三角函数对照表.xls

合集下载

三角函数对照表

三角函数对照表

三角函数对照表三角函数SIN COS TAN三角函数SIN COS TAN 0°01090°10无1°89°2°88°3°87°4°86°5°85°6°84°7°83°8°82°9°81°10°80°11°79°12°78°13°77°14°76°15°75°16°74°17°73°18°72°19°71°20°70°21°69°22°68°23°67°24°66°25°65°26°64°27°63°28°62°29°61°30°60°31°59°32°58°33°57°34°56°35°55°36°54°37°53°38°52°39°51°40°50°41°49°42°48°43°47°44°46°45°145°1同角基本关系式倒数关系商的关系平方关系tan cot1 sin csc1 cos sec1sin sectancos csccos csccotsin sec222222sin cos11tan sec1cot csc诱导公式sin()sin cos()cos tan()tan cot()cotsin()cos2cos()sin2tan()cot2cot()tan2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot(其中k∈Z)sin()cos2cos()sin2tan()cot2cot()tan 2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot两角和与差的三角函数公式万能公式sin()sin cos cos sin sin()sin cos cos sin cos()cos cos sin sin cos()cos cos sin sintan tantan()1tan tantan tantan()1tan tan2tan(/2) sin1tan2(/2)1tan2(/2) cos1tan2(/2)2tan(/2) tan1tan2(/2)半角的正弦、余弦和正切公式三角函数的降幂公式1cossin()221coscos()221cos1cos sin tan()21cos sin1cos221cos2 sin21cos2 cos2二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin22sin coscos2cos2sin22cos2112sin2 2tantan21tan2sin33sin4sin3 cos34cos33cos.3tan tan3 tan313tan2三角函数的和差化积公式三角函数的积化和差公式sin sin2sin cos22sin sin2cos sin22cos cos2cos cos22cos cos2sin sin221sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a xb x a b x其中角所在的象限由a、b的符号确定,角的值由tan ba确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

三角函数值(附三角函数值表)

三角函数值(附三角函数值表)

三角函数值(附三角函数值表)(1)特殊角三角函数值sin0=0sin30=0.5 sin45=0.7 071 二分之根号2 sin60=0.8 660 二分之根号3 sin90=1 cos0=1 cos30=0. 86602540 4 二分之根号3cos45=0. 70710678 1 二分之根号2cos60=0. 5cos90=0 tan0=0tan30=0.5 77350269三分之根号3tan45=1 tan60=1.7 32050808根号3tan90=无 cot0=无cot30=1.7 32050808根号3cot45=1 cot60=0.5 77350269三分之根号3cot90=0 (2)0°~90°的任意角的三角函数值,查三角函数表。

(见下) (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sin α≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容, 附:三角函数值表sin0=0, sin15=(√6-√2)/4 , sin30=1/2 ,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 , sin90=1, sin105=√2/2*(√3/2+1/2) sin120=√3/2sin135=√2/2sin150=1/ 2sin165=(√6-√2)/4sin180=0 sin270=-1 sin360=0 sin1=0.01 74524064 3728351 sin2=0.03 48994967 0250097 sin3=0.05 23359562 4294383sin4=0.06 97564737 441253 sin5=0.08 71557427 4765816 sin6=0.10 45284632 6765346 sin7=0.12 18693434 0514747 sin8=0.13 91731009 6006544 sin9=0.15 64344650 4023087 sin10=0.1 73648177 66693033 sin11=0.1 90808995 3765448 sin12=0.2 07911690 81775931 sin13=0.2 24951054 34386497 sin14=0.2 41921895 59966773 sin15=0.2 58819045 10252074sin16=0.2 75637355 81699916 sin17=0.2 92371704 7227367 sin18=0.3 09016994 3749474 sin19=0.3 25568154 4571567 sin20=0.3 42020143 3256687 sin21=0.3 58367949 54530027 sin22=0.3 74606593 415912 sin23=0.3 90731128 4892737 sin24=0.4 06736643 07580015 sin25=0.4 22618261 74069944 sin26=0.4 38371146 7890774 sin27=0.4 53990499 73954675sin28=0.4 69471562 7858908 sin29=0.4 84809620 24633706 sin30=0.4 99999999 99999994 sin31=0.5 15038074 9100542 sin32=0.5 29919264 2332049 sin33=0.5 44639035 015027 sin34=0.5 59192903 4707468 sin35=0.5 73576436 351046 sin36=0.5 87785252 2924731 sin37=0.6 01815023 1520483 sin38=0.6 15661475 3256583 sin39=0.6 29320391 0498375sin40=0.6 42787609 6865392 sin41=0.6 56059028 9905073 sin42=0.6 69130606 3588582 sin43=0.6 81998360 0624985 sin44=0.6 94658370 4589972 sin45=0.7 07106781 1865475 sin46=0.7 19339800 3386511 sin47=0.7 31353701 6191705 sin48=0.7 43144825 4773941 sin49=0.7 54709580 2227719 sin50=0.7 66044443 118978 sin51=0.7 77145961 4569708sin52=0.7 88010753 6067219 sin53=0.7 98635510 0472928 sin54=0.8 09016994 3749474 sin55=0.8 19152044 2889918 sin56=0.8 29037572 5550417 sin57=0.8 38670567 9454239 sin58=0.8 48048096 156426 sin59=0.8 57167300 7021122 sin60=0.8 66025403 7844386 sin61=0.8 74619707 1393957 sin62=0.8 82947592 8589269 sin63=0.8 91006524 1883678sin64=0.8 98794046 299167 sin65=0.9 06307787 0366499 sin66=0.9 13545457 6426009 sin67=0.9 20504853 4524404 sin68=0.9 27183854 5667873 sin69=0.9 33580426 4972017 sin70=0.9 39692620 7859083 sin71=0.9 45518575 5993167 sin72=0.9 51056516 2951535 sin73=0.9 56304755 9630354 sin74=0.9 61261695 9383189 sin75=0.9 65925826 2890683sin76=0.9 70295726 2759965 sin77=0.9 74370064 7852352 sin78=0.9 78147600 7338057 sin79=0.9 81627183 447664 sin80=0.9 84807753 012208 sin81=0.9 87688340 5951378 sin82=0.9 90268068 7415704 sin83=0.9 92546151 641322 sin84=0.9 94521895 3682733 sin85=0.9 96194698 0917455 sin86=0.9 97564050 2598242 sin87=0.9 98629534 7545738 sin88=0.9 99390827 0190958 sin89=0.9 99847695 1563913sin90=1 cos1=0.9 99847695 1563913 cos2=0.9 99390827 0190958 cos3=0.9 98629534 7545738 cos4=0.9 97564050 2598242 cos5=0.9 96194698 0917455 cos6=0.9 94521895 3682733 cos7=0.9 92546151 641322 cos8=0.9 90268068 7415704 cos9=0.9 87688340 5951378 cos10=0. 98480775 3012208 cos11=0. 98162718 3447664 cos12=0. 97814760 07338057cos13=0. 97437006 47852352 cos14=0. 97029572 62759965 cos15=0. 96592582 62890683 cos16=0. 96126169 59383189 cos17=0. 95630475 59630355 cos18=0. 95105651 62951535 cos19=0. 94551857 55993168 cos20=0. 93969262 07859084 cos21=0. 93358042 64972017 cos22=0. 92718385 45667874 cos23=0. 92050485 34524404 cos24=0. 91354545 76426009cos25=0. 90630778 70366499 cos26=0. 89879404 6299167 cos27=0. 89100652 41883679 cos28=0. 88294759 2858927 cos29=0. 87461970 71393957 cos30=0. 86602540 37844387 cos31=0. 85716730 07021123 cos32=0. 84804809 6156426 cos33=0. 83867056 7945424 cos34=0. 82903757 25550417 cos35=0. 81915204 42889918 cos36=0. 80901699 43749474cos37=0. 79863551 00472928 cos38=0. 78801075 36067219 cos39=0. 77714596 14569709 cos40=0. 76604444 3118978 cos41=0. 75470958 0222772 cos42=0. 74314482 54773942 cos43=0. 73135370 16191705 cos44=0. 71933980 03386512 cos45=0. 70710678 11865476 cos46=0. 69465837 04589974 cos47=0. 68199836 00624985 cos48=0. 66913060 63588582cos49=0. 65605902 89905074 cos50=0. 64278760 96865394 cos51=0. 62932039 10498375 cos52=0. 61566147 53256583 cos53=0. 60181502 31520484 cos54=0. 58778525 22924731 cos55=0. 57357643 63510462 cos56=0. 55919290 34707468 cos57=0. 54463903 50150272 cos58=0. 52991926 42332049 cos59=0. 51503807 49100544 cos60=0. 50000000 00000001cos61=0. 48480962 02463371 cos62=0. 46947156 27858908 6cos63=0. 45399049 97395468 cos64=0. 43837114 67890774 6cos65=0. 42261826 17406994 4cos66=0. 40673664 30758004 cos67=0. 39073112 84892737 cos68=0. 37460659 34159122 cos69=0. 35836794 95453001 5cos70=0. 34202014 33256688 cos71=0. 32556815 44571567 5cos72=0. 30901699 43749474 5cos73=0. 29237170 47227367 7cos74=0. 27563735 58169991 6cos75=0. 25881904 51025207 4cos76=0. 24192189 55996676 7cos77=0. 22495105 43438651 4cos78=0. 20791169 08177592 3cos79=0. 19080899 53765449 1cos80=0. 17364817 76669304 1cos81=0. 15643446 50402309 2cos82=0. 13917310 09600654 6cos83=0. 12186934 34051474 9cos84=0. 10452846 32676534 6cos85=0. 08715574 27476583 6cos86=0. 06975647 37441252 3cos87=0. 05233595 62429439 66cos88=0. 03489949 67025010 8cos89=0. 01745240 64372836 cos90=0 tan1=0.01 74550649 28217585 tan2=0.03 49207694 9174773 tan3=0.05 24077792 83041196tan4=0.06 99268119 4351041 tan5=0.08 74886635 2592401 tan6=0.10 51042352 6567646 tan7=0.12 27845609 029046 tan8=0.14 05408347 0239145 tan9=0.15 83844403 2453627 tan10=0.1 76326980 70846497 tan11=0.1 94380309 13771848 tan12=0.2 12556561 6700221 tan13=0.2 30868191 1255631 tan14=0.2 49328002 84318068 tan15=0.2 67949192 4311227tan16=0.2 86745385 7588079 tan17=0.3 05730681 45866033 tan18=0.3 24919696 2329063 tan19=0.3 44327613 28966527 tan20=0.3 63970234 26620234 tan21=0.3 83864035 0354158 tan22=0.4 04026225 8351568 tan23=0.4 24474816 2096047 tan24=0.4 45228685 3085361 tan25=0.4 66307658 1549986 tan26=0.4 87732588 5658614 tan27=0.5 09525449 4944288tan28=0.5 31709431 6614788 tan29=0.5 54309051 452769 tan30=0.5 77350269 1896257 tan31=0.6 00860619 0275604 tan32=0.6 24869351 9093275 tan33=0.6 49407593 1975104 tan34=0.6 74508516 8424265 tan35=0.7 00207538 2097097 tan36=0.7 26542528 0053609 tan37=0.7 53554050 1027942 tan38=0.7 81285626 5067174 tan39=0.8 09784033 1950072tan40=0.8 39099631 1772799 tan41=0.8 69286737 8162267 tan42=0.9 00404044 2978399 tan43=0.9 32515086 1376618 tan44=0.9 65688774 8070739 tan45=0.9 99999999 9999999 tan46=1.0 35530313 7905693 tan47=1.0 72368710 0246826 tan48=1.1 10612514 8291927 tan49=1.1 50368407 2210092 tan50=1.1 91753592 59421 tan51=1.2 34897156 535051tan52=1.2 79941632 1930785 tan53=1.3 27044821 6204098 tan54=1.3 76381920 4711733 tan55=1.4 28148006 7421144 tan56=1.4 82560968 5127403 tan57=1.5 39864963 8145827 tan58=1.6 00334529 0410506 tan59=1.6 64279482 3505173 tan60=1.7 32050807 5688767 tan61=1.8 04047755 2714235 tan62=1.8 80726465 3463318 tan63=1.9 62610505 5051503tan64=2.0 50303841 579296 tan65=2.1 44506920 5095586 tan66=2.2 46036773 904215 tan67=2.3 55852365 823753 tan68=2.4 75086853 4162946 tan69=2.6 05089064 6938023 tan70=2.7 47477419 4546216 tan71=2.9 04210877 675822 tan72=3.0 77683537 1752526 tan73=3.2 70852618 4841404 tan74=3.4 87414443 8409087 tan75=3.7 32050807 5688776tan76=4.0 10780933 5358455 tan77=4.3 31475874 284153 tan78=4.7 04630109 478456 tan79=5.1 44554015 970307 tan80=5.6 71281819 617707 tan81=6.3 13751514 675041 tan82=7.1 15369722 384207 tan83=8.1 44346427 974593 tan84=9.5 14364454 222587 tan85=11. 43005230 276132 tan86=14. 30066625 6711942 tan87=19. 08113668 772816 tan88=28. 63625328 2915515 tan89=57. 28996163 0759144tan90=无取值。

三角函数对照表

三角函数对照表

三角函数对照表
三角函数的和差化积公式 三角函数的积化和差公式
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ=确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”。

三角函数值对照表

三角函数值对照表

三角函数值对照表
弧度和角度的关系
在三角函数中,我们通常使用弧度来表示角度的大小。


度和角度的转换关系是π 弧度 = 180°,即π 弧度等于180度。

因此,在进行角度和弧度的转换时,可以通过简单的换算来实现。

正弦函数的值对照表
正弦函数是三角函数中的一种,用sin表示。

下面是角度
与正弦函数值的对照表:
角度(°)弧度(rad)正弦值
000
30π/61/2
45π/4√2/2
60π/3√3/2
90π/21
余弦函数的值对照表
余弦函数是三角函数中的一种,用cos表示。

下面是角度
与余弦函数值的对照表:
角度(°)弧度(rad)余弦值
001
30π/6√3/2
45π/4√2/2
60π/31/2
90π/20
正切函数的值对照表
正切函数是三角函数中的一种,用tan表示。

下面是角度与正切函数值的对照表:
角度(°)弧度(rad)正切值
000
30π/6√3/3
45π/41
60π/3√3
90π/2未定义
总结
通过以上对照表可以清晰地显示出不同角度下三角函数的值,对于理解三角函数在不同角度下的表现具有重要意义,也方便我们在数学计算中的应用。

熟练掌握三角函数值的对照表有助于提高数学运算效率,希望对您有所帮助。

三角函数值(附三角函数值表)

三角函数值(附三角函数值表)

三角函数值(附三角函数值表)1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

三角函数对照表

三角函数对照表

三角函数对照表
三角函数的和差化积公式 三角函数的积化和差公式
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ=确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”。

三角函数表(EXCEL)

三角函数表(EXCEL)

--------------------------------------------------------------------------------
傅立叶级数(三角级数) f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) a0=1/π∫(π..-π) (f(x))dx an=1/π∫(π..-π) (f(x)cosnx)dx bn=1/π∫(π..-π) (f(x)sinnx)dx
cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+...
- 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)
部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。
·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

常见三角函数表

常见三角函数表

常见三角函数表
在数学中,三角函数是研究角和三角形关系的函数。

常见
的三角函数包括正弦函数、余弦函数、正切函数等。

这些函数在数学、物理、工程等领域中都有广泛的应用。

下面是常见三角函数的表格:
正弦函数(Sine Function)
正弦函数通常用sin表示,定义域为实数集,值域为[-1, 1]。

其在圆上一条弧对应角的正弦值等于这个角的对边长与斜边长的比值。

具体如下:
角度(度)角度(弧度)正弦值
000
30π/61/2
45π/4√2/2
60π/3√3/2
90π/21
余弦函数(Cosine Function)
余弦函数通常用cos表示,定义域为实数集,值域为[-1, 1]。

其在圆上一条弧对应角的余弦值等于这个角的邻边长与斜边长的比值。

具体如下:
角度(度)角度(弧度)余弦值
001
30π/6√3/2
45π/4√2/2
60π/31/2
90π/20
正切函数(Tangent Function)
正切函数通常用tan表示,定义域为实数集,其在圆上一条弧对应角的正切值等于这个角的正弦值与余弦值的商。

具体如下:
角度(度)角度(弧度)正切值
000
30π/6√3/3
45π/41
60π/3√3
90π/2不存在
以上是常见三角函数表,这些函数在几何、三角、物理等领域中都有着重要的作用。

深入理解这些函数的性质和应用,对于提高数学水平和解决实际问题都有着重要的意义。

高中三角函数tan对照表

高中三角函数tan对照表

高中三角函数tan对照表sin(0°)=0.000000,cos(0°)=1.000000,tan(0°)=0.000000 sin(1°)=0.017452,cos(1°)=0.999848,tan(1°)=0.017455 sin(2°)=0.034899,cos(2°)=0.999391,tan(2°)=0.034921 sin(3°)=0.052336,cos(3°)=0.998630,tan(3°)=0.052408 sin(4°)=0.069756,cos(4°)=0.997564,tan(4°)=0.069927 sin(5°)=0.087156,cos(5°)=0.996195,tan(5°)=0.087489 sin(6°)=0.104528,cos(6°)=0.994522,tan(6°)=0.105104 sin(7°)=0.121869,cos(7°)=0.992546,tan(7°)=0.122785 sin(8°)=0.139173,cos(8°)=0.990268,tan(8°)=0.140541 sin(9°)=0.156434,cos(9°)=0.987688,tan(9°)=0.158384 sin(10°)=0.173648,cos(10°)=0.984808,tan(10°)=0.176327 sin(11°)=0.190809,cos(11°)=0.981627,tan(11°)=0.194380 sin(12°)=0.207912,cos(12°)=0.978148,tan(12°)=0.212557 sin(13°)=0.224951,cos(13°)=0.974370,tan(13°)=0.230868 sin(14°)=0.241922,cos(14°)=0.970296,tan(14°)=0.249328 sin(15°)=0.258819,cos(15°)=0.965926,tan(15°)=0.267949 sin(16°)=0.275637,cos(16°)=0.961262,tan(16°)=0.286745 sin(17°)=0.292372,cos(17°)=0.956305,tan(17°)=0.305731 sin(18°)=0.309017,cos(18°)=0.951057,tan(18°)=0.324920 sin(19°)=0.325568,cos(19°)=0.945519,tan(19°)=0.344328 sin(20°)=0.342020,cos(20°)=0.939693,tan(20°)=0.363970sin(21°)=0.358368,cos(21°)=0.933580,tan(21°)=0.383864 sin(22°)=0.374607,cos(22°)=0.927184,tan(22°)=0.404026 sin(23°)=0.390731,cos(23°)=0.920505,tan(23°)=0.424475 sin(24°)=0.406737,cos(24°)=0.913545,tan(24°)=0.445229 sin(25°)=0.422618,cos(25°)=0.906308,tan(25°)=0.466308 sin(26°)=0.438371,cos(26°)=0.898794,tan(26°)=0.487733 sin(27°)=0.453990,cos(27°)=0.891007,tan(27°)=0.509525 sin(28°)=0.469472,cos(28°)=0.882948,tan(28°)=0.531709 sin(29°)=0.484810,cos(29°)=0.874620,tan(29°)=0.554309 sin(30°)=0.500000,cos(30°)=0.866025,tan(30°)=0.577350 sin(31°)=0.515038,cos(31°)=0.857167,tan(31°)=0.600861 sin(32°)=0.529919,cos(32°)=0.848048,tan(32°)=0.624869 sin(33°)=0.544639,cos(33°)=0.838671,tan(33°)=0.649408 sin(34°)=0.559193,cos(34°)=0.829038,tan(34°)=0.674509 sin(35°)=0.573576,cos(35°)=0.819152,tan(35°)=0.700208 sin(36°)=0.587785,cos(36°)=0.809017,tan(36°)=0.726543 sin(37°)=0.601815,cos(37°)=0.798636,tan(37°)=0.753554 sin(38°)=0.615661,cos(38°)=0.788011,tan(38°)=0.781286 sin(39°)=0.629320,cos(39°)=0.777146,tan(39°)=0.809784 sin(40°)=0.642788,cos(40°)=0.766044,tan(40°)=0.839100 sin(41°)=0.656059,cos(41°)=0.754710,tan(41°)=0.869287 sin(42°)=0.669131,cos(42°)=0.743145,tan(42°)=0.900404sin(43°)=0.681998,cos(43°)=0.731354,tan(43°)=0.932515 sin(44°)=0.694658,cos(44°)=0.719340,tan(44°)=0.965689 sin(45°)=0.707107,cos(45°)=0.707107,tan(45°)=1.000000 sin(46°)=0.719340,cos(46°)=0.694658,tan(46°)=1.035530 sin(47°)=0.731354,cos(47°)=0.681998,tan(47°)=1.072369 sin(48°)=0.743145,cos(48°)=0.669131,tan(48°)=1.110613 sin(49°)=0.754710,cos(49°)=0.656059,tan(49°)=1.150368 sin(50°)=0.766044,cos(50°)=0.642788,tan(50°)=1.191754 sin(51°)=0.777146,cos(51°)=0.629320,tan(51°)=1.234897 sin(52°)=0.788011,cos(52°)=0.615661,tan(52°)=1.279942 sin(53°)=0.798636,cos(53°)=0.601815,tan(53°)=1.327045 sin(54°)=0.809017,cos(54°)=0.587785,tan(54°)=1.376382 sin(55°)=0.819152,cos(55°)=0.573576,tan(55°)=1.428148 sin(56°)=0.829038,cos(56°)=0.559193,tan(56°)=1.482561 sin(57°)=0.838671,cos(57°)=0.544639,tan(57°)=1.539865 sin(58°)=0.848048,cos(58°)=0.529919,tan(58°)=1.600335 sin(59°)=0.857167,cos(59°)=0.515038,tan(59°)=1.664279 sin(60°)=0.866025,cos(60°)=0.500000,tan(60°)=1.732051 sin(61°)=0.874620,cos(61°)=0.484810,tan(61°)=1.804048 sin(62°)=0.882948,cos(62°)=0.469472,tan(62°)=1.880726 sin(63°)=0.891007,cos(63°)=0.453990,tan(63°)=1.962611 sin(64°)=0.898794,cos(64°)=0.438371,tan(64°)=2.050304sin(66°)=0.913545,cos(66°)=0.406737,tan(66°)=2.246037 sin(67°)=0.920505,cos(67°)=0.390731,tan(67°)=2.355852 sin(68°)=0.927184,cos(68°)=0.374607,tan(68°)=2.475087 sin(69°)=0.933580,cos(69°)=0.358368,tan(69°)=2.605089 sin(70°)=0.939693,cos(70°)=0.342020,tan(70°)=2.747477 sin(71°)=0.945519,cos(71°)=0.325568,tan(71°)=2.904211 sin(72°)=0.951057,cos(72°)=0.309017,tan(72°)=3.077684 sin(73°)=0.956305,cos(73°)=0.292372,tan(73°)=3.270853 sin(74°)=0.961262,cos(74°)=0.275637,tan(74°)=3.487414 sin(75°)=0.965926,cos(75°)=0.258819,tan(75°)=3.732051 sin(76°)=0.970296,cos(76°)=0.241922,tan(76°)=4.010781 sin(77°)=0.974370,cos(77°)=0.224951,tan(77°)=4.331476 sin(78°)=0.978148,cos(78°)=0.207912,tan(78°)=4.704630 sin(79°)=0.981627,cos(79°)=0.190809,tan(79°)=5.144554 sin(80°)=0.984808,cos(80°)=0.173648,tan(80°)=5.671282 sin(81°)=0.987688,cos(81°)=0.156434,tan(81°)=6.313752 sin(82°)=0.990268,cos(82°)=0.139173,tan(82°)=7.115370 sin(83°)=0.992546,cos(83°)=0.121869,tan(83°)=8.144346 sin(84°)=0.994522,cos(84°)=0.104528,tan(84°)=9.514364 sin(85°)=0.996195,cos(85°)=0.087156,tan(85°)=11.430052 sin(86°)=0.997564,cos(86°)=0.069756,tan(86°)=14.300666sin(88°)=0.999391,cos(88°)=0.034899,tan(88°)=28.636253 sin(89°)=0.999848,cos(89°)=0.017452,tan(89°)=57.289962 sin(90°)=1.000000,cos(90°)=0.000000,tan(90°)=无意义sin(91°)=0.999848,cos(91°)=-0.017452,tan(91°)=-57.289962 sin(92°)=0.999391,cos(92°)=-0.034899,tan(92°)=-28.636253 sin(93°)=0.998630,cos(93°)=-0.052336,tan(93°)=-19.081137 sin(94°)=0.997564,cos(94°)=-0.069756,tan(94°)=-14.300666 sin(95°)=0.996195,cos(95°)=-0.087156,tan(95°)=-11.430052 sin(96°)=0.994522,cos(96°)=-0.104528,tan(96°)=-9.514364 sin(97°)=0.992546,cos(97°)=-0.121869,tan(97°)=-8.144346 sin(98°)=0.990268,cos(98°)=-0.139173,tan(98°)=-7.115370 sin(99°)=0.987688,cos(99°)=-0.156434,tan(99°)=-6.313752 sin(100°)=0.984808,cos(100°)=-0.173648,tan(100°)=-5.671282 sin(101°)=0.981627,cos(101°)=-0.190809,tan(101°)=-5.144554 sin(102°)=0.978148,cos(102°)=-0.207912,tan(102°)=-4.704630 sin(103°)=0.974370,cos(103°)=-0.224951,tan(103°)=-4.331476 sin(104°)=0.970296,cos(104°)=-0.241922,tan(104°)=-4.010781 sin(105°)=0.965926,cos(105°)=-0.258819,tan(105°)=-3.732051 sin(106°)=0.961262,cos(106°)=-0.275637,tan(106°)=-3.487414 sin(107°)=0.956305,cos(107°)=-0.292372,tan(107°)=-3.270853 sin(108°)=0.951057,cos(108°)=-0.309017,tan(108°)=-3.077684sin(109°)=0.945519,cos(109°)=-0.325568,tan(109°)=-2.904211 sin(110°)=0.939693,cos(110°)=-0.342020,tan(110°)=-2.747477 sin(111°)=0.933580,cos(111°)=-0.358368,tan(111°)=-2.605089 sin(112°)=0.927184,cos(112°)=-0.374607,tan(112°)=-2.475087 sin(113°)=0.920505,cos(113°)=-0.390731,tan(113°)=-2.355852 sin(114°)=0.913545,cos(114°)=-0.406737,tan(114°)=-2.246037 sin(115°)=0.906308,cos(115°)=-0.422618,tan(115°)=-2.144507 sin(116°)=0.898794,cos(116°)=-0.438371,tan(116°)=-2.050304 sin(117°)=0.891007,cos(117°)=-0.453990,tan(117°)=-1.962611 sin(118°)=0.882948,cos(118°)=-0.469472,tan(118°)=-1.880726 sin(119°)=0.874620,cos(119°)=-0.484810,tan(119°)=-1.804048 sin(120°)=0.866025,cos(120°)=-0.500000,tan(120°)=-1.732051 sin(121°)=0.857167,cos(121°)=-0.515038,tan(121°)=-1.664279 sin(122°)=0.848048,cos(122°)=-0.529919,tan(122°)=-1.600335 sin(123°)=0.838671,cos(123°)=-0.544639,tan(123°)=-1.539865 sin(124°)=0.829038,cos(124°)=-0.559193,tan(124°)=-1.482561 sin(125°)=0.819152,cos(125°)=-0.573576,tan(125°)=-1.428148 sin(126°)=0.809017,cos(126°)=-0.587785,tan(126°)=-1.376382 sin(127°)=0.798636,cos(127°)=-0.601815,tan(127°)=-1.327045 sin(128°)=0.788011,cos(128°)=-0.615661,tan(128°)=-1.279942 sin(129°)=0.777146,cos(129°)=-0.629320,tan(129°)=-1.234897 sin(130°)=0.766044,cos(130°)=-0.642788,tan(130°)=-1.191754sin(131°)=0.754710,cos(131°)=-0.656059,tan(131°)=-1.150368 sin(132°)=0.743145,cos(132°)=-0.669131,tan(132°)=-1.110613 sin(133°)=0.731354,cos(133°)=-0.681998,tan(133°)=-1.072369 sin(134°)=0.719340,cos(134°)=-0.694658,tan(134°)=-1.035530 sin(135°)=0.707107,cos(135°)=-0.707107,tan(135°)=-1.000000 sin(136°)=0.694658,cos(136°)=-0.719340,tan(136°)=-0.965689 sin(137°)=0.681998,cos(137°)=-0.731354,tan(137°)=-0.932515 sin(138°)=0.669131,cos(138°)=-0.743145,tan(138°)=-0.900404 sin(139°)=0.656059,cos(139°)=-0.754710,tan(139°)=-0.869287 sin(140°)=0.642788,cos(140°)=-0.766044,tan(140°)=-0.839100 sin(141°)=0.629320,cos(141°)=-0.777146,tan(141°)=-0.809784 sin(142°)=0.615661,cos(142°)=-0.788011,tan(142°)=-0.781286 sin(143°)=0.601815,cos(143°)=-0.798636,tan(143°)=-0.753554 sin(144°)=0.587785,cos(144°)=-0.809017,tan(144°)=-0.726543 sin(145°)=0.573576,cos(145°)=-0.819152,tan(145°)=-0.700208 sin(146°)=0.559193,cos(146°)=-0.829038,tan(146°)=-0.674509 sin(147°)=0.544639,cos(147°)=-0.838671,tan(147°)=-0.649408 sin(148°)=0.529919,cos(148°)=-0.848048,tan(148°)=-0.624869 sin(149°)=0.515038,cos(149°)=-0.857167,tan(149°)=-0.600861 sin(150°)=0.500000,cos(150°)=-0.866025,tan(150°)=-0.577350 sin(151°)=0.484810,cos(151°)=-0.874620,tan(151°)=-0.554309 sin(152°)=0.469472,cos(152°)=-0.882948,tan(152°)=-0.531709sin(153°)=0.453990,cos(153°)=-0.891007,tan(153°)=-0.509525 sin(154°)=0.438371,cos(154°)=-0.898794,tan(154°)=-0.487733 sin(155°)=0.422618,cos(155°)=-0.906308,tan(155°)=-0.466308 sin(156°)=0.406737,cos(156°)=-0.913545,tan(156°)=-0.445229 sin(157°)=0.390731,cos(157°)=-0.920505,tan(157°)=-0.424475 sin(158°)=0.374607,cos(158°)=-0.927184,tan(158°)=-0.404026 sin(159°)=0.358368,cos(159°)=-0.933580,tan(159°)=-0.383864 sin(160°)=0.342020,cos(160°)=-0.939693,tan(160°)=-0.363970 sin(161°)=0.325568,cos(161°)=-0.945519,tan(161°)=-0.344328 sin(162°)=0.309017,cos(162°)=-0.951057,tan(162°)=-0.324920 sin(163°)=0.292372,cos(163°)=-0.956305,tan(163°)=-0.305731 sin(164°)=0.275637,cos(164°)=-0.961262,tan(164°)=-0.286745 sin(165°)=0.258819,cos(165°)=-0.965926,tan(165°)=-0.267949 sin(166°)=0.241922,cos(166°)=-0.970296,tan(166°)=-0.249328 sin(167°)=0.224951,cos(167°)=-0.974370,tan(167°)=-0.230868 sin(168°)=0.207912,cos(168°)=-0.978148,tan(168°)=-0.212557 sin(169°)=0.190809,cos(169°)=-0.981627,tan(169°)=-0.194380 sin(170°)=0.173648,cos(170°)=-0.984808,tan(170°)=-0.176327 sin(171°)=0.156434,cos(171°)=-0.987688,tan(171°)=-0.158384 sin(172°)=0.139173,cos(172°)=-0.990268,tan(172°)=-0.140541 sin(173°)=0.121869,cos(173°)=-0.992546,tan(173°)=-0.122785 sin(174°)=0.104528,cos(174°)=-0.994522,tan(174°)=-0.105104sin(175°)=0.087156,cos(175°)=-0.996195,tan(175°)=-0.087489 sin(176°)=0.069756,cos(176°)=-0.997564,tan(176°)=-0.069927 sin(177°)=0.052336,cos(177°)=-0.998630,tan(177°)=-0.052408 sin(178°)=0.034899,cos(178°)=-0.999391,tan(178°)=-0.034921 sin(179°)=0.017452,cos(179°)=-0.999848,tan(179°)=-0.017455 sin(180°)=0.000000,cos(180°)=-1.000000,tan(180°)=-0.000000 sin(181°)=-0.017452,cos(181°)=-0.999848,tan(181°)=0.017455 sin(182°)=-0.034899,cos(182°)=-0.999391,tan(182°)=0.034921 sin(183°)=-0.052336,cos(183°)=-0.998630,tan(183°)=0.052408 sin(184°)=-0.069756,cos(184°)=-0.997564,tan(184°)=0.069927 sin(185°)=-0.087156,cos(185°)=-0.996195,tan(185°)=0.087489 sin(186°)=-0.104528,cos(186°)=-0.994522,tan(186°)=0.105104 sin(187°)=-0.121869,cos(187°)=-0.992546,tan(187°)=0.122785 sin(188°)=-0.139173,cos(188°)=-0.990268,tan(188°)=0.140541 sin(189°)=-0.156434,cos(189°)=-0.987688,tan(189°)=0.158384 sin(190°)=-0.173648,cos(190°)=-0.984808,tan(190°)=0.176327 sin(191°)=-0.190809,cos(191°)=-0.981627,tan(191°)=0.194380 sin(192°)=-0.207912,cos(192°)=-0.978148,tan(192°)=0.212557 sin(193°)=-0.224951,cos(193°)=-0.974370,tan(193°)=0.230868 sin(194°)=-0.241922,cos(194°)=-0.970296,tan(194°)=0.249328 sin(195°)=-0.258819,cos(195°)=-0.965926,tan(195°)=0.267949 sin(196°)=-0.275637,cos(196°)=-0.961262,tan(196°)=0.286745sin(197°)=-0.292372,cos(197°)=-0.956305,tan(197°)=0.305731 sin(198°)=-0.309017,cos(198°)=-0.951057,tan(198°)=0.324920 sin(199°)=-0.325568,cos(199°)=-0.945519,tan(199°)=0.344328 sin(200°)=-0.342020,cos(200°)=-0.939693,tan(200°)=0.363970 sin(201°)=-0.358368,cos(201°)=-0.933580,tan(201°)=0.383864 sin(202°)=-0.374607,cos(202°)=-0.927184,tan(202°)=0.404026 sin(203°)=-0.390731,cos(203°)=-0.920505,tan(203°)=0.424475 sin(204°)=-0.406737,cos(204°)=-0.913545,tan(204°)=0.445229 sin(205°)=-0.422618,cos(205°)=-0.906308,tan(205°)=0.466308 sin(206°)=-0.438371,cos(206°)=-0.898794,tan(206°)=0.487733 sin(207°)=-0.453990,cos(207°)=-0.891007,tan(207°)=0.509525 sin(208°)=-0.469472,cos(208°)=-0.882948,tan(208°)=0.531709 sin(209°)=-0.484810,cos(209°)=-0.874620,tan(209°)=0.554309 sin(210°)=-0.500000,cos(210°)=-0.866025,tan(210°)=0.577350 sin(211°)=-0.515038,cos(211°)=-0.857167,tan(211°)=0.600861 sin(212°)=-0.529919,cos(212°)=-0.848048,tan(212°)=0.624869 sin(213°)=-0.544639,cos(213°)=-0.838671,tan(213°)=0.649408 sin(214°)=-0.559193,cos(214°)=-0.829038,tan(214°)=0.674509 sin(215°)=-0.573576,cos(215°)=-0.819152,tan(215°)=0.700208 sin(216°)=-0.587785,cos(216°)=-0.809017,tan(216°)=0.726543 sin(217°)=-0.601815,cos(217°)=-0.798636,tan(217°)=0.753554 sin(218°)=-0.615661,cos(218°)=-0.788011,tan(218°)=0.781286sin(219°)=-0.629320,cos(219°)=-0.777146,tan(219°)=0.809784 sin(220°)=-0.642788,cos(220°)=-0.766044,tan(220°)=0.839100 sin(221°)=-0.656059,cos(221°)=-0.754710,tan(221°)=0.869287 sin(222°)=-0.669131,cos(222°)=-0.743145,tan(222°)=0.900404 sin(223°)=-0.681998,cos(223°)=-0.731354,tan(223°)=0.932515 sin(224°)=-0.694658,cos(224°)=-0.719340,tan(224°)=0.965689 sin(225°)=-0.707107,cos(225°)=-0.707107,tan(225°)=1.000000 sin(226°)=-0.719340,cos(226°)=-0.694658,tan(226°)=1.035530 sin(227°)=-0.731354,cos(227°)=-0.681998,tan(227°)=1.072369 sin(228°)=-0.743145,cos(228°)=-0.669131,tan(228°)=1.110613 sin(229°)=-0.754710,cos(229°)=-0.656059,tan(229°)=1.150368 sin(230°)=-0.766044,cos(230°)=-0.642788,tan(230°)=1.191754 sin(231°)=-0.777146,cos(231°)=-0.629320,tan(231°)=1.234897 sin(232°)=-0.788011,cos(232°)=-0.615661,tan(232°)=1.279942 sin(233°)=-0.798636,cos(233°)=-0.601815,tan(233°)=1.327045 sin(234°)=-0.809017,cos(234°)=-0.587785,tan(234°)=1.376382 sin(235°)=-0.819152,cos(235°)=-0.573576,tan(235°)=1.428148 sin(236°)=-0.829038,cos(236°)=-0.559193,tan(236°)=1.482561 sin(237°)=-0.838671,cos(237°)=-0.544639,tan(237°)=1.539865 sin(238°)=-0.848048,cos(238°)=-0.529919,tan(238°)=1.600335 sin(239°)=-0.857167,cos(239°)=-0.515038,tan(239°)=1.664279 sin(240°)=-0.866025,cos(240°)=-0.500000,tan(240°)=1.732051sin(241°)=-0.874620,cos(241°)=-0.484810,tan(241°)=1.804048 sin(242°)=-0.882948,cos(242°)=-0.469472,tan(242°)=1.880726 sin(243°)=-0.891007,cos(243°)=-0.453990,tan(243°)=1.962611 sin(244°)=-0.898794,cos(244°)=-0.438371,tan(244°)=2.050304 sin(245°)=-0.906308,cos(245°)=-0.422618,tan(245°)=2.144507 sin(246°)=-0.913545,cos(246°)=-0.406737,tan(246°)=2.246037 sin(247°)=-0.920505,cos(247°)=-0.390731,tan(247°)=2.355852 sin(248°)=-0.927184,cos(248°)=-0.374607,tan(248°)=2.475087 sin(249°)=-0.933580,cos(249°)=-0.358368,tan(249°)=2.605089 sin(250°)=-0.939693,cos(250°)=-0.342020,tan(250°)=2.747477 sin(251°)=-0.945519,cos(251°)=-0.325568,tan(251°)=2.904211 sin(252°)=-0.951057,cos(252°)=-0.309017,tan(252°)=3.077684 sin(253°)=-0.956305,cos(253°)=-0.292372,tan(253°)=3.270853 sin(254°)=-0.961262,cos(254°)=-0.275637,tan(254°)=3.487414 sin(255°)=-0.965926,cos(255°)=-0.258819,tan(255°)=3.732051 sin(256°)=-0.970296,cos(256°)=-0.241922,tan(256°)=4.010781 sin(257°)=-0.974370,cos(257°)=-0.224951,tan(257°)=4.331476 sin(258°)=-0.978148,cos(258°)=-0.207912,tan(258°)=4.704630 sin(259°)=-0.981627,cos(259°)=-0.190809,tan(259°)=5.144554 sin(260°)=-0.984808,cos(260°)=-0.173648,tan(260°)=5.671282 sin(261°)=-0.987688,cos(261°)=-0.156434,tan(261°)=6.313752 sin(262°)=-0.990268,cos(262°)=-0.139173,tan(262°)=7.115370sin(263°)=-0.992546,cos(263°)=-0.121869,tan(263°)=8.144346 sin(264°)=-0.994522,cos(264°)=-0.104528,tan(264°)=9.514364 sin(265°)=-0.996195,cos(265°)=-0.087156,tan(265°)=11.430052 sin(266°)=-0.997564,cos(266°)=-0.069756,tan(266°)=14.300666 sin(267°)=-0.998630,cos(267°)=-0.052336,tan(267°)=19.081137 sin(268°)=-0.999391,cos(268°)=-0.034899,tan(268°)=28.636253 sin(269°)=-0.999848,cos(269°)=-0.017452,tan(269°)=57.289962 sin(270°)=-1.000000,cos(270°)=-0.000000,tan(270°)=无意义sin(271°)=-0.999848,cos(271°)=0.017452,tan(271°)=-57.289962 sin(272°)=-0.999391,cos(272°)=0.034899,tan(272°)=-28.636253 sin(273°)=-0.998630,cos(273°)=0.052336,tan(273°)=-19.081137 sin(274°)=-0.997564,cos(274°)=0.069756,tan(274°)=-14.300666 sin(275°)=-0.996195,cos(275°)=0.087156,tan(275°)=-11.430052 sin(276°)=-0.994522,cos(276°)=0.104528,tan(276°)=-9.514364 sin(277°)=-0.992546,cos(277°)=0.121869,tan(277°)=-8.144346 sin(278°)=-0.990268,cos(278°)=0.139173,tan(278°)=-7.115370 sin(279°)=-0.987688,cos(279°)=0.156434,tan(279°)=-6.313752 sin(280°)=-0.984808,cos(280°)=0.173648,tan(280°)=-5.671282 sin(281°)=-0.981627,cos(281°)=0.190809,tan(281°)=-5.144554 sin(282°)=-0.978148,cos(282°)=0.207912,tan(282°)=-4.704630 sin(283°)=-0.974370,cos(283°)=0.224951,tan(283°)=-4.331476 sin(284°)=-0.970296,cos(284°)=0.241922,tan(284°)=-4.010781sin(285°)=-0.965926,cos(285°)=0.258819,tan(285°)=-3.732051 sin(286°)=-0.961262,cos(286°)=0.275637,tan(286°)=-3.487414 sin(287°)=-0.956305,cos(287°)=0.292372,tan(287°)=-3.270853 sin(288°)=-0.951057,cos(288°)=0.309017,tan(288°)=-3.077684 sin(289°)=-0.945519,cos(289°)=0.325568,tan(289°)=-2.904211 sin(290°)=-0.939693,cos(290°)=0.342020,tan(290°)=-2.747477 sin(291°)=-0.933580,cos(291°)=0.358368,tan(291°)=-2.605089 sin(292°)=-0.927184,cos(292°)=0.374607,tan(292°)=-2.475087 sin(293°)=-0.920505,cos(293°)=0.390731,tan(293°)=-2.355852 sin(294°)=-0.913545,cos(294°)=0.406737,tan(294°)=-2.246037 sin(295°)=-0.906308,cos(295°)=0.422618,tan(295°)=-2.144507 sin(296°)=-0.898794,cos(296°)=0.438371,tan(296°)=-2.050304 sin(297°)=-0.891007,cos(297°)=0.453990,tan(297°)=-1.962611 sin(298°)=-0.882948,cos(298°)=0.469472,tan(298°)=-1.880726 sin(299°)=-0.874620,cos(299°)=0.484810,tan(299°)=-1.804048 sin(300°)=-0.866025,cos(300°)=0.500000,tan(300°)=-1.732051 sin(301°)=-0.857167,cos(301°)=0.515038,tan(301°)=-1.664279 sin(302°)=-0.848048,cos(302°)=0.529919,tan(302°)=-1.600335 sin(303°)=-0.838671,cos(303°)=0.544639,tan(303°)=-1.539865 sin(304°)=-0.829038,cos(304°)=0.559193,tan(304°)=-1.482561 sin(305°)=-0.819152,cos(305°)=0.573576,tan(305°)=-1.428148 sin(306°)=-0.809017,cos(306°)=0.587785,tan(306°)=-1.376382sin(307°)=-0.798636,cos(307°)=0.601815,tan(307°)=-1.327045 sin(308°)=-0.788011,cos(308°)=0.615661,tan(308°)=-1.279942 sin(309°)=-0.777146,cos(309°)=0.629320,tan(309°)=-1.234897 sin(310°)=-0.766044,cos(310°)=0.642788,tan(310°)=-1.191754 sin(311°)=-0.754710,cos(311°)=0.656059,tan(311°)=-1.150368 sin(312°)=-0.743145,cos(312°)=0.669131,tan(312°)=-1.110613 sin(313°)=-0.731354,cos(313°)=0.681998,tan(313°)=-1.072369 sin(314°)=-0.719340,cos(314°)=0.694658,tan(314°)=-1.035530 sin(315°)=-0.707107,cos(315°)=0.707107,tan(315°)=-1.000000 sin(316°)=-0.694658,cos(316°)=0.719340,tan(316°)=-0.965689 sin(317°)=-0.681998,cos(317°)=0.731354,tan(317°)=-0.932515 sin(318°)=-0.669131,cos(318°)=0.743145,tan(318°)=-0.900404 sin(319°)=-0.656059,cos(319°)=0.754710,tan(319°)=-0.869287 sin(320°)=-0.642788,cos(320°)=0.766044,tan(320°)=-0.839100 sin(321°)=-0.629320,cos(321°)=0.777146,tan(321°)=-0.809784 sin(322°)=-0.615661,cos(322°)=0.788011,tan(322°)=-0.781286 sin(323°)=-0.601815,cos(323°)=0.798636,tan(323°)=-0.753554 sin(324°)=-0.587785,cos(324°)=0.809017,tan(324°)=-0.726543 sin(325°)=-0.573576,cos(325°)=0.819152,tan(325°)=-0.700208 sin(326°)=-0.559193,cos(326°)=0.829038,tan(326°)=-0.674509 sin(327°)=-0.544639,cos(327°)=0.838671,tan(327°)=-0.649408 sin(328°)=-0.529919,cos(328°)=0.848048,tan(328°)=-0.624869sin(329°)=-0.515038,cos(329°)=0.857167,tan(329°)=-0.600861 sin(330°)=-0.500000,cos(330°)=0.866025,tan(330°)=-0.577350 sin(331°)=-0.484810,cos(331°)=0.874620,tan(331°)=-0.554309 sin(332°)=-0.469472,cos(332°)=0.882948,tan(332°)=-0.531709 sin(333°)=-0.453990,cos(333°)=0.891007,tan(333°)=-0.509525 sin(334°)=-0.438371,cos(334°)=0.898794,tan(334°)=-0.487733 sin(335°)=-0.422618,cos(335°)=0.906308,tan(335°)=-0.466308 sin(336°)=-0.406737,cos(336°)=0.913545,tan(336°)=-0.445229 sin(337°)=-0.390731,cos(337°)=0.920505,tan(337°)=-0.424475 sin(338°)=-0.374607,cos(338°)=0.927184,tan(338°)=-0.404026 sin(339°)=-0.358368,cos(339°)=0.933580,tan(339°)=-0.383864 sin(340°)=-0.342020,cos(340°)=0.939693,tan(340°)=-0.363970 sin(341°)=-0.325568,cos(341°)=0.945519,tan(341°)=-0.344328 sin(342°)=-0.309017,cos(342°)=0.951057,tan(342°)=-0.324920 sin(343°)=-0.292372,cos(343°)=0.956305,tan(343°)=-0.305731 sin(344°)=-0.275637,cos(344°)=0.961262,tan(344°)=-0.286745 sin(345°)=-0.258819,cos(345°)=0.965926,tan(345°)=-0.267949 sin(346°)=-0.241922,cos(346°)=0.970296,tan(346°)=-0.249328 sin(347°)=-0.224951,cos(347°)=0.974370,tan(347°)=-0.230868 sin(348°)=-0.207912,cos(348°)=0.978148,tan(348°)=-0.212557 sin(349°)=-0.190809,cos(349°)=0.981627,tan(349°)=-0.194380 sin(350°)=-0.173648,cos(350°)=0.984808,tan(350°)=-0.176327sin(351°)=-0.156434,cos(351°)=0.987688,tan(351°)=-0.158384 sin(352°)=-0.139173,cos(352°)=0.990268,tan(352°)=-0.140541 sin(353°)=-0.121869,cos(353°)=0.992546,tan(353°)=-0.122785 sin(354°)=-0.104528,cos(354°)=0.994522,tan(354°)=-0.105104 sin(355°)=-0.087156,cos(355°)=0.996195,tan(355°)=-0.087489 sin(356°)=-0.069756,cos(356°)=0.997564,tan(356°)=-0.069927 sin(357°)=-0.052336,cos(357°)=0.998630,tan(357°)=-0.052408 sin(358°)=-0.034899,cos(358°)=0.999391,tan(358°)=-0.034921 sin(359°)=-0.017452,cos(359°)=0.999848,tan(359°)=-0.017455 sin(360°)=-0.000000,cos(360°)=1.00000,tan(360°)=-0.000000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档