示机构的结构和运动情况
作为运动分析和动力分析的依据
机械基础及工程力学系 王震国
Mechanical Design
第二章 机构的组成及结构分析 3 机构运动简图绘制
机构运动简图
机构示意图
机械基础及工程力学系 王震国
Mechanical Design
第二章 机构的组成及结构分析 1 研究机构结构的目的
研究机构结构的目的:
研究组成机构的组成原理,并根据结构特点对机构 进行分类;
不同的机构都有各自的特点,把各种机构按结构加以分 类,其目的是按其分类建立运动分析和动力分析的一般 方法。
机械基础及工程力学系 王震国
机构运动简图的绘制
绘制机构运动简图的步骤:
恰当的选择投影面,并将机构停留在适当地位臵,避免构建 重叠 一般选择与多数构件的运动平面相平行的面为投影 面 选择适当的长度比例尺μl,确定出个运动副之间的相对 位臵,用规定的符号表示各运动副,并将同一构件参与构 成的运动副符号用简单的线条连接起来。
机械基础及工程力学系 王震国 Mechanical Design
不按比例绘制的简图。
只反映机构的结构情况
机械基础及工程力学系 王震国
Mechanical Design
常用机构运动简图符号
在 机 架 上 的 电 机 带 传 动 齿 轮 齿 条 传 动 圆 锥 齿 轮 传 动
链 传 动
圆柱 蜗杆 蜗轮 传动
外啮 合圆 柱齿 轮传 动
凸 轮 传 动
内啮 合圆 柱齿 轮传 动
机械基础及工程力学系 王震国

机械原理:第二章机构的结构分析

机械原理:第二章机构的结构分析

斜齿轮机构
两个齿轮的齿廓为斜线,实现直线的 运动传递,同时具有较好的承载能力 和传动平稳性。
02
CHAPTER
机构的运动分析
机构运动简图
总结词
机构运动简图是表示机构运动关系的图形,通过图形化方式展示机构的组成和运 动传递路径。
详细描述
机构运动简图是一种抽象的图形表示,它忽略了机构的实际尺寸和形状,只关注 机构中各构件之间的相对运动关系。通过绘制机构运动简图,可以清晰地了解机 构的组成、运动传递路径以及各构件之间的相对位置和运动方向。
常见的受力分析方法
详细描述:常见的受力分析方法包括解析法、图解法和 有限元法等,每种方法都有其适用范围和优缺点,应根 据具体情况选择合适的方法。
机构的平衡分析
总结词
理解机构平衡的概念是进行平衡 分析的前提。
详细描述
机构平衡是指机构在静止或匀速 运动状态下,各作用力相互抵消 ,机构不会发生运动状态的改变 。
轮系
定轴轮系
各齿轮的转动轴线固定,齿轮的 运动由一个主动轮通过各齿轮的
啮合传递到另一个从动轮。
行星轮系
其中一个齿轮的转动轴线绕着另 一固定轴线转动,行星轮既可绕 自身轴线自转,又可绕固定轴线
公转。
混合轮系
由定轴轮系和行星轮系组合而成, 既有定轴轮系的自转运动,又有
行星轮系的公转和自转运动。
凸轮机构
机构运动分析的方法
总结词
机构运动分析的方法主要包括解析法和图解法两种。
详细描述
解析法是通过建立数学模型,运用数学工具进行求解的方法。这种方法精度高,适用于对机构进行精确的运动学 和动力学分析。图解法是通过作图和测量来分析机构运动的方法,这种方法直观易懂,适用于初步了解机构的运 动关系。

机械原理02(本)- 机构的结构分析

机械原理02(本)- 机构的结构分析

2
平 面 运 动 副
1
1
1 2
1
平 面 高 副 2 螺 旋 空 副 间 运 动 球 副 面 副 球 销 副 1 2 1
2 1 1 2 1 2 1 1 2
2
1 2
1 2
1 2
1 2
2 1
1 2
3. 运动链 运动链-----两个以上的构件通 两个以上的构件通 运动链 过运动副的联接而构成的系统。 过运动副的联接而构成的系统。
4 1 2 3
F=3n - 2Pl - Ph =3×3 - 2×4 × × =1
②计算五杆铰链机构的自由度。 计算五杆铰链机构的自由度。 解:活动构件数n= 4 活动构件数 低副数P 低副数 l= 5 高副数P 高副数 h= 0 F=3n - 2Pl - Ph =3×4 - 2×5 × × =2
1 5 2 3
§2-3 机构运动简图
1.什麽是机构运动简图 什麽是机构运动简图 机构运动简图: 机构运动简图:表示机构运动特征的一种工 程用图 和运动有关的:运动副的类型、数目、 和运动有关的:运动副的类型、数目、相对 位置、 位置、构件数目 和运动无关的:构件外形、截面尺寸、 和运动无关的:构件外形、截面尺寸、组成 构件的零件数目、 构件的零件数目、运动副的具体构造 机构示意图-------不按比例绘制的简图 不按比例绘制的简图 机构示意图
§2-6 计算平面机构自由度时应注意的事项 一 、要正确计算运动副数目 实例分析1:计算图示圆盘锯机构 实现无导轨 实例分析 :计算图示圆盘锯机构 (实现无导轨 直线运动)自由度 直线运动 自由度
D 4 1 2 F 8 3 A B 5 6 7 C E
解:F=3n-2 pl – ph =3×7 - 2×6-0=9

机械原理第二章机构的结构分析

机械原理第二章机构的结构分析

运动链成为机构的条件
Fa = 3×2 - 2×3 = 0 Fb运= 3动×链3的- 2自×由5度= -F1= ?
F 0 运动链运不动能链的运运动动,情不况成如为何机? 构
F = 3×4 - 2×5 = 2 1 个原动件
F > 0,但原动件数目小 于自由度数目,运动链 运动不确定,不能成为 机构。
小滚子的运动并不影响整 个机构的运动 → 局部自由度
改善受力情况,减少磨损, 假想 2、3 件焊接在一起
F = 3*2 - 2*2 - 1 = 1
问题3:虚约束
在特定的几何条件或结构条件下,某些运动副所引入 的约束可能与其它运动副所起的限制作用是一致的。这 种不起独立限制作用的重复约束称为虚约束。
机构运动简图(2/2)
(1)步骤 1)搞清机械的构造及运动情况,原动件开始沿着运动传递路线
查明构件数、运动副的类别及其位置;
2)依据机构某个瞬时运动位置选定视图平面; 3)选适当比例尺作出各运动副的相对位置,再画出各运动 副和常用机构的符号,最后用简单线条或几何图形连接即成。
(2)举例
鄂式破碎机简图绘制 内燃机简图绘制
机构的组成(5/5)
4.机构
机 构 ——具有固定构件的运动链
组成:
3
机 架 —— 相对固定的构件
2 从动件
4
—1 原动件
原动件—— 已知独立运动的构件 (用转向箭头表示)
机架 平面铰链四杆运机动构链
从动件 ——其余从动运动的构件 原动件 2
分类: 平面机构与空间机构 平面机构的应用最为广泛
1
机架
3 从动件 4
(2) 举例
1)铰链四杆机构 F=3n-(2pl+ph)
=3×3 -2×4 -0 =1

第2章机构的结构分析

第2章机构的结构分析

系统三部分。 由于机构具有确定运动的条件是原动件 的数目等于机构的自由度数目,
因此,如将机构的机架以及和机架相连
的原动件与从动件系统分开,则余下的 从动件系统的自由度应为零。
从动件系统 从动件组
一、平面机构组成的基本原理
平面机构具有确定运动的条件是机构的原动件数目等于机构 的自由度数,故平面机构的从动件组的自由度数应为零。 C 2
二、平面机构的结构分析
1. 机构的分类
机构分类的依据: 根据机构中杆组的级别进行分类。 ◆II级机构 指机构中杆组的最高级别为II级的机构。 ◆ III级机构 指机构中杆组的最高级别为III级的机构。 ◆ Ⅰ级机构 只由机架和原动件组成的机构称为Ⅰ级的机构。 (杠杆机构、电动机等)
古代
中国
利用杠杆的舂米机
杆组 (基本杆组的简称)的条件
杆组应满足的条件: F=3n-2PL-PH=0
式中n、PL 、 PH分别为杆组中的构件数、低副数、高副数。
如果杆组的运动副全为低副, 则上式可变为: n和PL为整数 n应是2的倍 数。PL应是3 的倍数
3n-2PL=0

n/2=PL/3
n,PL的组合有 n=2,PL=3;n=4,PL=6;…。 (2)杆组的基本类型
◆ 虚约束
计算图示圆盘锯机构的自由度。
解:活动构件数n= 7
低副数PL= 10 高副数PH=0 F=3n - 2PL - PH =3×7 -2×10 -0 =1
B
D 4
5 6
F
C
1
2
E
3 8
7
A
计算图示机构的自由度。
3 2
B
1
C
4 5
D

第2章 机构的结构分析

第2章 机构的结构分析

F 3n 2PL 0
虚约束的作用 ⑴ 改善构件的受力情况,分担载荷或平衡惯性力,如多 个行星轮。 ⑵ 增加结构刚度,如轴与轴承、机床导轨。 ⑶ 提高运动可靠性和工作的稳定性。 注意 机构中的虚约束都是在一定的几何条件下出现的, 如果这些几何条件不满足,则虚约束将变成实际有效的约 束,从而使机构不能运动。
§2-4 机构的组成原理、结构分类及结构分析
转 动 副
移 动 副 平 面 高 副
2、构件的简图表示方法:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。
含有两个低副的构件
含有三个低副的构件
三、绘制机构运动简图的步骤和原则:
1.绘制步骤:
(1).分析机构的组成及运动情况,确定机构中的 机架、原动部分、传动部分和执行部分,以确定运 动副的数目。
原动件数F,运动链内部 各构件运动关系确定。 运动链成为机构。
平面四杆运动链
F3n2pLpH3324 1 原动件数 F ,运动链内 部的运动关系将发生矛盾, 其中最薄弱的构件将会损 坏。 运动链不能成为机构。 原动件数 F ,运动链内 部各构件运动关系确定。 运动链成为机构。
平面低副 闭链机构
平面低副开链机构
低副机构:完全由低副连接而成的机构
高副机构:只要含有一个高副的机构
§ 2-2 机构运动简图的绘制
一、机构运动简图: 用简单的线条和符号来代表构件和运动 副,并按照一定的比例表示出各个运动副的 相对位置,这种用于说明机构各构件间的相 对运动关系的简单图形称为机构运动简图。
二、运动副及其分类
1、运动副:指两构件直接接触并能产生相对运动的联接。 运动副元素:指两个构件直接接触而构成运动副的部分。
2、运动副分类 (1)、按两构件的接触方式分类 高副:点或线接触的运动副

《机械原理》第02章机构的结构分析与综合

《机械原理》第02章机构的结构分析与综合

(1)若F>0,且与原动件数 相等,则机构各构件间的 相对运动是确定的;
(2)若F>0,且多于原动件 数,则构件间的运动是不 确定的;
F=0、
F= 0
静定结构
F=- 1 超静定结构
(3)若机构自由度F≤0,则机构不能动;
总结
• (1)若机构自由度F≤0,则机构不能动;
• (2)若F>0,且与原动件数相等,则机构各构件间的相 对运动是确定的;这就是机构具有确定运动的条件。 • (3)若F>0,且多于原动件数,则构件间的运动是不确 定的; • (4)若F>0,且少于原动件数,则构件间不能运动或产 生破坏。
• (二)平面机构的级别 • (三)结构分析
(一)基本杆组及其级别
• 1. 定义
不能再分解的零自由度的构件组。(阿苏尔杆组)
• 2. 满足条件: 3n-2PL=0 PL=3n /2
n=2, PL=3 ; n=4, PL=6 • Ⅱ、Ⅲ、Ⅳ级杆组的基本类型*
Ⅱ级组的五种类型
Ⅲ级组的几种组合形式
Ⅳ级组
例:摆动从动件盘形凸轮机构
(2)若两接触轮廓之一为一点,其替代方法如图所示。
例:尖底直动从动件盘形凸轮机构
例:确定如图所示平面高副机构的级别。
例7
§2-5 平面机构的结构综合
平面机构的结构综合(设计):是结构分析的逆过程 是根据运动输入和输出特性进行机构运动简图的设计过程。 研究一定数量的构件和运动副可以组成多少种机构类型的综合过 程。机构设计:设计新机构运动简图。 基本杆组叠加法;平面机构如果没有高副,可按公式(2-4)综合出 各种类型的基本杆组,再利用串联、并联等方式将基本杆组与I
三、计算平面机构自由度时应注意的事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章机构的结构分析§2-1 机构结构分析的内容及目的1、研究机构的组成及其具有确定运动的条件目的是弄清机构包含哪几个部分,各部分如何相联,以及怎样的结构才能保证机构中各构件具有确定的相对运动。

2、按结构特点对机构进行分类不同的机构有各自的特点,把各种机构按结构加以分类,其目的是按其分类建立运动分析和动力分析的一般方法。

3、绘制机构运动简图研究机构特性的工具。

4.研究机构的组成原理研究按何种规律组成的机构能满足运动确定性的要求。

§2-2 机构的组成一、构件与运动副1、构件(Link) -独立的运动单元。

零件(part)-独立的制造单元,如齿轮。

如图2—1,连杆是由多个零件组成,即一个构件可是一个零件,也可是由多个构件组成的。

2、运动副运动副-两个构件直接接触组成的能产生某些相对运动的联接。

三个条件,缺一不可,如图2—2所示。

a)两个构件、b) 直接接触、c) 有相对运动运动副元素—直接接触的部分(点、线、面)图2—2运动副例如:滚动轴承(图2—3)、齿轮齿廓(图2—4)、活塞与缸套(图2—5)等。

图2—3滑动轴承图2—4齿轮齿廓图2—5活塞与缸套二、运动副的分类:1.按引入的约束数分类:I级副、II级副、III级副、IV级副、V级副如图2—6所示。

图2—6按引入的约束数对运动副分类2.按相对运动范围分类:平面运动副-平面运动,空间运动副-空间运动。

例如:球铰链(图2—7)、拉杆天线、螺旋(图2—8)、动物关节。

图2—7球铰链图2—8螺旋平面机构-全部由平面运动副组成的机构,如图2—9。

空间机构-至少含有一个空间运动副的机构如图2—10。

3.按运动副元素分类:①高副—点、线接触(应力高),例如:滚动副、凸轮副、齿轮副等,如图2—11所示。

图2—11高副②低副—面接触,应力低,例如:转动副(回转副)通过柱面接触、移动副通过平面接触,如图2—12所示。

常用构件和运动副的表示符号如下:图2—12低副图2—9平面机构图2—10空间机构图2—12运动副符号图2—13构件表示方法注意:如图画构件时应撇开构件的实际外形,而只考虑运动副的性质。

三、运动链两个以上的构件通过运动副的联接而构成的系统。

按时否封闭分为:闭式链、开式链。

见图2—14所示。

图2—14运动链四、机构定义:具有确定运动的运动链称为机构。

机架:作为参考系的构件(有且只有一个),如机床床身、车辆底盘、飞机机身。

原(主)动件:按给定运动规律运动的构件,有一个或几个。

从动件:其余可动构件,若干个或没有。

机构的组成:机构=机架+原动件+从动件§2-3 机构运动简图一、机构运动简图机构运动简图——以简单的线条和符号表示构件和运动副,用以说明机构中各构件之间的相对运动关系的简单图形。

作用:1、表示机构的结构和运动情况。

2、作为运动分析和动力分析以及判断是否是创新机构的依据。

机动示意图——不按比例绘制的简图常用机构运动简图符号(GB4460-84 )机构运动简图应满足的条件:1、构件数目与实际相同2、运动副的性质、数目与实际相符3、运动副之间的相对位置以及构件尺寸与实际机构成比例。

二、绘制机构运动简图思路:先定原动部分和工作部分(一般位于传动线路末端),弄清运动传递路线,确定构件数目及运动副的类型,并用符号表示出来。

举例:绘制破碎机(图2—15)机构运动简图。

图2—15破碎机步骤:1.运转机械,搞清楚运动副的性质、数目和构件数目;2.测量各运动副之间的尺寸,选投影面(运动平面),绘制示意图。

3.按比例绘制运动简图。

比例尺:μl =实际尺寸m / 图上长度mm4.检验机构是否满足运动确定的条件。

举例:绘制如图2—16所示偏心泵的运动简图,分析过程同上,这里只给出简图。

图2—16 偏心泵§2-4 机构具有确定运动的条件图2—17机构具有确定运动的条件如上图,由图2—17可知:自由度:保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。

原动件:能独立运动的构件。

∵一个原动件只能提供一个独立参数∴机构具有确定运动的条件为:机构自由度=原动件数§2-5 平面机构自由度的计算如2—18图所示,作平面运动的刚体在空间的位置需要三个独立的参数(x,y, θ)才能唯一确定。

1、单个自由构件的自由度为3图2—18 2、构成运动副构件的自由度如图2—19所示:图2—19运动副自由度运动副自由度数约束数回转副1(θ)+ 2(x,y)=3移动副1(x)+ 2(y,θ)=3高副2(x,θ)+ 1(y)=3结论:构件自由度=3-约束数3、机构的自由度一个机构由N个构件组成,则活动构件有n=N-1个活动构件数构件总自由度低副约束数高副约束数n 3×n 2 ×P L 1×P h(低副数) (高副数)计算公式:F=3n-(2P L +P h )1)计算图2—20中曲柄滑块机构的自由度。

解:活动构件数n=3低副数PL=4高副数PH=0F=3n -2P L-P H图2—20曲柄滑块机构=3×3 -2×4=12)计算图2—21中五杆铰链机构的自由度。

解:活动构件数n=4低副数PL=5高副数PH=0F=3n -2PL -PH 图2—21五杆铰链机构=3×4 -2×4=23)计算图2—22中凸轮机构的自由度解:活动构件数n=2低副数PL=2高副数PH=1F=3n -2PL -PH=3×2 -2×2-1=1图2—22凸轮机构§2-6 自由度计算中的特殊问题计算图2—23中圆盘锯机构的自由度解:活动构件数n=7低副数PL=6高副数PH=0F=3n -2PL -PH=3×7 -2×6 -0=9计算结果肯定不对!1、复合铰链——两个以上的构件在同一处以转动副相联,如图2—24所示。

计算时:m个构件, 有m-1转动副。

上例中:在B、C、D、E四处应各有2个运动副。

所以圆盘锯机构的自由度计算为:解:活动构件数n=7低副数PL=10F=3n -2PL -PH=3×7 -2×10-0=1计算图2—25中两种滚子凸轮机构的自由度。

解:左边机构n=3,PL=3,PH=1F=3n-2PL-PH=3×3-2×3-1=2对于右边的机构,有:F=3×2 -2×2 -1=1事实上,两个机构的运动相同,且F=12、局部自由度定义:构件局部运动所产生的自由度。

出现在加装滚子的场合,计算时应去掉Fp(局部自由度)本例中局部自由度Fp=1F=3n-2PL-PH-FP图2—23 图2—24图2—25=3×3-2×3-1-1=1 或计算时去掉滚子和铰链: F=3×2-2×2-1=1滚子的作用:滑动摩擦变为滚动摩擦。

计算图2—26中平行四边形机构的自由度,已知:AB 、CD 、EF 互相平行。

解:n=4,PL=6,PH=0F=3n -2PL -PH =3×4-2×6 =0计算结果肯定不正确!3、虚约束 ——对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

∵ FE =AB =CD ,故增加构件4前后E 点的轨迹都是圆弧。

增加的约束不起作用,应去掉构件4。

如图2—27所示。

重新计算:n=3, PL=4, PH=0F=3n -2PL -PH =3×3-2×4=1特别注意:此例存在虚约束的几何条件是:AB 、CD 、EF 平行且相等。

出现虚约束的场合:1、两构件联接前后,联接点的轨迹重合,如图2—28所示平行四边形机构,椭圆仪,火车轮等。

2、两构件构成多个移动副,且导路平行,如图2—29。

3、两构件构成多个转动副,且同轴,如图2—30。

4、运动时,两构件上的两点距离始终不变,如图2—31。

5、对运动不起作用的对称部分。

如 多个行星轮,如图2—32。

6、两构件构成高副,两处接触,且法线重合。

如图2—33等宽凸轮。

图2—26图2—27注意:法线不重合时,变成实际约束!如图2—34。

图2—29图2—28图2—30图2—31注意:各种出现虚约束的场合都必须满足一定几何条件的!虚约束的作用:1、改善构件的受力情况,如多个行星轮。

2、增加机构的刚度,如轴与轴承、机床导轨。

3、使机构运动顺利,避免运动不确定,如车轮。

例:计算图2—35包装机送纸机构的自由度。

分析:复合铰链: 位置D ,2个低副局部自由度2个 虚约束1处, 构件8 n=6,PL=7,PH=3F=3n - 2PL - PH=3×6 -2×7 -3=1§2-7 机构的组成原理及其结构分类一、机构的组成原理1、基本机构由一个原动件和一个机架组成的双杆机构,如图2—36所示。

a)原动件作移动 (如直线电机、流体压力作动筒)。

b)原动件作转动 (如电动机)。

图2—32图2—33图2—34图2—35图2—362、基本杆组机构具有确定运动的条件为原动件数=自由度。

图2—37现设想将机构中的原动件和机架断开,则原动件与机架构成了基本机构,其F=1。

剩下的构件组必有F=0。

将构件组继续拆分成最简单F=0的构件组(不能再拆),如图2—37所示。

最简单的F=0的构件组,称为基本杆组。

图2—38举例:将图示八杆机构拆分成基本机构和基本杆组,如图2—38所示。

结论:该机构包含机架、原动件和两个基本杆组推论:任何一个平面机构都可以认为是机架、原动件的基础上,依次添加若干个杆组所形成的。

机构的组成原理:机构=机架+原动件+基本杆组二、机构(结构)分类设基本杆组中有n个构件,则由条件F=0有:F=3n-2PL-Ph=0PL=3n/2 (低副机构中Ph=0 )∵PL 为整数,∴n只能取偶数。

n = 2 4 n>4PL = 3 6n=2的杆组称为Ⅱ级组—应用最广而又最简单的基本杆组。

共有5种类型,典型Ⅱ级组如图2—39所示。

n=4(PL =6)的杆组称为Ⅲ级组,如图2—40所示。

结构特点:其中一个构件有三个运动副。

IV 级组:有两个三副杆,且4个构件构成四边形结构,如图2—41所示。

内端副—杆组内部相联。

外端副—与组外构件相联。

机构的级别:机构按所含最高杆组级别命名,如Ⅱ级机构,Ⅲ级机构等。

注意:1、杆组的各个外端副不可以同时加在同一个构件上,否则将成为刚体。

如图2—42。

2、机构的级别与原动件的选择有关,如图2—43。

图2—39图2—40图2—41图2—42图2—4312(a)(b)∞P 122(c)1n(d)v K1K21P 12212K2P 1n§2-8 速度瞬心法及其在机构速度分析上的应用一、速度瞬心:两构件上相对速度为零的重合点:瞬时绝对速度相同的重合点。

相关文档
最新文档