塔吊基础设计计算方案说明

合集下载

塔吊基础设计计算

塔吊基础设计计算

筑龙网WW W.ZH U L ON G.C OM(一)塔吊基础设计计算 1、根据塔吊使用说明书,十字梁设计为1100×1500、砼C25,适当配置钢筋,本基础坐落在5根桩上,即本塔吊基础设计, 2、基础十字梁钢筋设计根据塔吊使用说明书,十字梁所受的荷载为F1=F2=150KN 截面尺寸为1100×1500,砼为C25假如十字梁双排钢筋为5Φ25验算如上草图,M max F ×a =150×3.00=450KN.M 查表:ρ=0.26%As =ρ×b ×h =0.26%×1100×1500=4290mm 2A 设=4908mm 2 >As =4290mm 2故十字梁双排配筋满足要求。

3、 稳定验算以知条件:基础所受的垂直荷载 476KN基础所受的水平荷载 24KN 基础所受的倾翻力矩 1220KN 基础所受的扭矩 185 KN.mm 基础设计重量 610 KN.mm计算塔吊在非工作情况下是否稳定筑龙网WW W.ZH U L ON G.C OMe =(M+H ×h )/(V+G )≤Le/3=(185×103×24103×50)/(476×103+610×103)=1.28<=2.03L/3 故基础满足要求 五、塔吊稳定验算:(1) 塔吊在工作情况下有荷载稳定验算:K1=[G ×(c-h ×sina+b )-v ×(a-h )÷gt] ÷[Q ×(a-b )]=1.534>1.15 取a =0(2) 非工作下的稳定验算(取W3=2KN/M 风载按12级台风取) K2=[G1×(b+c1-h1×sina )] ÷[G2×C2-b + h2×sina+W3×P3]]=1.39>1.15故:塔吊在工作和非工作下均能保持稳定。

塔吊桩基础计算范文

塔吊桩基础计算范文

塔吊桩基础计算范文
一、桩基数量的确定:
确定桩基数量需要根据塔吊的重量和地基承载能力进行计算。

通常情
况下,桩基数量可根据以下公式进行计算:
N=W/P
其中,N为桩基数量,W为塔吊的总重量,P为单根桩基的承载力。

这样可以保证单根桩基能够承受足够的力量。

二、桩基直径的确定:
桩基直径的确定需要结合地基的土壤类型、承载能力以及塔吊的重量
等多种因素进行考虑。

对于土壤承载能力较强的情况下,一般可以采用较
小的桩径;相反,对于土壤承载能力较弱的情况下,需要采用较大的桩径。

根据经验公式和试验结果,可以制定合理的桩径范围。

三、桩基深度的确定:
桩基深度的确定主要考虑的是地下水位、地质构造以及土层性质等因素。

通常情况下,为了保证桩基的稳定性,桩基的埋深应大于冻土深度以
及地下水位。

同时,需要对桩基周边土壤的承载能力进行充分的考虑,以
确定桩基的深度。

四、配筋的确定:
配筋是为了增加桩基的抗弯强度,提高桩基的承载能力。

根据桩基的
受力条件和受力特点,可以通过抗弯设计原理计算出合理的配筋数量和位置。

通常情况下,桩基的配筋应满足一定的比例,以保证桩基在受力时能
够充分发挥其抗弯强度。

总之,塔吊桩基础计算涉及了多个方面的内容,包括桩基数量、直径、深度以及配筋等关键参数的确定。

这些参数的选择需要综合考虑地基的承
载能力、土质条件以及塔吊的重量等因素,以保证桩基的稳定性和安全性。

在实际计算中,还需要对相关规范和标准进行参考,并尽量进行现场试验
和监测,以验证计算结果的合理性。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

塔吊基础设计计算

塔吊基础设计计算

塔吊基础设计计算设计塔吊的基础,就好比盖房子先要打好地基一样,可不是随随便便的事儿,得一步一步来:算重量和压力:先得摸清楚塔吊自身的重量有多大,再加上它能吊多重的货物,还得考虑到风吹过来的力、地震可能带来的冲击力,把这些力气统统算清楚。

挑基础样式:看看工地的地势和地质条件,选择合适的地基类型,比如独立基础(就像单独的一块大石头垫底)、连片基础(很多块石头连起来)或者打入地下的桩基础(像一根根钉子钉在地下)。

力量怎么传过去:接下来想象一下这些力气是怎么从塔吊传到地基上的,算出每个部位承受的压力有多大。

地基扛不扛得住:土壤能承受多大的压力,得根据地质报告来判断。

就像你得知道土地有多硬实,能撑得起多重的东西。

然后算算这块地基能不能顶住塔吊传下来的全部力气,包括抗压、抗弯折和抵抗剪切破坏的能力。

稳不稳定:考虑塔吊在工作时会不会被吹倒或者歪斜,就像一棵大树扎根在地上,得保证它稳稳当当的。

量体裁衣做基础:根据前面的计算结果,给地基设计合适的大小和深度,就像给塔吊穿鞋,得大小合适、底子扎实。

桩基础的细节设计:如果是用桩基础,那还要考虑桩的数量、粗细、打入地下的长度,还有桩顶上的承台怎么设计。

反复检查调整:设计出来了,还要反复检查,看这地基结实不结实,牢不牢靠,不达标的就调整,比如把地基做大点,或者多打几根桩。

施工方法和材料:设计好了,就要定施工方案,选好材料,就像烹饪要有食谱和食材一样,确保施工质量杠杠的。

权威认证:最后,设计成果要给专家和有关部门审核,通过了才算合格,就像考试答完了卷子,得老师批改过了才能安心。

总而言之,设计塔吊基础就像是给塔吊打造一个稳固有力的家,得方方面面都考虑周全,才能保证塔吊在工地上安全高效地工作。

塔吊基础计算

塔吊基础计算

塔吊基础计算QTZ63塔吊天然基础的计算书参数信息:塔吊型号为QTZ63,自重(包括压重)为F1=450.80kN,最大起重荷载为F2=60.00kN,塔吊倾覆力距为M=630.00kN.m,塔吊起重高度为70.00m,塔身宽度为B=1.50m,混凝土强度等级为C35,基础埋深为D=5.00m,基础最小厚度为h=1.35m,基础最小宽度为Bc=5.00m。

基础最小尺寸计算:基础的最小厚度为H=1.35m,基础的最小宽度为Bc=5.00m。

塔吊基础承载力计算:按照《建筑地基基础设计规范》(GB-2002)第5.2条承载力计算。

计算简图如下:当不考虑附着时的基础设计值计算公式为:当考虑附着时的基础设计值计算公式为:当考虑偏心距较大时的基础设计值计算公式为:其中,F为塔吊作用于基础的竖向力,包括塔吊自重、压重和最大起重荷载,F=1.2×510.8=612.96kN;G为基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc为基础底面的宽度,取Bc=5.00m;W为基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M为倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a为合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。

经过计算得到:无附着的最大压力设计值为Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa;无附着的最小压力设计值为Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa;有附着的压力设计值为P=(612.96+4012.50)/5.002=185.02kPa;偏心距较大时压力设计值为Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa。

40塔吊基础施工方案计算书

40塔吊基础施工方案计算书

塔吊基础设计计算书编制:审核:审批:一、1#塔吊设计:1、塔吊选择:本塔吊采用塔吊生产厂家提供的QTZ40型塔吊,塔吊基础长宽均为4.2m ,高1.25m 。

基础砼强度等级采用C35级,钢筋采用HRB400级。

QTZ40型塔式起重机主要性能及参数如下:塔吊型号:QTG40, 塔吊起升高度H :40.800m , 塔身宽度B :2.5m , 基础埋深D :4.5m ,自重F 1:287.83kN , 基础承台厚度Hc :1.250m , 最大起重荷载F 2:46.6kN , 基础承台宽度Bc :4.200m ,2、技术参数:Fv=425(KN) M=630KN.m Fh=68KN3、确定基础尺寸:由地勘报告知,塔机基底所处位置地基承载力为160kpa ,原厂家设计塔吊基础对地基承载力要求不小于200kpa ,大于本工程的160kpa,故需在基础下部设一扩大的钢筋砼平台,以增大基底面积.暂定平台尺寸为4200×4200×1250,做地基承载力验算.4、力学演算天然基础尺寸为b ×b ×h=5m ×5m ×1.3m砼基础的重力Fg=5×5×1×25=625KN地面容许压应力[P B ]=160KPa222/57.1,/7.16:35,/360:400mm N f mm N f C mm N f HRB t c y ===4.1、地基承载力演算地基承载力为:f=25㎡×160KPa/10=400吨塔吊结构自重:Fv=31吨塔吊基础自重:Fg=25×1.35×2.5=84.37吨f=216吨>F=Fv+Fg=31+84.37=115.37吨所以,地基承载力能满足塔吊使用要求。

4.2塔吊抗倾覆演算()()2/751.07.84331035.1686302.12.1m kN F F h F M e g v h =+⨯+⨯=++= e=0.751m<b/3=5/3=1.67m 满足要求4.3、偏心荷载下地面压应力验算:()()2/95.87)751.025(537.8433102)2(32m kN e b l F F P g v =-⨯⨯+⨯=-+=<160kP 满足要求 4.4、抗剪强度验算:按GB50007-2002《建筑地基基础设计规范》公式(8.4.9)410800⎪⎪⎭⎫ ⎝⎛=h hs β KN h b f KN V o w t hs S 3310080.2121057.1946.07.07.043.2884/)7.843310(⨯=⨯⨯⨯⨯⨯=<=+=β 满足要求。

塔吊天然基础计算

塔吊天然基础计算

天然基础计算一、参数信息塔吊型号:QTZ40,塔吊起升高度H=100.00m,塔吊倾覆力矩M=400.00kN.m,混凝土强度等级:C40,塔身宽度B=1.60m,基础以上土的厚度D:=2.50m,自重F1=342.00kN,基础承台厚度h=1.50m,最大起重荷载F2=40.00kN,基础承台宽度Bc=6.00m,钢筋级别:II级钢。

二、基础最小尺寸计算(内容固定不变)1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。

根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:(7.7.1-2)其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。

η──应按下列两个公式计算,并取其中较小值,取0.00;(7.7.1-2)(7.7.1-3)η1--局部荷载或集中反力作用面积形状的影响系数;η2--临界截面周长与板截面有效高度之比的影响系数;βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9,其间按线性内插法取用;ft--混凝土轴心抗拉强度设计值,取16.70MPa;σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.00;u m--临界截面的周长:距离局部荷载或集中反力作用面积周边h o/2处板垂直截面的最不利周长;这里取(塔身宽度+h o)×4=9.60m;h o--截面有效高度,取两个配筋方向的截面有效高度的平均值;βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.塔吊基础设计计算方案一、设计依据1.《建筑桩基础技术规范》JGJ84—942.《混凝土结构设计规范》GB50040—20023.《建筑地基基础设计规范》GB50007—20024.《建筑地基基础设计规范》DB33/1001—20035.《建筑机械使用安全规程》JGJ33—20016.《建筑结构荷载规范》GB50009—20027.本工程《岩石工程勘察报告》8.施工图纸9.简明施工计算手册10.塔吊使用说明书二、塔吊选型本工程为框剪结构,地下一层,总建筑面积246389m2、本标段72500m2。

地上18~32层,地下室Ⅱ区地面结构标高为-5.6m,地下室Ⅱ区顶板结构标高为-1.20m,板厚500mm,5#--6#楼建筑物高度最大为98.6m, 5#--6#楼构架顶标高105.3m,7#--9#楼建筑物高度最大为55.3m, 7#--9#楼构架顶标高62m。

根据本工程特点、布局,拟选用4台浙江凯达电梯制造有限公司制造的QTZ63型液压自升塔式起重机(简称塔吊),其相关技术参数适用于本工程垂直运输需要。

三、塔吊位置的确定为最大限度的满足施工需要,拟将塔吊位置作如下确定:塔吊基础:5#塔吊设置在5#楼E—F轴/24—25轴,7#塔吊设置在7#楼E—F轴/8—6轴,8#塔吊设置在8#楼Q轴/8—9轴,9#塔吊设置在9#楼B1轴/13轴,具体详见塔吊平面布置图。

四、塔吊基础的确定1.地质参数以本工程《岩石工程勘察报告》中有关资料为计算依据(以Z50孔为依据),其主要设计参数(见土层设计计算参数表)。

2.塔吊基础受力情况(说明书提供)3.所定的塔吊位根据建筑结构条件、地质条件以及塔吊各项技术参数确定:塔吊基础桩采用机械钻孔混凝土灌注桩,桩径800,桩长38M(有效桩长),桩身混凝土C25,钢筋笼全长配筋16A20,A8@100/200(螺旋箍),附加箍筋A14@2000,桩顶3000内A8@100,钢筋伸入承台800,桩数4根。

桩顶标高为-7.10(-7.25)m,桩位布置及基础承台平面尺寸详见附图。

4.采用钢筋混凝土承台,尺寸为4000×4000×1000mm,内配钢筋双层双向A20@200,承台混凝土强度C30,承台顶标高-6.15(6.30)m,基础下100厚C15混凝土垫层。

在塔吊承台位置地下室底板预留洞4000×4000,四周设一道止水板,与基础连接处用100厚泡沫板相隔并做防水处理。

塔吊基础处后浇带处理方法同地下室后浇带。

塔身穿楼板处,楼板预留洞四周比塔身外围大500mm(2600×2600),该处梁板后浇带处理方法同地下室顶板后浇带。

五、塔吊基础施工塔吊基础混凝土机械钻孔桩,将由在现场施工工程桩的施工队伍施工,并按其专项施工方案进行操作。

考虑到今后塔吊安装方便,施工中有关预埋件需同步进行埋设,并要确保其位置准确性。

塔吊基坑土方开挖时间随同本工程地下室,并预先施工。

由于塔吊基础在地下室顶板以下,故在塔吊基础施工前,要对基础处挖基坑,基坑支护围护做法如下:鉴于现场自然地坪标高为-1.6900M,塔吊基坑底标高为-6.55M,实际挖深-4.95M,属深基坑挖设。

场地土质查地质勘察报告为淤泥质土层,难以支护,经比较,选定上层2M大放坡开挖,下层3.4M用钢板桩支护,此支护方法为温州市淤泥质土比较成熟方法。

钢板桩材料选用国标16#槽钢,长度9M,从-4.00M平台处打入土中,外露20cm,四边角加料撑部分用单排槽钢并排打入,中间3M用正反扣连接方式打入,钢板桩内侧加两道水平梁支撑,水平梁用双槽钢扣成方管焊接而成,接头处450拼角,四角斜撑与水平梁接触处除焊接外,另加焊槽钢,以防水平梁受力时斜撑焊缝破坏,造成梁突然破坏,水平梁布置两道,第一道距钢板桩上口500处布置,第二道距第一道1500布置,保证钢板受力均匀,不发生变形。

开挖时注意事项:1.对作业人员做好安全、技术交底、每个人员分工明确。

2.基坑开挖时由施工人员指挥人、机作业、安全员现场协调安全工作。

3.划定作业范围、存土、转土地点、挖机行走路线,作业半径内严禁人员行走。

4.在土方边坡顶,钢板桩顶设置沉降观测点,开挖中与开挖后定时观测,发现异常,立即采取措施。

5.基坑设置专用扶梯,以供人员上下,工人在基坑内作业时,设专人在上面指挥,以免上面物体落入坑内,同时一且发现支护异常,立即通知人员撤出。

6.基坑周边设立警戒线,围护设置,防止与基坑施工无关人员误伤,同时保护基坑内作业人员安全。

7.制定应急措施:○1挖掘机随时待命,一旦沉降异常难以控制,即用挖机将支护周围土方挖低御载。

○2准备工字钢、松木(6M)、钢板桩发生鼓肚变形时,进行水平加固。

2.第一部分:QTZ63C(5709)型塔吊桩基础计算书一.参数信息塔吊型号: QTZ63C(5709)主要部件重量如下表:自重(包括压重)F1=50438×9.80665÷1000=496.63kN,最大起重荷载F2=6×9.80665=58.84kN塔吊倾覆力距M=1552.00kN.m,塔吊起重高度H=58.8m,塔身宽度B=1.60m 混凝土强度:C30,钢筋级别:Ⅱ级,承台长度Lc或宽度Bc=4.00m桩直径d=0.80m,桩间距a=2.40m,承台厚度Hc=1.00m基础埋深D=1.00m,承台箍筋间距S=200mm,保护层厚度:50mm二.塔吊基础承台顶面的竖向力与弯矩计算1.塔吊自重(包括压重)F1=496.63kN2.塔吊最大起重荷载F2=58.84kN作用于桩基承台顶面的竖向力F=(F1+F2)×1.2=665.56Kn塔吊的倾覆力矩M=1.4×1552=2172.80kN.m三. 矩形承台弯矩及单桩桩顶竖向力的计算计算简图:塔吊基础平面塔吊基础受力示意图图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

(一)单桩允许承载力特征值计算1.单桩竖向承载力特征值计算1)按地基土物理力学指标与承载力参数计算A P=πr2=0.5024m2R a=q pa A p+up∑q sia l i(DB33/1001—2003)(9.2.3-1)q pa A P=0up∑q sia l i=1.88×(5.58×7.00×1.02+10.2×8.00×1.02+9.7×13.00×1.02+4.1×23.00×1.02+4.1×15.00×1.02+3.2×16.00×1.02+1.5×26.00×1.02+4.4×40.00×1.02)=1282.414KN 即R a=1282.41KN2)桩身截面强度计算0.7×11.9×5.03×105=4189.99KN其中,——工作条件系数,取0.7f c——混凝土轴心抗压强度设计值,f c =11.90N/mm2;Ap ——桩的截面面积,A=5.03×105mm2。

2.单桩抗拔力特征值计算R a’=u p∑6i q sia l i+G PK (DB33/1001—2003)(9.2.7—1)=1282.414+429.552=1711.966KNu p∑6i q sia l i=1.88×(5.88×7.00×1.02+10.2×8.00×1.02+9.7×13.00×1.02+4.1×23.00×1.02+4.1×15.00×1.02+3.2×16.00×1.02+1.5×26.00×1.02+4.4×40.00×1.02)=1282.41KN0.9G pk=0.9×π×0.42×38×25=429.552KN(二)单桩桩顶作用力的计算和承载力验算1.轴心竖向力作用下:Q k=(F K+G K)/n (DB33/1001—2003)(9.2.1-1)=(666.56+480)/4=286.64KN2.偏心竖向力作用下:'x i按照M x=M k=2172.8+73.9×1.0=2246.7KN·m(DB33/1001—2003)(9.2.1-2)=(666.56+750)/4±2246.7×1.7×/=354.14±476.25=3.水平作用下:=73.9/4=18.48KN其中n——单桩个数,n=4;F——作用于桩基承台顶面的竖向力设计值,F=666.56kN;G——桩基承台的自重G=1.2×(25×B c×B c×H c+20×B c×B c×D)=1.2×(25×4.00×4.00×1.00+20×4.00×4.00×0.00)=480.00k N;Mx,My——承台底面的弯矩设计值(kN.m);取2172.80KN.m;xi,yi——单桩相对承台中心轴的XY方向距离a/2=1.70m;Ni——单桩桩顶竖向力设计值(kN)。

(三)矩形承台弯矩的计算F h=73.90KN(依据《建筑桩技术规范》JGJ94-94的第5.6.1条)其中Mx1,My1——计算截面处XY方向的弯矩设计值(kN.m);xi,yi——单桩相对承台中心轴的XY方向距离取a/2—B/2=0.90(m);Ni1——扣除承台自重的单桩桩顶竖向力设计值(kN),Ni1=Ni-G/n=486.17KN/m2;经过计算得到弯矩设计值:Mx1=My1=2×486.17×0.90=875.11KN.m。

四、矩形承台截面主筋的计算xi= xi=依据《混凝土结构设计规范》(GB50010-2102)第7.2条受弯构件承载力计算。

式中,α1——系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法得1.00;f c——混凝土抗压强度设计值查表得16.70N/mm2;h0——承台的计算高度H c-50.00=950.00mm;f y——钢筋受拉强度设计值,f y=300.00N/mm2;经过计算得:875.11×106/(1.00×16.70×4000.00×1000.002)=0.013;1-(1-2×0.013)0.5=0.013=1-0.013/2=0.994;=A sy=875.00×106/(0.994×950.00×300.00)=3088.59mm2。

相关文档
最新文档