第三章土壤的离子交换

合集下载

第3章 土壤基本性质

第3章 土壤基本性质
与土壤溶液中的阳离子相互交换的 过程。
可用下式来表示:
土壤 Mg2+ +10NH4+ 胶粒 AI3+
K+
土壤 10NH4+ +Ca2+、Mg2+、Al3+、K+、 2H+ 胶粒
离子半径及水化程度与交换力的关系 离子半径(A) 离子
Na+ NH4+ K+ Mg2+ Ca2+ H+
价数
1 1 1 2 2 1
绿泥石粘粒矿物结构示意图
由两层四面体与两层八面体构成2:2型矿物
非硅酸盐粘土矿物 (一)氧化铁 (二)氧化铝
(三)氧化硅
起重要作用的主要是非晶质(无定形)的铁铝 氧化物。非晶质的铁铝氧化物可以吸附阴离子 ,如土壤中磷酸根离子的吸附,使磷被固定, 失去其有效性。
二、土壤胶体的共同特性****
(1)具有巨大的比表面积和表面能 (2)带电性 (3)分散性和凝聚性 (4)吸附代换性
(二)粘土矿物基本类型 与特性
硅氧片和铝氧片如何联结?
硅氧四面体
铝氧八面体
硅氧片
铝氧片 晶层
1:1型粘土矿物 2:1型粘土矿物
晶体颗粒 层状铝硅酸盐矿物
四个类组:
高岭石类 蒙脱石类 水云母类 绿泥石组矿物
高岭石类(1:1型矿物)
包括:高岭石、珍珠陶土、迪恺石及埃洛石等 特点:(1)1:1型的晶层结构 (2)膨胀性差 (3)同晶替代极少或没有,保肥力差 (4)胶体特性较弱,主要是晶架上的-OH在一定条件下,H+ 向外解离,使其带负电 (5)六角片状,粘着力和可塑性较弱(与蒙脱石比) 高岭组粘土矿物是 南方热带和亚热土壤中普遍而大量存在的粘土矿物,在 华北、西北、东北及西藏高原土壤中含量很少。
2、可变电荷(variable charge)*** 随pH的变化而变化的土壤电荷,这种电荷 称 为可变电荷。

土壤地理学 第二章第三章

土壤地理学 第二章第三章

土壤地理学第二章/第三章第二章:影响土壤形成的环境因素:俄国道库恰耶夫成土学说:主要观点:土壤成土因素主要有五个气候、生物、母质、地形。

时间影响土壤发育的五个主要因素:1、母质因素(不同岩石风化壳)2、生物因素(不同植被类型:草地与森林)3、气候因素(影响风化,控制植被生长)4、地形因素(影响物质与能量的分配)5、时间因素(控制土壤发育进程)地质大循环和生物小循环的关系:1.大循环是小循环的基础,也是土壤形成的基础(矿质养分);2.小循环是土壤形成的核心(腐殖质);3.大循环大于小循环,自然界会发生水土流失现象;4.大循环小于或者等于小循环,自然界水土保持。

总之,土壤的形成过程是物质的地质大循环与生物小循环过程矛盾与统一。

形成土壤的两个基本作用:◆风化作用:致密的岩石被破坏,营养元素得以释放,并形成疏松的风化层;◆生物作用:有机质加入,营养元素积聚。

1)土壤胶体及结构①土壤胶体:通常所说的土壤胶体实际上是指直径在1—100 mµm之间的土壤颗粒。

②土壤胶体的种类土壤矿物质胶体(无机胶体):次生铝硅酸盐、铁铝化合物有机胶体:腐殖质、有机酸、蛋白质等有机-无机复合胶体③土壤胶体结构微粒核:胶核双电层:内外吸附层、扩散层2)土壤胶体的性质①巨大的比表面积和表面能②带电性带电的原因是什么?电性如何?③土壤胶体离子交换作用④分散和凝聚作用第一:粘土矿物胶体带电土壤中粘土矿物胶体一般都带负电荷,其电荷来源有以下几个方面:同晶置换作用粘土矿物晶质中的一种离子被另一种离子取代的过程。

在这个过程中,只改变了矿物质的化学成分,而矿物的结晶构造不变,故叫做同晶置换作用。

晶格破碎边缘带电矿物质风化破碎过程中,晶格边缘离子一部分电荷未被中和而产生剩余电荷,使晶体边缘带电。

第二:腐殖质胶体带电意义?由于腐殖质分子量大、功能团多,解离后带电量大,对土壤保肥供肥性有重要影响。

第三:两性胶体带电,什么是两性胶体?表面既带负电荷,亦带正电荷的土壤胶体称两性胶体。

第三章土壤化学性质

第三章土壤化学性质

(二)胶体带有电荷 1,胶体带电的原因 土壤胶体表面带有电荷是其最重要的胶体化学特性. 土壤胶体表面带有电荷是其最重要的胶体化学特性. 造成胶体带电的原因主要有以下三种: 造成胶体带电的原因主要有以下三种: (1)同晶代换 (2)断键 (3)表面分子的解离 土壤胶体能解离出H 而带负电的胶体称为酸胶基 土壤胶体能解离出H+,而带负电的胶体称为酸胶基 或负胶体; 或负胶体; 能解离出OH 胶体称为碱胶基或正胶体 碱胶基或正胶体, 能解离出OH-而带正电的 胶体称为碱胶基或正胶体, 能解离出H 也能解离出OH 的则称为两性胶体 两性胶体. 能解离出H+也能解离出OH-的则称为两性胶体.
以上顺序中H 的情况是特殊的,可能与它半径小, 以上顺序中H+的情况是特殊的,可能与它半径小, 电场强度大有关. 电场强度大有关. 电解质的浓度影响凝聚作用,随着浓度的加大,其 电解质的浓度影响凝聚作用,随着浓度的加大, 凝聚作用也增强. 凝聚作用也增强. 胶体凝聚有可逆的也有不可逆的. 胶体凝聚有可逆的也有不可逆的. 由等浓度的一价阳离子凝聚形成的凝胶,如反复用 由等浓度的一价阳离子凝聚形成的凝胶, 水淋洗,凝胶可再分散形成溶胶,这叫做可逆凝聚 可逆凝聚. 水淋洗,凝胶可再分散形成溶胶,这叫做可逆凝聚. 由二价以上的阳离子凝聚形成的凝胶, 由二价以上的阳离子凝聚形成的凝胶,很难或不能 再变成溶胶的凝聚称为不可逆凝聚 不可逆凝聚. 再变成溶胶的凝聚称为不可逆凝聚. 土壤胶体所处的状态直接影响土壤的物理性质, 土壤胶体所处的状态直接影响土壤的物理性质,进 而影响土壤的肥力状况.一些农业技术措施, 而影响土壤的肥力状况.一些农业技术措施,如施 中耕,浇水, 肥,中耕,浇水,烤田等都可使土壤中的电解质发 生变化,从而使胶体的状态发生改变, 生变化,从而使胶体的状态发生改变,或局部发生 改变,尤其是施用钙质肥料, 改变,尤其是施用钙质肥料,由促进土壤形成不可 逆凝聚的显著作用. 逆凝聚的显著作用.

5第三章 土壤的基本性质

5第三章 土壤的基本性质
受其它外力作用后而发生形变的性质。
粘结性和粘着性:
土壤粘结性: 指土粒与土粒之间由于分子引力而相互 粘结在一起的性质。这种性质使土壤具有抵抗外力破碎的 能力,也是耕作产生阻力的原因。
土粒-土粒(干燥) 土粒-水-土粒(湿润)
土壤粘着性: 是土壤在一定含水量的情况下,土粒粘 着外物表面的性能。
土粒-水-外物
耕层土重=20*10-2*666.67*1.15=153.3t 孔隙度=(1-1.15/2.65)*100%=56.6% 孔隙比=56.6%/1-56.6%=1.3
2、土壤孔隙类型:
土壤孔径(当量孔径): 是指与一定的土壤水吸力相当的孔径,它与孔隙
的形状及其均匀性无关。 土壤水吸力与当量孔径的关系式为: d = 3/T
一般旱地土壤容重大体在1.00~1.80 g/cm3之间。
土壤容重是一个重要的参数:
➢反映土壤松紧度(作物适宜的容重1.14-1.26 g/cm3) ➢计算土壤的重量
ms=S·h·d (ms:土重,S:面积,h:土层深度,d:容重)
➢计算土壤中各组分的含量 如土壤水分、有机质、养分和盐分等
土壤容重一般是比重的一半左右。
土壤结构性: 土壤结构体的大小、形状、力稳性、水稳性及孔隙状况的综合特征。Fra bibliotek土壤结构
大小
土壤结构体
形状
不良性状 结构体
良性结构体
块状结构 片状结构,鳞片状结构 柱状结构,棱柱状结构 核状结构 团粒结构
微团聚体
孔 性 孔隙度和孔隙级别
协调水、肥、气、热的能力
肥力特性
土壤结构性
改善耕性
水力学稳定性
稳定性 机械学稳定性
Al(OH)3+H+→Al(OH)2++H2O 酸性环境 Al(OH)3 +OH- →Al(OH)2O-+ H2O 碱性环境 c.层状硅酸盐:

土壤胶体的离子交换作用

土壤胶体的离子交换作用

土壤胶体的离子交换作用离子交换作用包括阳离子交换吸附作用和阴离子交换吸附作用。

一、土壤阳离子交换吸附作用的概念1.土壤胶体表面所吸附的阳离子,与土壤溶液中的阳离子或不同胶粒上的阳离子相互交换的作用,称为阳离子交换吸附作用。

2.当土壤溶液中阳离子吸附在胶体上时,表示阳离子养分的暂时保蓄,即保肥过程;当胶体上的阳离子解离至土壤溶液中时,表示养分的释放,即供肥过程。

二、土壤阳离子交换吸附作用的特点1. 可逆反应:在自然状况下,很难把土壤胶体上某一阳离子完全彻底地代换到溶液中去。

同时,土壤胶体上吸附的阳离子也必然是多种多样的,不可能为单一种离子所组成。

在湿润地区的一般酸性土壤中,吸附的阳离子有Al3+、H+、Ca2+、Mg2+、K+等;在干旱地区的中性或碱性土壤中,主要的吸附性阳离子是Ca2+,其次有Mg2+、K+、Na+等。

2. 等量交换:以等量电荷关系进行,如一个Ca2+可交换两个Na+;一个二价的钙离子可以交换两个一价的氢离子。

3. 速度受交换点位置和温度的影响:①位置:如果溶液中的离子能直接与胶粒表面代换性离子接触,交换速度就快;如离子要扩散到胶粒内层才进行交换,则交换时间就较长,有的需要几昼夜才能达成平衡。

高岭石类矿物交换作用主要发生在胶粒表面边缘上,所以速率很快;蒙脱石类矿物的离子交换大部分发生在胶粒晶层之间,其速率取决于层间间距或膨胀程度;水云母类的交换作用发生在狭窄的晶层间,所以交换速率较慢。

(高岭石〉蒙脱石〉水云母)②温度:高温可加快离子交换反应的速率,因为温度升高,离子的热运动变得更为剧烈,致使单位时间内碰撞固相表面的次数增多。

三、影响阳离子交换作用的因素1.阳离子的交换能力:(指一种阳离子将胶体上另一种阳离子交换下来的能力。

)主要决定于阳离子被胶粒吸附的力量(或称阳离子与胶体的结合强度),它实质上是阳离子与胶体之间的静电能。

a.离子电荷价:M3+> M2+> M+(M表示阳离子)b.离子的半径及水化程度:同价离子,离子半径大水化半径小,交换能力越强。

第三章 土壤的离子交换

第三章 土壤的离子交换
较恒定。
(二) 可变电荷 (pH-dependent charge , variable charge ) 土壤可变电荷,是数量随介质pH值升降而改 变的电荷。
可变电荷产生的原因:
1、胶核表面分子的解离
如腐殖质具有羧基、酚羟基和羟基,这些功
能团若存在于腐殖质胶粒的表面,可产生解离,
使胶粒上负电荷增加。
高岭石
伊利石 蒙脱石
5~15m.e/100g
20~40m.e/100g 60~120m.e/100g
3、土壤pH 土壤pH值的高低,主要影响可变电荷的数量, 从而影响总电荷量。
4、有机无机胶体的复合程度
在土壤中,有机胶体和无机胶体很难长期单 独存在,总要形成复合体,这种复合对胶体电荷 来讲,是非加和性的,即形成复合体的负电荷, 小于结合前各自电荷的总和。
[Al(H2O)3OH]++ 等。
聚合:在pH4~7时,这些产物可进一步聚合成 环状或链状聚合体,这些聚合体直径较大,电 荷较多,能被牢固地吸附在固相表面。
(二) 土壤胶体矿物组成的影响 粘土矿物的种类不同,其电荷密度不同,因
而吸附阳离子的强度也不同。
(三) 温度 温度升高,离子反应加快,因为温度升高离 子热运动变得剧烈,导致在单位时间内碰撞固相 表面次数增多,增加离子之间相互交换的机率, 缩短达到平衡所需要的时间。
第三章 土壤的离子交换
土壤的离子交换现象,是土壤重要的电化学
性质之一,一般用交换容量大小和离子吸附力的
强弱两个指标来衡量。
这两个指标,同土壤胶体的种类、数量、构
造以及介质中的离子种类,浓度和pH值等环境条
件有关,因而十分复杂,不同土壤之间存在着很
大的差别。

第3章 土壤化学性质

第3章  土壤化学性质
第3章 土壤化学性质

教学内容
3.1土壤离子交换吸附性能 3.2土壤酸碱性 3.3土壤缓冲性
3.1土壤离子交换吸收性能
主要内容: 3.1.1土壤吸收性能; 3.1.2土壤阳离子交换吸收; 3.1.3土壤阴离子吸收
3.1.1土壤吸收性能

土壤吸收性能是指土壤能吸收和保留土壤溶液中的分子和离子,悬液中的
3、化学吸附性

化学吸收性(chemical absorption performance)是指易溶性盐在土壤中转变为难
溶性盐而沉淀保存在土壤中的过程。

这一过程是以纯化学反应为基础的,称为化学吸收,比如可溶性的磷酸盐, 在土壤中与Ca2+ 、Mg2+、Fe2+、Al3+等,发生化学反应生成难溶性的磷

(3)、符合质量作用定律:根据这一原理,可以通过改变某一反
应物(或产物)的浓度达到改变产物(或反应物)浓度的目的。
2、 阳离子交换能力
(1)阳离子交换能力是指一种阳离子将胶体上 另一种阳离子交换出来有能力。 各种阳离子交换能力大小的顺序为: Fe3+ > Al3+ > H+ > Ca2+ > Mg2+ > NH4+ > K+ > Na+

土壤机械吸收性能的大小主要取决于土壤的孔隙状况。阻留在 土层中的物质可被土壤转化利用,起到保肥的作用,其保留的
养分易被作物吸收利用。
3.1.1土壤吸收性能

2、物理吸收性(physical absorption performance)是指土壤对分子态物质的
保持能力。由于土壤的细粒部分具有巨大的表面积和表面能,

土壤阳离子交换量测定原理

土壤阳离子交换量测定原理

土壤阳离子交换量测定原理
土壤阳离子交换量的测定原理是一种广泛用于检测土壤酸碱度的有效手段,其特性是要求土壤中存在一定比例的阳离子可兑换离子,它可以参与电离方式进行阳离子交换,从而发挥对环境的作用。

土壤阳离子交换量测定原理指的是在不同pH 值土壤中,添加一定量固定电荷溶液,通过测量土壤中阳离子可兑换量,使用pH 计和定标滴定技术,从而计算出土壤的酸碱度。

而土壤的酸碱度是确定其营养元素的释放速度和吸收能力的重要因素之一,如果测量不当,将对土壤的肥力和植物的生长发育产生负面影响。

土壤阳离子交换量的测定原理包括洗液法、替代法和具有统计意义的碘卤化消除法等。

洗液法是土壤准备好后,采用不同酸类溶液或不同碱类溶液来调节土壤中阳离子可兑换量,再用定标滴定技术或电位表测定所得溶液中的离子浓度和碱度,从而测定出土壤的阳离子可兑换量的方法。

替代法是最常用的,即通过上述某种溶液洗液法为基础,在控制pH条件下改变或除去可兑换性阳离子,计算两次测定结果之差,即可得出可兑换性阳离子的数量。

而具有统计意义的碘卤化消除法采用替代法的原理,但其碘卤化消除法更加严谨,不仅可以测定阳离子可兑换量,还可以测定可兑换性碱离子的量。

总而言之,土壤阳离子交换量的测定原理是土壤酸碱度测定的重要方法,它要求土壤中存在一定比例的阳离子可兑换离子,以此进行阳离子交换,进而发挥对土壤的肥力、土壤营养元素的释放和植物的生长发育的作用。

因此,土壤阳离子交换量的测定原理具有重要的意义。

土壤学 土壤阳离子交换作用

土壤学  土壤阳离子交换作用

土壤和沉积物中的锰、铁、铝、硅等氧化物 及其水合物,对多种微量重金属离子起富集作用, 其中以氧化锰和氧化铁的作用更为明显 。
由于专性吸附对微量金属离子具有富集作用 的特性,因此,正日益成为地球化学领域或地 球化学探矿等学科的重要内容。
专性吸附在调控金属元素的生物有效性和生 物毒性方面起着重要作用。有试验表明,在被铅 污染的土壤中加入氧化锰,可以抑制植物对铅的 吸收。 土壤是重金属元素的一个汇,对水体中的重 金属污染起到一定的净化作用,并对这些金属 离子从土壤溶液向植物体内迁移和累积起一定
影响阴离子吸附的因素: 溶液浓度 阴离子种类
pH
离子交换对土壤肥力的影响
1. 2.
土壤离子交换对土壤养分状况的影响 影响土壤的酸碱性
3.
4.
影响土壤的缓冲性
影响土壤的物理性质
土壤的离子换与土壤性质
土壤胶体上钠离子饱和度高,抑制和威胁作物生长。
燕麦和小麦产量与代换性钠数量关系
干物质产量(克/盆) 土壤中代换性阳离子组成 100%Ca 85%Ca+15%Na 70Ca+30%Na 50%Ca+50%Na 30%Ca+70%Na 燕麦 14.9 14.7 15.4 13.2 死亡 小麦 17.6 16.9 17.0 14.5 死亡
不同pH值下粘粒矿物的交换量
不同pH值
粘土矿物 2.5-6 蒙脱石 高岭石 95 4 7 100 10 阳离子交换量* cmol(+)/kg 5 6
* pH等于7时的增加值
二、土壤阳离子交换作用
6、影响交换性阳离子有效度的因素
(1)交换性阳离子的饱和度
土壤阳离子饱和度效应
土壤
甲 乙
CEC cmol/kg

第三章土壤的基本性状(物理性)

第三章土壤的基本性状(物理性)

耕 作 质 量成 硬 土 块 成 小 土 块 成 大 土 垡成 大 土 垡成 浮 泥 浆 成 泥 浆 宜 耕 性 不 宜 宜 不 宜 不 宜 不 宜 宜 稻 田 耕 作
第二节
(一)土壤结构性的概念
土壤的结构性
通常所说的“土壤结构”实际包含两个方面,土壤结构性 和土壤结构体,土壤结构体是指土壤中的土粒相互黏结团 聚成大小形状和性质不同的聚合体称之为土壤结构体。土 壤结构性是指土体中土壤结构体的大小、类型、数量、品 质及其相互排列方式和相应的孔隙状况等的综合特性。它
表4- 6 土 壤 耕 性 与 土 壤 结 持 状 态
土 壤 水 分 干 燥 含 量 土 壤 结 持 坚 硬 状 态 具 有 固 体 性 质 , 不 主 要 性 状 能 捏 合 成 团 耕 作 阻 力大 湿 润 酥 软 潮 湿 可 塑 泞 湿 粘 韧 多 水 浓 泥 浆 极 多 水 薄 泥 浆
松 散 无 可 有 可 塑 成 浓 泥 浆 , 成 悬 浮 体 , 塑 性 , 易 有 可 塑 性 性 , 但 无 可 受 重 力 影 如 液 体 一 样 成 团 但 不 和 粘 着 性 粘 着 性 响 而 流 动 容 易 流 动 成 块 小 大 大 大 小
是土壤的重要物理性质
容重 孔隙度 %= ( 1- 比重 )× 100
(二)土壤结构体的类型
1、块状和核状结构体,农民称之为“坷垃”,土粒在长宽高三轴上,大体相等,边面 不明显,分大块状、块状和碎块状。表土中多见块状与碎块状。常出现于有机质缺乏 瘠薄而粘重的土壤,土壤过干过湿耕作最易形成块状结构。核状结构表面有褐色胶膜, 由石灰质铁质胶膜胶结而成,常出现于缺乏有机质的心、底土中,农民称之为“蒜瓣 土”。
基本数据。
<一>、计算孔隙度, <二>、判断土壤熟化程度 1.1~1.3较疏松,1.5以上紧实,

土壤阳离子交换作用的特点

土壤阳离子交换作用的特点

阳离子交换作用的特点
土壤中阳离子的交换作用,可用下式表示:
这种阳离子交换作用的基本特点是可逆反应,迅速平衡,并且是等电量交换。

1,可逆反应:土壤的阳离子交换作用是一种可逆反应,因为这种交换作用只在胶粒表面上进行,可以很快达到平衡。

当然这种平衡是一种动态的平衡。

如上式的
反应,ca2+可以交换下来K十,反过来K*也可以交换下来Ca2+。

这个反应受质量作用定律的支配,即一种离子的浓度大,既或是交换能力较弱而且离子价较低的阳离子,也能交换下来交换能力较高而且离子价也较高的离子。

如吉林省的盐碱土中多苏打,Na+的浓度大,往往可以把土壤胶粒上的Ca2+等阳离子交换下来,而使土壤碱化。

2等当量交换:即各种阳离子之间的交换是在等当量关系下进行的。

例如,NH4+与Ca2+交换时,既不是1毫克的NH4+交换下来1毫克的Ca2+,也不是一个NH4+与一个Ca2+进行交换。

这时只能是1毫克当量的NH4*(18毫克)与1毫壳当量的Ca2+(40/2=20毫克)进行交换,或者说2个NH4+与1个Ca2+进行交换。

土壤的阳离子交换量实验报告

土壤的阳离子交换量实验报告

土壤的阳离子交换量实验报告
土壤阳离子交换实验属于土壤物理化学实验的一部分,是研究土壤离子的活动度的一
种重要手段。

土壤的阳离子交换量是衡量土壤水热量、有机质、离子活性及土壤结构状况
的量化指标,对提高土壤可持续利用能力具有重要意义。

本实验旨在研究一个典型山地土
壤在不同pH值条件下的阳离子交换量。

实验中,采用的土壤样品来自一个位于山地的森林园地,由该森林园的工作人员采集,整块地将分成三份,每份重200克,由于较大的粒径分布,采集后将各份土壤分别趋近筛选,按粒径由小到大分成7个等级,分别为2、2.5、2.8、3.2、4.0、5.0和6.0毫米。

筛选后取其中一份样品,经晒干后病酸溶法清洗,采用汞堆称法测定阳离子交换量。

实验结果表明,土壤细粒径(<2.0mm)粘壤含量比较高,交换性痕量元素含量较高。

在较低的pH(4.0)条件下,样品的阳离子交换量最高;随着pH值的上升,阳离子交换量逐渐降低,而在较高的pH(8.0)条件下,样品的阳离子交换量最低。

此外,实验结果显示,细粒径土壤的阳离子交换量明显小于粗粒径土壤。

本次实验的结果对深入的研究土壤的阳离子交换量以及土壤的结构状况等具有重要的
指导意义,为采用有效的施肥和入渗性方案提供了参考。

通过这项实验,我们可以正确评
估土壤的营养状况,从而为土壤综合管理提供有力支撑。

土壤 阳离子交换量

土壤 阳离子交换量

土壤阳离子交换量阳离子交换量(CEC)是土壤重要化学性质之一,是指在一定pH值时,每千克干土所能吸附的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数,常用单位为cmol(+)/kg。

阳离子交换量是衡量土壤保持或储存阳离子能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。

当土壤颗粒带负电荷时,它们会吸引并保留阳离子(带正电荷的离子),阻止它们在土壤剖面中淋失。

土壤颗粒所携带的阳离子称为可交换阳离子,是植物养分最重要的直接来源。

阳离子交换量越高,能保持的阳离子数量越多,土壤的保肥、供肥性能和缓冲能力越强。

一般认为阳离子交换量大于20cmol(+)/kg为保肥能力强的土壤;20~10cmol(+)/kg为保肥能力中等的土壤;小于10cmol(+)/kg为保肥能力弱的土壤。

影响阳离子交换量的因素很多,包括土壤质地、有机质含量、黏土的数量和种类、胶体类型、土壤pH值等。

土壤质地越细,阳离子交换量越高;黏粒含量高的土壤比黏粒含量低的土壤能够保持更多的可交换阳离子;有机质是阳离子交换量的一个非常重要的来源,有机质含量高的土壤阳离子交换量较有机质含量低的砂质土壤高;有机胶体比矿质胶体具有更高的阳离子交换量;土壤pH值也会影响土壤阳离子交换能力,随着土壤pH值的增加,阳离子交换量增加;生物炭表面多孔,具有较大的比表面积、较强的阳离子交换能力,能增加土壤阳离子交换量。

土壤的阳离子交换量决定了土壤能容纳的正离子的数量(阳离子),反过来土壤阳离子交换量会对土壤的肥力管理产生重大影响。

在正常管理措施下,具有高阳离子交换量和高缓冲能力的土壤,其pH值变化比低阳离子交换量的土壤慢得多。

阳离子交换量还会影响氮肥和钾肥的施用时间。

阳离子交换量低的土壤一些阳离子可能会淋失,易造成土壤缺钾、镁等阳离子。

在这些土壤上秋季施铵、氮和钾会导致一些养分从根层淋失,特别是在低阳离子交换量的砂质土壤中。

第三章 土壤的离子交换

第三章 土壤的离子交换
主要形式。
(一) 永久电荷 (Permanent charge)
铝硅酸盐粘土矿物的基本结构单位,是硅 氧四面体和铝氧八面体。硅氧四面体中的硅和 铝氧八面体中的铝,都可被离子半径相近而离 子价不同的其他离子所代替,从而使粘土矿物 的晶格中出现剩余电荷。
由同晶异质代替作用而产生的电荷,称为永 久电荷。
四面体边面上同Si连接的—OH基,可在碱 性条件下,解离出H+,使胶核上负电荷增加:
≡Si-OH + OH- → ≡Si-O- + H2O
铝八面体上-OH解离,释放出H+,使胶核 =Al-OH → =Al-O-+H+
产生正电荷:
Fe(OH)3

Fe(OH)
+ 2
+
OH-
Al(OH)3 → Al(OH)2+ + OH-
2
粘土矿物经过研磨后,能增加负电荷。各 种粘土矿物晶格的边缘上或面角上,都可发生 断碎,使四面体上Si—O键,或八面体上Al-O 键断裂,造成“Si—”、“Al—”、“O—”断 键,产生可变电荷。
(三) 零点电荷(Zero point charge, ZPC)
如果在某个pH值时,粘土矿物表面上既 不带正电荷,也不带负电荷,其表面电荷等于 零,此时的pH值称为零点电荷。
(2) 有机胶体被多价阳离子凝聚在无机胶体表 面。
(二) 土壤电荷的密度
土壤电荷的密度,是指单位面积上的电 荷数量。
根据这个定义,凡是影响电荷数量的因 素,以及影响土壤表面积的因素,都能影响 土壤的电荷密度。
土壤的电荷密度具有不均匀性,不仅在不 同种类的胶体表面电荷密度不同,而且同一胶 体颗粒的不同部位上,电荷密度也不相同。

土壤的阳离子交换作用

土壤的阳离子交换作用

土壤阳离子交换作用指的是土壤中的离子与土壤中的阳离子交换的过程。

土壤中的阳离子包括钠、钾、镁和铝等。

这些阳离子主要与土壤中的阴离子,如氯离子、硫酸根离子和氢离子等进行交换。

土壤阳离子交换作用对土壤和植物生长有重要影响,因为它影响着土壤中的离子平衡和土壤的酸碱度。

高阳离子交换能力的土壤可以有效地吸附和结合有害的阴离子,这有助于提高土壤的质量和保护植物免受有害阴离子的影响。

土壤阳离子交换作用还可以通过添加碳酸钠或其他阳离子来调节土壤酸碱度,提高土壤适宜植物生长的条件。

同时,土壤阳离子交换作用还可以用来减少土壤中的盐分,这有助于提高土壤的适宜性并促进植物的生长。

土壤的离子交换现象实验

土壤的离子交换现象实验

土壤的离子交换现象实验一、目的意义了解土壤胶体的若干基本特点,加深课堂讲述时所涉及的土壤胶体性能的理解。

1、土壤胶体溶液的电泳现象将土壤胶体溶液盛在U形管中,通过直流电(50—100V)后,则发现土壤胶粒颗粒向一极集中,这种现象称之为电泳,实验装置如图。

(图4—1)通电后10—15分钟,观察土壤胶体颗粒趋向正极还是负极?从此现象中;可具体了解土壤胶体颗粒带的总电荷是正还是负的?图4—1 电泳现象的实验装置2、土壤胶体代换吸收作用的观察(1)不同质地土壤对NO3--N和NH4+-N的吸收。

分别称取砂质土壤和粘土各10克放入50ml三角瓶中,(或大试管)再加入10μg/g硝酸铵溶液20ml,摇动5分钟后,过滤。

①分别吸取滤液2ml于2支试管中,再吸取10μg/g硝酸铵溶液2ml于第三支试管中,再加50%醋酸0.5ml(或10滴)摇匀,再各加0.2克硝试粉,摇匀,观察三管中溶液的颜色的变化,比较其深浅并说明原因。

②分别吸取滤液2 ml于2支试管中,再吸取10μg/g硝酸铵溶液2毫升第三支试管中、,三管中分别加入10%酒石酸钾钠溶液10滴,摇匀后再加入钠氏剂6滴,观察三管中溶液颜色变化,比较深浅,并说明原因。

(2)不同土壤对磷酸根的吸收固定分别称取赤红壤底土、表土及沙土10g,放于50毫升三角瓶中,再加入20μg/g磷酸二氢钾(KH2PO4)溶液20毫升摇动5分钟后,过滤。

分别吸取滤液2毫升于3支试管中,再吸取20μg/g磷酸二氢钾溶液2毫升于第四支试管中,四管中分别加入钼酸铵溶液10滴,摇匀后,再加入氯化亚锡溶液1滴,摇匀,观察四支管中溶液颜色变化,比较深浅,并说明原因。

3、土壤胶体凝聚现象的观察取试管4支分别装入粘粒悬浮液5毫升(从机械分析得到的粘粒悬浮液稀释5倍为材料)然后分别加入不同电解质(1molL-1NaCl、0.5molL-11/2CaCl2、0.05molL-11/3AlCl3),并不断摇动,观察各管中凝聚现象,当试管中出现凝聚时,不再加电解质,记下所用各种电解质的体积(滴数)按下表列出各种电解质的凝集力的大小并解释原因。

土壤基本性质2

土壤基本性质2
土壤胶体的双电层模型土壤胶体的双电层模型第三节第三节土壤的离子吸附与交换土壤的离子吸附与交换土壤阳离子交换土壤阳离子交换cationexchange?土壤中带负电荷的胶体所吸附的阳离子在静电引力土壤中带负电荷的胶体所吸附的阳离子在静电引力离子本身的热运动或浓度梯度的作用下可以和土壤离子本身的热运动或浓度梯度的作用下可以和土壤溶液或其它胶体表面的阳离子进行交换
土壤胶体的特性:
土壤胶体的带电性 胶体的分散性和凝聚性 土壤胶体的吸收代换性
颗粒直径 ( mm) 2.00-1.00 1.00-0.50 0.50-0.25 0.25-0.10 0.10-0.05 0.05-0.002 < 0.002 表面积 ( cm2/g ) 11 23 45 91 227 454 8 000 000

Si–O-
土壤胶体所带的电荷可以分为永久电荷和可变电荷。
2:1 型粘土矿物中的同晶替代
sheet charges sheet charges
永久电荷:
指由于层状硅酸盐矿物晶格中的同晶替代作用所产 生的剩余负电荷。 这种负电荷不受介质pH值的影响。
5+
-1
Permanent & Variable Charge
巨大的比表面和表面积
常见粘粒矿物的比表面积(m2/g)
胶体成分 蒙脱石 蛭石 水云母 高岭石 埃洛石 水化埃洛石 水铝英石 内表面积 700-750 400-750 0-5 0 0 400 130-400 外表面积 15-150 1-50 90-150 5-40 10-45 25-30 130-400 总表面积 700-850 400-800 90-150 5-40 10-45 430 260-800
第二节 土壤胶体 三 土壤基本性质

土壤的离子交换

土壤的离子交换

2、了解土壤的肥力特性,指导土壤管理和对农
作物施肥。
第一节 土壤胶体的带电性
土壤胶体:
是指那些粒径大小在0.001—0.1微米的固体
颗粒。
当粒径小到这个范围时,呈现胶体性质。
关于土壤胶体的范围,有不同的观点,5微
米、2微米、1微米、0.5微米也被当作上限。
土壤能够进行离子交换,根本原因是土壤 胶粒具有带电性。土壤胶粒一般是带负电荷, 有 的带正电荷,有的因环境不同,即可带正电荷, 又可带负电荷。
表示电荷密度的方法
1、每平方厘米的毫摩尔数:mmol· cm-2 2、每平方厘米的微库仑:微库仑cm-2 3、每平方厘米的静电单位:静电单位cm-2 4、每个交换点占有的面积:nm2
三、土壤胶体的构造
胶核 胶体微粒
胶粒
决定电位离子层(内) 双电层 非活性离子层
补偿离子层(外)
扩散层
(一)微粒核(胶粒)
较恒定。
(二) 可变电荷 (pH-dependent charge , variable charge ) 土壤可变电荷,是数量随介质pH值升降而改
1、胶核表面分子的解离
如腐殖质具有羧基、酚羟基和羟基,这些功
能团若存在于腐殖质胶粒的表面,可产生解离,
使胶粒上负电荷增加。
四面体边面上同Si连接的—OH基,可在碱 性条件下,解离出H+,使胶核上负电荷增加: ≡Si-OH + OH- → ≡Si-O- + H2O
土壤的离子交换现象,是重要的土壤电
化学性质之一,一般用交换容量大小和离子
吸附力的强弱两个指标来衡量。
这两个指标,同土壤胶体的种类、数
量、构造以及介质中的离子种类,浓度和
pH值等环境条件有关,因而十分复杂,不
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档