圆柱体积推导过程ppt课件

合集下载

圆柱体积PPT课件xiod

圆柱体积PPT课件xiod
积越大。
(× )
4分米 10分米
0.8米
求各圆柱的 体积。
0.5分米
圆柱形水桶内所盛水的体积,就 叫做这个圆柱形容器的容积。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
一、复习旧知
请你说一说如何计算 能不能将圆柱转化成我 圆柱的体积怎样计 你会计算上面这些图形的 长方体、正方体的体 算呢? 们学过的立体图形,计 体积吗? 积? 算出它的体积呢?

图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1 :
h=h

讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
谢 谢
做一做
(2)、一个圆柱行罐头盒的 内底面半径是5厘米,高15厘 米。它的容积是多少? 3.14×5×15
2
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
真 棒!

长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v 正 =a
V=s底 h
3
圆柱体积的大小与哪些条件有关?

圆柱的体积PPT

圆柱的体积PPT

)dm3
)。
2升25毫升 = ( )升 =( )dm3
3、圆柱的底面积是4.6cm2,高是1.5cm,它
的体积是(
)cm3。
4、计算下面各圆柱的体积。(单位:dm)
5、把圆柱体的底面分成若干等份,然后把圆柱
切开,拼起来后,圆柱体就转化成一个近似的
长方体。这个长方体的底面积等于(
),
高就是( )。因为长方体的体积=( )
r=c÷2∏
S=∏r2 v=sh = ∏ r2 h
例2: 一个圆柱,底面半径是2cm,高
是5cm。求它的体积? r=2cm h=5cm
r=2cm h=5cm
S底=πr2 =2×2×3.14 =4×3.14 =12.56(cm2)
V=Sh=5×12.56=62.8(cm3)
答:圆柱的表面积是62.8平方厘米。
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
讨论
(1)已知圆的半径和高,怎样求圆柱的体积? (2)已知圆的直径和高,怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d)2h
6、把一个长、宽、高分别是9cm、7cm、3cm 的长方体铁块和一个棱长是5cm的正方体铁块, 熔铸成一个圆柱体。这个圆柱体的底面直径是 20cm,高是多少厘米?
7、将一个圆柱体沿着底面直径切成两个半 圆柱,表面积增加了40平方厘米,圆柱的底面直 径为4厘米,这个圆柱的体积是多少立方厘米?
8、一个圆柱体的高是 10厘米。如果高减少 3厘米,则表面积比原来减少94.2平方厘米, 原来圆柱体的体积是多少立方厘米?

圆柱圆锥体积公式推导课件

圆柱圆锥体积公式推导课件

圆柱的参数
底面半径(r)、高(h) 。
圆柱体积公式的推导过程
圆柱体积公式推导
利用微积分的知识,将圆柱底面 分割成无数个小的扇形,再将这 些扇形旋转成无数个小的圆柱体 ,求和得到圆柱的体积。
圆柱体积公式
V=πr²h,其中π是圆周率,r是底 面半径,h是高。
圆柱体积公式的应用
计算圆柱的体积
通过已知的底面半径和高 ,代入公式计算圆柱的体 积。
对圆柱圆锥体积公式的思考与探索
公式推导的局限性
01
公式推导过程中采用了微积分的方法,对于初学者来说可能存
在理解上的困难。
实际应用中的注意事项
02
在计算体积时,需要注意单位的一致性,以及在计算过程中避
免出现计算错误。
探索与拓展
03
可以尝试将圆柱和圆锥的体积公式应用到其他领域,如建筑设
计、机械制造等,以解决实际问题。
圆锥形烧杯
在物理实验中,圆锥形烧杯常用于测量液体的体积和密度等参数。
05 总结与思考
对圆柱圆锥体积公式的总结
圆柱体积公式
V = πr²h,其中r是底面半径,h是高 。
圆锥体积公式
推导过程
通过将圆柱或圆锥分割成若干个小的 长方体或正方体,然后分别求出每个 小体的体积,再求和得到总体积。
V = (1/3)πr²h,其中r是底面半径,h 是高。
解决实际问题
在工程、建筑、地质等领域中,经常需要计算圆锥形物体的 体积,如土堆、矿山的体积等。
03
圆柱圆锥体积公式的比较与联 系
圆柱与圆锥的体积公式比较
圆柱体积公式
V₁=πr²h₁
圆锥体积公式
V₂=1/3πr²h₂
比较结果
从公式中可以看出,圆锥的体积是相应圆柱体积的1/3。

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
利用率。
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望

人教版数学六年级下册 圆柱的体积课件(44张PPT)

人教版数学六年级下册  圆柱的体积课件(44张PPT)

=3.14×16×25
=1256(cm^3)
=1256(ml)
答:瓶子的容积是1256ml。
解:减少的表面积是两个底面面积 底面面积:25.12÷2=12.56(cm3)
底面半径为:
12.56÷3.14÷2=2(cm)
原圆柱的体积:
3.14×22×(20÷2)=125.6(cm3)
答:原来每个圆柱的体积为125.6cm3 。
答:这个圆柱的表面积是301.44cm2;体积是401.92cm3.
例7. 一个圆柱体底面周长和高相等。如果高缩短 2厘米,表面积就减少6.28平方厘米, 这个圆柱 体的体积是多少?
减少的6.28平方厘米 表面积是哪一块呢?
24cm
6.28平方厘米
C=6.28÷ 2=3.14(厘米) r=3.14÷ 3.14÷ 2=0.5(厘米) V=0.52× 3.14× 3.14=2.4649(立方厘米) 答:这个圆柱体的体积是2.4649立方厘米。
502.4 ml>498ml
答:能装下这袋奶。
例2. 若圆柱体的侧面展开后是一个边长为12.56分米正方形,求
这个圆柱的体积。
边长
r=12.56÷ 3.14÷ 2=2(分米12.)56厘米 S底=22× 3.14=12.56(平方分米) V=12.56× 12.56=157.7536(立方分米)
12.56分米
12.56 分米
答:这个圆柱的体积是157.7536立方分米。 “侧面展开 图是正方形”说明 什么呢?
例3.一个圆柱形粮囤,从里面量底面半径是2.5米,高是2米。如 果每立方米稻谷约重545千克,这个粮囤装的稻谷大约有多少千 克?
粮屯体积: 3.14×2.52×2 =3.14×6.25×2 =39.25(m2)

《圆柱的体积(1)》(课件)-六年级下册数学人教版

《圆柱的体积(1)》(课件)-六年级下册数学人教版

(3) 把一个棱长为10分米的正方体木块削成一个最大的圆柱,
这个圆柱的体积是( B )立方分米。
A.100
B.785
C.78.5
D.314
(4) 圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大
到原来的( C )倍。
A.2
B.4
C.8
D.6
2 挖一口圆柱形水井,地面以下的井深为10m,底面直径 为1m。挖出的土有多少立方米?(教材P24第2题)
V=75×90=6750(cm3) 答:它的体积是6750cm3。
3 一个圆柱形的水池,从里面量底面半径是5m,深是3.2m。 这个水池能蓄水多少吨?(1m3的水重1t。) (教材P25第2题)
V=3.14×52×3.2=251.2(m3)=251.2(t)
答:这个水池能蓄水251.2t。
当堂练习 及时反馈
2 下图中的圆柱与长方体的体积相等。这个圆柱的高是多 少?(单位:dm)
15.7
12
3
V=15.7×6×3=282.6(dm3) h=282.6÷[3.14×(12÷2)2]=2.5(dm) 答:这个圆柱的高是2.5dm。
3 如图,一根长6m的圆木,如果把它截成三段,表面积就 增加942cm2。原来这根原木的体积是多少立方米?
7 cm 6 cm
一个圆柱所占空间的大小, 叫作这个圆柱的体积。
怎样计算圆柱的体积呢?
合作交流 探索新知
探究圆柱的体积计算公式
想一想:圆的面积公 式是怎样推导的呢?
34 56
2
7
1
8
16
9
15

10
1413 12 11
12345678 9 10 11 12 13 14 15 16

圆柱的体积课件PPT2人教版

圆柱的体积课件PPT2人教版

3、V=Πr h 长方体的高等于圆柱的高。
2 4、一个圆柱形粮囤,从里面量得底面直径是 3 m,高 2 m。
3、小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量底面直径是 8 cm,高是 15 cm。 2、怎样求长方体和正方体的体积? 长方体的底面积等于圆柱的底面积。 如果你知道圆柱的底面半径r 、直径d和高h ,你能写出圆柱的体积公式吗? 这个零件的体积是多少立方厘米? 花坛的底面内直径为 3 m,高为 0.
2、一个圆柱形零件,底面半径是5厘米,高是8 厘米。这个零件的体积是多少立方厘米?
【升级练习】
1、一根圆柱形木料,底面周长是 62.8 厘米,高是 50 厘米。这根木料的体积是多少?
2、下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。)
3、小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量底面直径是 8 cm,高是 15 cm。如果两人游玩期间 要喝 1 L 水,带这杯水够吗?
20cm
10cm
12、下面 4 个图形的面积都是 36dm2(图中单位:dm)。用这些图形分别卷成圆柱,哪个圆柱的体 积最小?哪个圆柱的体积最大?你有什么发现?
18 2
12 3
9 4
6 6
【课堂总结】
底面积 ×高
1、 圆柱的体积 =底面积 × 高 圆可以转化成近似的长方形计算面积,圆柱可以转化成近似的长方体计算体积吗?
花坛的底面内直径为 3 m,高为 0.
一个容积为 1 L 的保温壶,50 秒能装满水吗?
5 m,两个花坛中共需要填土多少立方米?
一个容积为 1 L 的保温壶,50 秒能装满水吗?
5 dm,体积为 81dm3 ,另一个高为 3 dm,它的体积如果每立方米玉米约重 750 kg,这个粮囤能装多少吨玉米?

圆柱体积公式推导课件

圆柱体积公式推导课件
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
圆柱体的体积= 底面积 ×高
努 力 吧 !
想一想、填一填:
把圆柱体切割拼成近似( ),它们 的( )相等。长方体的高就是圆柱体的 ( ),长方体的底面积就是圆柱体的 ( ),因为长方体的体积=( 底面积×高
答:它的体积是2.512立方米。
Байду номын сангаас个圆柱形的太阳 能水桶 ,如右图 (数据是从里面量 的)。这个水桶可 以装多少水?
------------15dm-----6dm
一个圆柱的体积是25.12立 方分米,底面积是6.28平方分 米,求圆柱的高是多少分米?
25.12 ÷6.28 =4(分米) 答:圆柱的高是4分米。
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
观察与讨论
(1)拼成的长方体的体积与圆柱的体积 有什么关系? (2)长方体的底面积与圆柱的底面积有 什么关系?
(3)长方体的高与圆柱的高有什么关系?
长方体的体积=底面积×高
( 4)圆柱体、长方体和正方体的体积都可以用底面 积乘高的方法来计算。 (√ ) √ (5)圆柱体体积一定,圆柱体底面积越大高就越小。 ( ) (6)圆柱的底面积扩大3倍,体积也扩大3倍 。 ( ×)
练一练:
1、计算下面圆柱的体积。
8dm
10

4㎝
2
3.14 ×0.42×5=2.512(立方米)
),所以圆柱体的体积=(底面积×高)。用 字母“V”表示( ),“S”表示 ( ),“h”表示( ),那么,圆柱 体体积用字母表示为( )

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
例如,圆柱体体积的概念可以应用于容器的设计、建筑材料的储存以及流体 力学中的问题。
圆柱体积相关的思考题和练习题
在这个部分,我们将提供一些思考题和练习题,帮助你巩固对圆柱体积公式的理解和应用。 这些问题将挑战你的思维,并帮助你更深入地理解圆柱体积公式的原理。
总结和结论
通过这个演示课件,我们深入学习了圆柱体积公式的定义、意义、推导过程 以及实际应用。 掌握圆柱体积公式将使你在解决几何问题和应用数学中更具自信。
ห้องสมุดไป่ตู้
公式的应用示例:计算圆柱体 的体积
了解圆柱体积公式的应用是学习和掌握该公式的关键。在这个部分,我们将 通过实际的计算示例来展示如何使用该公式计算圆柱体的体积。
通过运用所学的知识,你可以轻松地计算出任意大小的圆柱体的体积。
实际应用:圆柱体体积在日常 生活中的应用
圆柱体体积在我们的日常生活中发挥了重要作用。在这个部分,我们将探索 一些实际应用场景。
圆柱体积公式推导课件 (动画演示)
欢迎来到我们的圆柱体积公式推导课件!在这里,我们将一起探索圆柱体积 公式的定义和意义,并通过动画演示推导过程。让我们开始吧!
圆柱体积公式的定义和意义
了解圆柱体积公式的定义和意义是理解它在几何学中的重要性的关键。圆柱体积公式为我们提供了计算圆柱体 体积的方法。 通过计算圆柱体的体积,我们可以衡量其容纳能力、储存空间,甚至是流体在其中的容纳量。
圆柱体积公式的推导过程
圆柱体积公式的推导过程是理解和应用该公式的关键。在这个部分,我们将通过演示动画来推导圆柱体积公式。 我们将探讨不同直径和高度的圆柱体,并考虑它们如何构成一个整体,从而得到圆柱体积公式的结果。
演示动画:推导圆柱体积公式
在这个部分,我们将通过演示动画的形式展示圆柱体积公式的推导过程。通 过图示和动画,你将看到不同步骤的推导过程。 这种可视化的方式将帮助你更好地理解圆柱体积公式的来源和原理。

圆柱体积PPT课件

圆柱体积PPT课件

r= d
2
S=∏r2 v=sh = ∏ r2 h
3.已知圆柱体的底面周长和高,怎样求体积 ?
r=c÷2∏
S=∏r2 v=sh = ∏ r2 h
一个圆柱,底面半径是2cm,高是5cm。 求它的体积?
r=2cm h=5cm S底=πr2 =2×2×3.14
=4×3.14 =12.56(cm2) V=Sh=5×12.56=62.8(cm3)
人教版小学六年级数学下册《圆柱的体积》
真 棒!
高 宽

棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
rHale Waihona Puke πrS=πr ×r =π r 2
圆面积计算公式的推导过程
()

长方形
运用了什么数学思想?
一根圆柱形的钢材,底面积是50平方厘米, 高是2.1米。它的体积是多少?
2.1米=210厘米 50 ×210=10500(立方厘米) 答:它的体积是10500立方厘米。
50平方厘米=0.005平方米 0.005 ×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。
看图列式,并写出相应的公式。
答:圆柱的表面积是62.8平方厘米。
计算右图圆柱是体积。(单位:dm)
d=10dm h=4dm S底=π(d÷2)2
=(10÷2)2×3.14 =25×3.14 =78.5(dm2) V=Sh=4×78.5=314(dm3)
1·0 4
一个圆柱,底面周长是94.2m,高是 100m。求它的体积?

圆柱的体积课件

圆柱的体积课件

16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9
真 棒!

长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v =a 正
V=s底 h
பைடு நூலகம்
3
猜想:圆柱体积的大小跟
哪些条件有关?
观察:①甲乙两个圆柱有什么相同?什么不同? ②当高相等时,甲的体积为什么比乙的大? 圆柱的高相等,底面积大的体积就大。 真
6.28厘米
(2)
2 V=兀(d÷2)×h
(3)
2 3.14 ×(6.28÷3.14÷2) ×8 5厘米 2 V=兀(C÷兀÷2)×h
(4)
练习巩固 应用拓展
• 把一根长1.5分米的圆柱形钢材截成三段后, 如图,表面积比原来增加9.6平方分米,这 根钢材原来的体积是多少? (9.6÷3)×1.5= 4.8(立方分米) 答:这根钢材原来的 体积是4.8立方分米
将一个圆柱体沿着底面直径切成两个半 圆柱,表面积增加了40平方厘米,圆柱的 底面直径为4厘米,这个圆柱的体积是多 少立方厘米?
再见!
2、它的底面积变了吗?
∏r
1、拼成的长方体的体积与原来的圆柱体体积是否相等?
因为长方体的体积=底面积×高 所以圆柱的体积=底面积×高 V = S h
3、它的高变了吗?
V长方体 V=abh
=
V圆柱 V= 兀r2 × h
= 兀r ×r × h = 兀r 2 h ×
V=Sh
例4
一根圆柱形钢材,底面积 是50平方厘米,高是2.1米。 它的体积是多少?
V =s h
想 一 想

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解

笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。

圆柱体积公式推导PPT

圆柱体积公式推导PPT

V=πr2h V=π( d2)2h
V=π(C÷d÷2 )2h
谢谢大讲人姓名 再见
分的份数越 多,拼成的图形就越接近于长方形
长= πr 宽= r
长= πr 宽= r
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
底面积
长方体的体积=底面积×高
长方体的体积=底面积×高 圆柱体的体积= 底面积 × 高
想一想、填一填:
把圆柱体切割拼成近似( ),它们 的( )相等。长方体的高就是圆柱体的 ( ),长方体的底面积就是圆柱体的 ( ),因为长方体的体积=( 底面积×高
如果圆的半径为r, 你能算出 圆的面积吗?
C 2
= πr
r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × r
= πr 2
),所以圆柱体的体积=(底面积×高)。用字
母“V”表示( ),“S”表示

),“h”表示( ),那么,圆
柱体体积用字母表示为( )
(S=πr²) 所以V=πr²h
圆柱体积=底面积×高
1.5米=150厘米
50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
努力吧!
练一练:
1、计算下面圆柱的体积。 s=28.26dm 2 s=20cm 2 8dm 4cm
2、 一根方钢长50厘米,底面是边 长12厘米的正方形。如果把它锻造 成底面面积是90平方厘米的圆柱形 钢材,这根钢材长多少厘米?
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。

《圆柱:圆柱的体积》教学课件

《圆柱:圆柱的体积》教学课件

05
生活中应用举例
建筑领域应用
建筑结构
圆柱体常被用作建筑的主要支撑结构, 如圆柱形的柱子,其体积计算对于确 定材料用量和承重能力至关重要。
建筑设计
在建筑设计中,圆柱体常被用于创造 独特的美感和空间感,体积计算有助 于实现精确的比例和平衡。
机械制造领域应用
机械零件
圆柱体是机械制造中常见的零件形状,如轴承、齿轮等,体积计算对于确定零件的尺寸和重量非常关 键。
液压和气压传动
圆柱体在液压和气压传动系统中用作活塞或气缸,体积计算有助于确定系统的传动效率和性能。
其他领域应用
容器设计
圆柱形的容器,如储水罐、油罐等,其体积计算对于确定容器的容量和形状优化至关重 要。
地理信息系统
在地理信息系统中,圆柱体模型常被用于地球表面的三维建模,体积计算有助于分析和 可视化地理数据。
《圆柱:圆柱的体积 》教学课件
目录
• 圆柱基本概念与性质 • 计算圆柱体积方法 • 拓展应用:不规则物体体积求解 • 实验操作:测量并计算圆柱体积 • 生活中应用举例 • 总结回顾与课堂互动环节
01 圆柱基本概念与性质
圆柱定义及特点
圆柱定义
圆柱是由两个平行且相等的圆面 以及连接这两个圆面的一个曲面 所围成的几何体。
分析误差原因
比较计算值与真实值的差异,分析 误差产生的原因,如测量工具精度、 操作规范等。
实验结果分析与讨论
结果展示
将实验数据以表格或图表形式展 示,包括测量值、计算值和误差
等。
结果分析
根据实验数据,分析圆柱体体积 与高度、半径之间的关系,以及
误差对实验结果的影响。
讨论与改进
针对实验过程中出现的问题和误 差原因进行讨论,提出改进措施 以提高实验精度和效果。例如, 改进测量工具、优化操作流程等。

《圆柱体积》圆柱与圆锥PPT课件

《圆柱体积》圆柱与圆锥PPT课件

5
2
3.14× (5 2) × 5
2
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大?

2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

圆柱体的大小与底面积 有关!
高相等时底面积越大的 体积越大。
图2
将一个圆柱截成不相等的两段,哪个圆柱体积大?


下 上
当底面积相等时, 高越长的体积越大。
圆柱的体积=
长方形的体积= 长×宽×高 正方形的体积= 棱长×棱长 ×棱长 大胆猜想圆柱体的体积等于?? 因为变换成长方体后,底面积 和 高的大小是不变的,所以圆柱的 体积也等于底面积×高
V= S × h
直柱体的体积 = 底面积×高
V =s h
例4
一根圆柱形钢材,底面积 是50平方厘米,高是2.1米。 它的体积是多少?
如果已知圆柱底面的半径(r) 和高( h ),你会计算圆柱的 体积吗?
如果已知圆柱底面的直径(d) 和高( h )呢?
一、填表。
高 h 圆柱体积 V (平方米) (米) (立方米)
底面积
s
15 40
3
4
45 160
二、填空
1、一个长方体和一个圆柱的体积
相等,高也相等,那么它们的
底面积(
相等
)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高
33
讨论
(11)已知圆的底面积和高,怎样求圆柱的体积? (2)已知圆的半径和高,怎样求圆柱的体积? (3)已知圆的直径和高,怎样求圆柱的体积? (4)已知圆的周长和高,怎样求圆柱的体积?h (2)已知圆的半径和高: V=∏r2h
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
长方体的体积=底面积×高
底面积
27
长方体的体积=底面积×高
底面积
28
长方体的体积=底面积×高
底面积
29
长方体的体积=底面积×高
底面积
30
长方体的体积=底面积×高
底面积
31
长方体的体积=底面积×高
底面积
(3)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高:V=∏(C÷d÷2 )2h
35
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
36
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
V=∏(C÷d÷2 )2h =3.14×(12.56÷3.14÷2)2×10 =03.14×4×100 =1256(立方厘米) 答:它的体积是1256立方厘米。
37
努 力 吧 !
38
练一练: 1、计算下面圆柱的体积。
8dm
4cm
39
2.判断正误:(对的画“√”,错的画"×") (1)圆柱体的底面积越大,它的体积越大。( × ) (2)圆柱体的高越长,它的体积越大( ×) (3)圆柱体的体积与长方体的体积相等.(× ) (4)圆柱体的底面直径和高可以相等。( √ )
圆柱的体积
六二班
1
学习目标
(1)理解圆柱体积公式的推导过程。 (2)掌握计算公式。 (3)会运用计算公式计算圆柱的体积。
2
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
c
a
b
a
v v 长=a b h
正 =a 3
猜想:如何求圆 柱体的体积?
V=s底 h
3
4
5
6
7
8
9
10
11
40
圆柱体积=底面积×高
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。 41
4.一个圆柱的体积是80cm³,底面积是
16cm2。它的高是多少厘米?
80 ÷16 =5(cm) 答:它的高是5cm。
42
43
相关文档
最新文档